Trigonometry

Midterm Review

1. Select the appropriate arc that describes t, the direction and length of the arc on the unit circle.
$\left\{\frac{\pi}{6}, \frac{\pi}{3}, \pi, \frac{3 \pi}{2}, \frac{3 \pi}{4}, \frac{5 \pi}{6}, \frac{5 \pi}{4}, \frac{-\pi}{4},-\frac{\pi}{2},-\frac{3 \pi}{4},-\frac{7 \pi}{6}\right\}$
a. \qquad
b.

c.

c. $t=$?
d. $\mathrm{t}=$?

For each expression sketch the given arc and state the reference arc. Then find exact functional value. 2. Find the indicated functional value(s).
a. If $\cos x=-\frac{1}{2}$ and $\sin x>0$, find $\csc x$.
b. If $\cos x=\frac{\sqrt{2}}{2}$ and $\sin x<0$, find $\cot x$
c. If $\sin x=a$ and $\cos x<0$, find $\sec x$
3. Write the equation for a circle with:
a. Center $(-2,3)$ and radius 4 . \qquad
b. Center $(2,-6)$ and radius $\frac{3}{4}$. \qquad
4. Evaluate the expression, if it is defined. Give the exact value for the answer.

$$
\frac{\cos \frac{\pi}{2}+2 \sin \frac{\pi}{6}}{-2 \cos ^{2} \pi}
$$

For the expression sketch the given arc and state the reference arc. Then find exact functional value.
5.

Expression	Sketch Arc	Reference Arc	Functional Value
$\tan \frac{5 \pi}{6}$			

Find the arc x with initial point (1,0) in the indicated interval, that makes each statement true.
6. $\cos x=\frac{\sqrt{2}}{2}$ and $\frac{3 \pi}{2} \leq x \leq 2 \pi$
7. $\csc x=\frac{-1}{2}$ and $\pi \leq x \leq \frac{3 \pi}{2}$
$x=$
$x=$
\qquad
\qquad

Find an approximation rounded to four decimal places for the following functional values.
8. $\frac{\csc 5-3 \tan 8}{\sec (-4.17)}$
9. $\frac{\sec ^{2} 3 \pi+\csc ^{2} \frac{2 \pi}{3}}{\tan ^{2} \frac{11 \pi}{4}}$

$$
10 . \frac{3 \cot (4.1)+2 \sec \left(-\frac{7 \pi}{5}\right)}{2 \sin (0.8513)}
$$

Revised: $05 / 2 \mathrm{y} / 2009$ gy

Sketch the following sinusoidal function on the interval $-2 \pi \leq x \leq 2 \pi$.
State the range and x - intercepts.
11. $y=6 \sin x$

Find an equation of a function in the form
a) $y=\cos [B(x-C)]$
b) $y=\sin [B(x-C)]$
for $\mathrm{B}>0$, and $0<C<2 \pi$ that represents the given periodic graph.
12.

a) \qquad
b) \qquad

Sketch the graph of each function between -2π and 2π.
13. $y=\cot \left(x-\frac{3 \pi}{2}\right)$

Revised: os/2y/2009 98

No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.

Sketch the graph of the function between -2π and 2π. Indicate the period and the range.
14. $y=-\sec \left(x+\frac{\pi}{4}\right)$

Consider a point that is moving at a constant velocity on a circle of radius r. Approximate the requested value to the nearest hundredth of a unit. (Caution watch your units)
15. Find ω if $v=24 \mathrm{~m} / \mathrm{sec}, r=7 \mathrm{~cm}$.

Find $\sin \theta, \cos \theta$, and $\tan \theta$ for an angle θ in standard position if the given point is on its terminal side. Leave answers in exact form (i.e. No approximations from calculator).
16. $(-5,-2)$

$$
\begin{aligned}
& \sin \theta=\square \\
& \cos \theta=\square \\
& \tan \theta=
\end{aligned}
$$

Find the exact values of the five other trigonometric values for each angle with the given information. (Rationalize denominators).
17. $\sin \alpha=-\frac{24}{25}$ and α is in QIII.

$$
\cos \alpha=\square \quad \sec \alpha=
$$

$\tan \alpha=$ \qquad $\cot \alpha=$ \qquad
$\csc \alpha=$ \qquad

Solve the right triangle $\left(\gamma=90^{\circ}\right)$ with the given angle measures and/or lengths of sides.
18. $c=38.1, \alpha=39^{\circ} 48^{\prime}$

$$
\beta=
$$

\qquad

Solve each triangle if possible.
19. $b=10.7, c=15, \beta=42^{\circ}$
\qquad
$b=$

Rerised: $05 / 2 \mathrm{z} / 2009$ g

Solve each triangle if possible.
20. $a=4.2, c=6, \alpha=68^{\circ}$
\qquad

$$
\gamma=
$$

\qquad
21. $a=30, c=15, \gamma=30^{\circ}$
$b=$

$\alpha=$

22. The diagonal of a parallelogram is 10 inches long. The diagonal make angles of 33° and 25° with the sides of the parallelogram. Find the lengths of the sides of the parallelogram.

\qquad
23. If $a=19, \alpha=55^{\circ}$, and $c=18$, find the altitude h to side b and then find the area of the triangle to the nearest square unit.

Kevise
24. A spring weighted at one end is bouncing up and down with initial displacement of 25 in . The displacement is given by the equation $d(t)=25 \cos (3 t)$, where t is in seconds and $d(t)$ is in inches. Find the displacement to the nearest hundredth of an inch for the following times.
a. $\quad t=0.9$
b. $\quad t=3.5$
25. The graph below represents the temperature of the water at the beach on a particular day.

a. At what times will the temperature of the water be 73° ?
b. Approximate the number of hours between the 73° temperatures.
c. Approximate the difference in the temperature between 10 AM and 8 PM .
26. A snowboarder at the 2002 Olympics did a 900° flip (which is two and one-half rotations) in 2.7 seconds. What is the angular velocity (to the nearest tenth of a radian per second)?
27. A speed skater at the 2002 Olympics did 5 laps around a circular rink of radius 10 feet in 15.6 seconds. What is the skater's linear velocity (to the nearest tenth of a foot per second)?
28. The tallest freestanding structure in the world is the CN Tower in Toronto, Canada. From the ground level, the angle of elevation from point A to an object on the observation deck of the CN Tower is 75°, and 111 feet behind point A at point B , the angle of elevation is 70°. Find the height to the nearest foot of the object on the observation deck of the CN Tower.
29. A tourist boat is travelling from Key West to Naples, Florida, which is approximately 150 miles away. After travelling for 30 miles, the captain notices that he is 25° off course due to heavy winds. At that point, determine how far the tourist boat is from Naples and the angle the boat should turn to correct its course.

Revised: os/2y/2009 \mathscr{P}

