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Nonlinear Diffusion of the Tidal Signal in Frictionally Dominated Embayments
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The dynamics of many shallow tidal embayments may be usefully represented by a single "zero-inertia"

equation for tidal elevation which has the form of a nonlinear diffusion equation. The zero-inertia equation

clarifies the lowest order dynamics. namely. a balance between pressure gradient and friction. It also provides

insight into the properties of higher-order harmonic components via the identification of compact approximate

solutions and governing nondimensional parameters. Approximate analytic solutions which assume a constant

diffusion coefficient are governed by the nondimensional parameters xlL and llkollL, where L is the length of
the embayment, and IIkOll-l scales both the length of frictional dissipation and the physical length of the

diffusive waveform. As llkollL increases, the speed at which the tidal signal diffuses decreases. and the rate of

decay of tidal amplitude with distance increases. The parameter llkollL increases as depth is reduced. friction is

increased, forcing amplitude or frequency is increased, or total embayment width is increased relative to the

width of the channel Approximate analytic solutions which assume a time-varying diffusion coefficient result

in additional components at the zeroth, second, and third harmonic frequencies. The zeroth and second

harmonics are go.vemed by the parameter r. as well as xlL and llkollL. Parameter r measures the relative

importance of time variations of channel depth (r> 0) versus time variations in embayment width (r< 0). If
r> 0, the diffusion coefficient is larger near the crest of the tidal waveform, causing the rising tide to be of

shorter duration and mean elevation to be set up. If r < 0, the diffusion coefficient is larger near the trough.

causing the falling tide to be shorter and elevation to be set down. The third harmonic is produced by

fluctuations in the diffusion coefficient associated with times of greatest surface gradient. The third harmonic is

governed only by the parameters xlL and IIkOllL. which indicates the third harmonic is insensitive to time

variations in cross-sectional geometry. Comparisons to field observations and to numerical solutions of the

full equations including inertia terms indicate that the zero-inertia equation (1) reproduces the results of the

more general one-dimensional equations to within the accuracy predicted by scaling arguments and (2)

reproduces the main features of the nonlinear tidal signal observed in many shallow tidal embayments.

1. INTRODUcnON

In the study of open channel flow and flood routing, it has long

been recognized that the zero-inertia approximation results in a

nonlinear diffusive governing equation which advantageously can

be applied to gradually varying unsteady problems [Hayami. 1951;

Henderson, 1966; Ponce et al.• 1978]. Application of the zero

inertia approximation to flood routing leads to depth and storage

dependent flood crest propagation and dissipation. and accounts for

the highly asymmetric rise and fall typical of flood waves.

However, it was not until recently that the zero-inertia

approximation was applied to the study of nonlinear flow in tidal

channels [LeBlond. 1978]. LeBlond showed that in shallow tidal

rivers. frictional forces exceed inertial forces over most of the tidal

cycle. By dropping the inertial terms in the depth-averaged one

dimensional (1-0) momentum equation, he formed a single

nonlinear diffusion equation for tidal velocity and showed that long

time lags associated with the propagation of low water could be

accounted for by the form of the nonlinear diffusion coefficient.

Since the important work of LeBlond [1978]. many papers have

investigated nonlinearities in frictionally dominated tidal
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embayments using a combination of scaling arguments. field

observations, and numerical modeling [Parker, 1984, 1991;

Aubrey and Speer. 1985; Speer and Aubrey. 1985; Friedrichs and

Aubrey. 1988; Westerink et al., 1989; Munchow and Garvine.

1991; Friedrichs et al.• 1992b]. However. the study of tidal

propagation in frictionally dominated embayments is still lacking an

analytically based discussion of overtides which includes all four

principal sources of nonlinearity: quadratic friction. time-varying

channel depth in the friction term. and time-varying channel depth

coupled with time-varying embayment width in the continuity

equation. No second-order analytic study has considered the

generation of harmonics by large variations in embayment width

during the tidal cycle. which is the primary source of nonlinearity in

many tidal e m b a y m e n t ~ of interest [e.g., Boon and Byrne. 1981;

Friedrichs and Aubrey, 1988]. Through analytic methods. the

present paper aims to synthesize all these nonlinear mechanisms in

a manner most easily adapted to physical interpretation.

Previous second-order analytic solutions to the 1-0 equations

with friction have been found via formal perturbation analyses

[Kreiss. 1957; Gallagher and Munk. 1971; Li. 1974; Kabbaj and

LeProvost. 1980; Uncles, 1981; DiLorenzo. 1988; Shetye and

Gouveia. 1992]. Although rigorous perturbation expansions are

important for spectral modeling of overtides and compound tides

[Kabbaj and LeProvost, 1980], such techniques can make simple

physical interpretation of analytical results difficult. When applied

to the full 1-0 equations for tidal embayments, formal perturbation
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analysis is algebraically intensive and results in solutions with

many terms contributing to each overtide.

In this study we take a less formal approach. We make a zero

inertia assumption along the lines of LeBlond [1978]. and form a

single nonlinear diffusion equation for tidal elevation. Second

order solutions are found by approximating the nonlinear diffusion

coefficient as constant in space and expanding only the time

varying portion. This approach conveniently combines the four

primary nonlinear mechanisms into a single time-varying

coefficient. Approximate analytic solutions for the zeroth, second.

and third harmonic components are compact and allow

straightforward physical interpretation via identification of their
governing nondimensional parameters. Finally. we compare our

approximate analytic solutions to field observations and to "exact"

numerical solutions with and without the inertial terms.

In this study we examine the nonlinear properties of tidal

elevation in tidal channels closed at one end. This particular

application was chosen because of its relevance to a large volume of

readily available field observations. Nonlinear tidal velocities in

similar channels can also be examined with the I-D zero-inertia

equation. This equation may also be applied to the nonlinear

properties of tidal velocity and elevation in channels with elevations

forced at either end [e.g.• Wong. 1989]. These topics are the

subject of ongoing research.

where b is total embayment width (including tidal flats). ~ is tidal

elevation. h is cross-sectionally averaged channel depth, be is the

width of the channel. u is cross-sectionally averaged velocity

(confmed to the channel). and Cd is the drag coefficient. In addition

to the usual assumptions of channelized flow, (1)-(2) assume u = 0

on the tidal flats. and beth » 1.

Restated in terms of characteristic scales. (1) and (2) become

by + hbi U = O. (3a)

(3b)

where a and U are the amplitudes of tidal elevation and velocity. T

is the tidal period, and L is the characteristic horizontal length scale.

Here we are assuming that the length scales of variation in u and C
are of the same order. Thus this analysis is limited to nonlinearities

with a basin-wide character and does not consider advective

nonlinearities typically localized to smaller geometric features such

as inlets. sand banks. or channel meanders [Zimmerman. 1978).

Solving for Lin (3a) and then eliminating L in (3b) gives

U baU bga CdU2_
T + behT + behUT + -h- - O. (4)

1.1. The Frictional DomiruJnce Assumption

Through scaling arguments. field measurement and/or numerical

modeling of the individual terms in the I-D momentum equation.

many authors have demonstrated the dominance of friction over the

inertial terms in well-mixed. shallow tidal embayments and

estuaries. A survey of the literature (Table I) indicates that in

systems of interest (well-mixed. tidal amplitude/mean

depth> -0.1. tidal velocities -0.5 m sol). the friction term is

typically I to 2 orders of magnitude larger than either the local or

the advective acceleration term. Furthermore, the local and

advective acceleration terms are typically of opposite sign and

partially cancel. In a recent paper. Jay [1991] showed that the local

and advective acceleration terms can entirely cancel to lowest order

in tidal channels with exponentially convergent geometries.

The last two entries in Table I serve to demonstrate the limits of

the frictional dominance assumption. In the Lower Columbia River

Estuary. where salinity intrusion is present. the shear stress at the

bed is reduced by stratification in the water column. partially

decoupling the overlying flow from the bottom [Giese and Jay.

1989). Upriver beyond the intrusion of salinity. the tidal pressure

gradient is primarily balanced by friction [Giese and Jay. 1989). In
the final example [Pingree and Maddock. 1978). the English

Channel is simply too deep and bottom stress too small for friction

to dominate the momentum equation. Approximate quantitative

boWlds on the conditions under which friction dominates inertia in

well-mixed tidal embayments are provided by a scalar analysis of

the I-D governing equations.

The cross-sectionally integrated. I-D equations of motion for

well-mixed, channelized flow in a tidal embayment with intertidal

flats (Figure I) may be expressed as [e.g., Speer and Aubrey,

1985)

The ratio of the friction scale to the inertial scale is then

(6)

(5)

(7a)

(7b)

ac n 2 gulul
gax + ~ = O.

h2l3 ac
u = - n laQaxll/2 ax'

or. equivalently.

In shallow tidal embayments of interest. U is of the order 0.5
m s·l. cd= 10-2 - 10-3• the semidiurnal period T = 4.5 x 1()4 s.

and I m ~ h ~ 10 m. Therefore F will typically be I to 2 orders of

magnitude larger than I in these tidally dominated embayments.

Since F/I is frequency dependent, however. one should use the

period of the overtide of interest when considering highly nonlinear

flow. This is not a serious limitation: F will still dominate I by an

order of magnitude. even if one scales (6) with the quarter-diurnal

tidal period.

The sum of the inertia terms is O(UIT) if we assume O(ba/beh)

~ 1. Combining the first two terms of (4) and dividing (4) by its

third term gives the magnitudes of inertia and friction relative to the

pressure gradient. which we assume to be order one:

1.2. Derivation ofthe Zero-Inertia Equation

If we assume that frictional effects are much larger than

acceleration (i.e.• FIl » I). then the momentum equation for

cross-sectionally averaged flow in a tidal embayment may be

expressed. accurate to O(F/I)-'. as

(1)

(2)

b
ac a(behu) = 0
at + ax •

au + U au + g iK + Cd ulul = 0
at ax ax h
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TABLE 1. Magnitudes of Local (LA) and Advective Acceleration (AA) Relative to the Friction Tenn (F), Along With Relevant Characteristic Scales

Location LAIF AAR ho,m a,m U,ms·1
Cd Source

Flow through salt 0.01 0.01 0.1 0.1 0.1 0.01 Burlce and Stolzenbach [1983]

marsh grass
1-0 trapezoidal 0.04 0.01 2 0.5 0.02 Speer [1984]

charmel
1-0modelofConwy 0.04 0.04 3 2.4 0.5 0.01 MiblchawandGarvine [1991]

Estuary, Wales
Conwy Estuary, 0.05 0.02 3 2.4 0.5 0.006 Wallis and Knight [1984]

Wales
Fraser Estuary, BC 0.05 0.05 9 4.5 0.005 LeBlond [1978]

Canada
1-0 model, Stony Brie. 0.05 0.1 2 0.9 0.01 Park [1985]

Harbor, NY, USA
Macquarie Harbor, 0.1 0.007 6 0.5 0.004 van de Kreeke [1967]

Tasmania
Great Bay, NH 0.1 0.02 7 1.3 0.03 Swift and Brown [1983]

USA
SI. Lawrence Estuary, 0.1 0.1 7 3.5 0.001 LeBlond [1978]

Canada
Ingram Thorofare, 0.2 0.07 3 0.5 0.7 0.002 Weisman etal. [1990]

NJ, USA
Delaware Estuary, 0.4 0.03 6 0.7 0.0025 Parker [1984]

USA
*Columbia R. Estuary, 10 0.0008 Giese and Jay [1989]

WA,USA
*English Channel 5 2.5 40 2 0.8 0.0025 Pingree and Maddock [1978]

*These two examples are included to illustrate limits of the frictional dominance assumption. See text for discussion.

quadratic friction; and two contributions to time-varying channel

depth, namely, h213 from the depth effect on friction and another

power of h from continuity. Equation (8) is solved numerically in

section 4, where it is compared to numerical solutions to (1)-(2), to

approximate analytic solutions derived in section 3, and to field

observations.

To enable approximate analytic solution, we expand the time

varying geometric parameters:

""1"--- be·---1·~1

Fig. 1. Diagram of an idealized tidal embayment cross-section: {(x,t) is
surface elevation relative to mean sea level (MSL) at the forced end of the
embayment; be and h are the surface width and cross-sectionally averaged
depth of the channel; b is the total width of the embayment cross-section,
including tidal flats which act in a storage capacity only; bo is the time
averaged width of the embayment cross-section (at an elevation not
necessarily coinciding with MSL). Elevations hi and h2 are used in

specifying the geometry of the intertidal storage area. Vertical exaggeration
is on the order of 100:1. where

b". boO + P{},

(9a)

(9b)

(9c)

and the dependence of e on t will be determined in a later section.

In (9) the subscript zero indicates time-averaged values, and &J is

the amplitude of change in b during the tidal cycle. Introducing

(9a)-(9d) in (8) yields

a~ _ 1 .£..{ be he SI3 (1 + a{) a ~ } = 0 (10)
at boO + p{} ax n (la{faxl l /2)o (1 + e(t» ax .

where n =h l /6(c,J1g)lf2 is Manning's friction coefficient, which is

assumed to be constant in space and time. (If using complex

notation for ~, the expression Idgdxl =Abs{Re(a{/ax)}).

Inserting (7b) into (1) yields a single governing equation for

tidal elevation in the form of a nonlinear diffusion equation:

(8)

a = ....i...
3ho'

R _ ~&

,., - a bo' (9d)

There are four sources of nonlinearity in (1)-(2) which contribute to

the time variability of the diffusion coefficient in (8): time-varying

embayment width, b, from continuity; time-varying lagdxl l /2 from
In the following sections we develop approximate analytic

solutions to (10). These analytic approximations allow a
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resulting ordinary differential equation in ~ ( x ) subject to the

boundary conditions given by (13), we have the solution

straightforward interpretation of the lowest order dynamics and

provide insight into the properties of higher-order harmonic

components via the identification of their governing

nondimensional parameters. { = a cosh Ieox exp imt ,
cosh IeoL

(15)

2. CONSTANT DIFFUSION COEFFICIENT
where

(16)
2.1. Solution

In solving the lowest order case, we neglect terms O(a{,!J{.e)

and assume boo be. ho and (Io"oxllfl)o may be treated adequately

by x-independent values. Then (10) becomes

leo = (f5;Y 12
= (1 + i) biJoY 12

.

The cross-sectionally averaged velocity, u, is obtained from the

continuity equation (1) as the real part of

(11)
i boa m sinh Ieox

u = - exp imt .
be ho ko cosh IeoL

(17)

where

constant. (12)
2.2. Nature ofthe Constant Coefficient Solution

For values of IIkoilL « 1 (likoll is defined as {(Re(ko»2 +

(Im(ko»2) 1/2). sinh !cox =: koX, cosh !coL =: 1, and

where it is tacitly understood that only the real part of the complex

solution is retained. If we insert (14) into (11) and solve the

and the overbars indicate x-independent, representative values. The

boundary conditions for (11) are (with the landward end at x = 0)

a{
{(x=L) = a cos rot, ax (x= 0) = O. (13)

It is not necessary to assume bl). be and Ito are x-independent to

reach a first-order analytic solution. A geometric or exponential

dependence on x may be treated via Bessel functions [Prandle and

Rahman, 1980; Friedrichs. 1992] or by a modified Green's law

approach [Jay. 1991]. For the embayments of interest to this

study. however. the assumption of a prismatic geometry simplifies

the form of the solution while retaining the essential physics.

For a linear, constant-coefficient governing equation with

periodic forcing. it is convenient to employ complex variables and

assume a solution of the form

aboLm x .
{ =: a cosmt, u '" -=-=- - sm mt, (18)

beho L

i.e.. corresponding to the simple pumping mode, with peak

velocities preceding high and low water by 90'. Similarly, for

llkollx» 1, sinh !cox '" cosh !cox = (1/2) exp (!cox), and

i.e.• corresponding to an exponentially decaying progressive

waveform traveling in the negative x direction, with peak velocities

preceding high and low water by 45'. In contrast, a frictionless

linear tidal wave in an infinite charmel has peak velocities exactly

coinciding with extreme water levels.

The nature of the frictionally dominated solution depends

strongly on the charmel length, L. relative to the frictional decay

scale. 1l1eo1l-1 = (DoIro)l12 (Figure 2), which in tum depends on the

{ '" a exp {_"Ieo_" (x - L)} cos {_"Ieo_" (x - L) + Cll/} ,
_ 21

/2 21
/2 (19)

u '" aboLm exp {_IIIeo_1I (x _L)l sin 1_1l1eo_1I
(x - L) + mt _Jr.}.

be ho 111eo11L 21/2 \21/2 4

(14){(x,t) = ~(x) exp imt.

21.50.51.50.5 2 0
WI

21<

Fig. 2. Time series of (15), the analytic solution to the linearized zero-inertia equation, during two tidal cycles calculated at xlL = 1,

0.8,0.6.0.4,0.2, and 0 (xiL = 0 landward): (a) IlkollL = 112. (b) IlkoliL = I, (c) IlkollL =2, and (d) IlkollL = 4.
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value of the diffusion coefficient given by (12). To obtain an

estimate of Do. we must evaluate the term (la"a.ztl/2>o- From (15),

the time-averaged magnitude of aqax is

la'i -llkoasinhko.%ll.2.
a.% 0 - cosh koL 1C '

If we represent (20) with its value at.% =L, then

(20)

where; =the phase angle of tanh 14:1-, and tr/4 =the phase angle of

ko·
Equation (26c) may be treated more easily if we consider a

Fourier series approximation of leos (O)t +; + 11/4)1 followed by the

use the Binomial theorem to approximate the inverse square root:

Introducing the square root of (21) into (12), we obtain the

necessary closure of the problem, i.e.,

- - 5/3
Do = be ho (lIko11a "tanh koLII.2.tl/2 . (22)

bon 1C

Since "koll =(O)/DO)I/2, (22) may be written as a dispersion

relationship:

li){/ihlo = Ilko1l a lltanh koLII ; . (21)
lcos (O)t+;+ 11"/4)1.1/2

... (i)112 {I + (- t) tcos 2(O)t +; + 1C/4)}. (27b)

Figure 3a compares the left and right hand sides of (27b). From

Figure 3a we see that the right-hand side of (27b) underestimates

the value of Icos (O)t + ; + 1C/4)1-1/2 at the times when 1a,/a.%1 is

largest, i.e., precisely when we can expect discharge to be greatest

and the effects of friction to be most important. Thus we will

approximate lcos (O)t + ; + 111'4)1-1/2 instead as

(lIko1lL )3/2 _ 21/2 bQnal/2O)L3/2

(Utanh koLlI)1/2 - 1CI/2 be h05/3
(23)

Icos ("'t + H 11"/4)1-1/2

'" If)1'2 (1+6cos2("'t+;+1C/4» '" {~)112 (l-e(t»), (28)

For IlkollL« I, IItanh koLlI ... Ilko1lL, and (23) reduces to

For IlkollL » 1,IItanh koLli ... 1, and (23) reduces to

(24)

such that the minima of the two functions coincide exactly (Figure

3b). This gives 6 =(2/1C)I/2 - 1 '" -0.20. The poles indicated by

Figure 3, which are poorly represented by the approximation in

(28), are not significant because they coincide with shick water

when friction is small.

Substituting (26) and (28) into (10) gives

a, _ (1r)1/2...L (1 + rcos O)t + cS cos (20)t + 9» ~ {be h05/3 a,}
at 2 bon (lIko1l a "tanh koL")ll2 ax ax

= 0, (29a)
According to (23)-(25), the speed at which the tidal signal diffuses

decreases and the rate of decay of tidal amplitude with distance

increases as channel depth is reduced, channel length is increased,

friction is increased, forcing amplitude is increased, or total

embayment width is increased relative to the width of the channel.

Equations (23)-(25) also state that the amplitude decay rate

increases as frequency is increased, indicating frictionally

dominated embayments act as low-pass filters.

where

9 = 2; + f' (29b)

(29c)

3. TIME-VARYINO DIFFUSION COEFFICIENT

(1 + J3().1 '" (l + J3a cos O)t)"1 '" 1 - J3a cos O)t, (26b)

Fig. 3. Approximations of Icos(aII + ; + lr/4)1·1/2: (a) exact is solid line;
(If/2)112(1 - (lf3) cos 2(t»t + ; + tr/4» is dashed line; (b) exact is solid line;

(26c) (If/2)112(1 + 6 cos 2(t»t + ;+ lr/4» is dashed line.

2

g
I.S1

.g
l!!
.a \ /

(a) (b)
05

0 05 1.5 2 0 05 I.S 2

""+;+""4
2n

Relative to (8), (29) is accurate to O(r,cS,aa,aJ3)2 plus an

uJlquantified error due to our choosing .% = L to be representative in

(26). If we once again assume bo, be, and ho to be constant in x

then (29) reduces to

(200)1 + r' '" 1 + ra cos O)t ,

({laaa.%II/2)0 (1 + £(t»}-I

'" (Ilkoll a lltanh koLIl leos (O)t + H 1C/4)1}"1/2 ,

3.1. Governing Equalion

We now use the results from our constant coefficient solution to

estimate the time dependent values of (I + 10, (1 + 130.1, and

{(Ia (/c),%1 112)0 (1 + e(t» }.I, each of which was assumed to be

constant in formulating (11). We still neglect .%-dependence in

these three expressions, however, and chose values at.% =L to be

representative. Then from (15),
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3.2. Solution

We treat the time-varying portion of the diffusion coefficient in

(30) by changing variables from t to T such that

a, a2,
- - (l+ycosOlt+6cos(20lt+8))Do - = O. (30)
~ ~ 2

Bessel functions can be used to find approximate solutions to the

higher-order harmonics in embayments with geometrically or

exponentially varying along-channel geometry [Friedrichs, 1992].

However, the basic physics which determine the properties of the

higher-order tidal components in frictionally dominated

embayments are more clearly illustrated if we assume a prismatic

geometry.

exp i OOT = exp i oot - L A", exp i(m OOT + 'P",) . (39)

", .. I

'(x.t) = a t l1",(x) exp i(moot + 'P",), (40)

me-I

with

Equation (39) is substituted into (37) for the m = 1 case. and then

the resulting equation is added to (38) to reconstruct the full

solution in t.

We represent the full solution as a sum of single frequency

components:

terms of t. Utilizing (33). trigonometric identities. and neglecting

O(y,cS,aa,a,8)2 terms (for details. see Friedrichs [1992]), it can be

shown that

(31)
a, a, aT a, )
- = - - = - (1 +rcos oot+6cos (2oot+ 8) .at aT at aT

Then (31) becomes

a a2

-a '(T,x) - Do - '(T,x)
T ax2

0, (32)

11·1 = : (~.I - ~d ,

110 = f (~o-~d,

(41a)

(4lb)

with 111 = ~I, (4lc)

OOT = Olt + rsin oot + ~ sin (20l t + 8) . (33) (4ld)

The boundary conditions for (32) are still at;Jax = 0 at x = O. and

,= a cos cd at x = L. However. the boundary condition at x = L

must be transformed to the new time variable, T. Utilizing (33),

trigonometric identities, and approximations to O(y,6.aa,ap)2 (for

details. see Friedrichs [1992]). it can be shown that

(4le)

By substituting (37) into (35) we see that the governing

equations for ~ " , ( x ) are

cos oot = t A", cos (m OOT + rp",) •

mz:~l

(34)
i m o o ~ " , - Do d

2
{", = O.

dx2
(42)

where A.I = -A3 = 6/4. Ao = -A2 = "12. Al = 1. -rp.1 = fP3 = 8, and

rpo = 'PI = 'P2 =o.
Since (32) is linear. we may express the solution as a sum of

terms ,"'. each satisfying the governing equation
Equations (42)-(43) have a solution of the same form as the

constant coefficient case:a,,,, _ D a2,,,, = 0
aT 0 ax2 '

(35)

with boundary conditions

~ - - O a t x = O , l' -1 at x-Ldx .,'" - -. (43)

33. Nature ofthe Time-Varying Coefficient Solution

The harmonics produced by the time-varying coefficient solution

are scaled by the nondimensional parameters y, 6. IlkollL, and x/L.

The parameter rscales the zeroth harmonic. which determines set

up or set down, as well as the second harmonic, which determines

duration asymmetry in the rising and falling tides. If ris positive,

there is set up of mean elevation and the embayment is "shorter·

rising" (Figure 4a). If r is negative. there is set down and the

embayment is "shorter-falling" (Figure 4b). These effects may be

understood physically if we reexamine the definition of r and the

relevant governing equation:

and the boundary conditions

aJ; = 0 at x =O. '''' = a A", cos (m OOT + 'P",) at x = L. (36)

We look for solutions to (35) of the form

'",(x.T) = aA",~",(x) exp i(mOOT+ 'P",). (37)

For m "* 1. (37) is already O(r.6,aa,ap), so if we discard

O(y,cS,aa,af3)2 terms, (37) transforms directly back to

'",(x.t) = a A",~",(x) exp i(m Olt + 'P",) . (38)

In order to transform the m = 1 case, we must reexpress exp iO>T in

~ ' " = cosh x (i m OO/DO)lfl = cosh m l/2ko x

cosh L (im OJ/Do)lfl cosh m l/2ko L
(44)
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Fig. 4. Time series of (40)-(41), (44), the approximate analytic solution of the zero-inertia equation with a time-varying diffusion
coefficient, with IlkollL = 1 during two tidal cycles calculated atxlL = 1,0.8,0.6,0.4,0.2, and 0 ~/L = 0 landward): (a) y= 0.5,
and (b) y= - 0.5.

5643

(45)r = a (a - fJ) = ~ - ~,
3ho bo

~, - (1 + rcos wt + .scos (2wt + 9)) Do a
z
, = O. (46)

at axz

If r> 0, (45) indicates changes in channel depth during the tidal

cycle are more important than changes in embayment width. (The

total effect of time-varying channel depth is, in turn, 2/5 due to

nonlinear friction and 3/5 due to nonlinear continuity. These

proportions follow from the binomial expansion used to derive a in

(9).) With r> 0, the time-varying diffusion coefficient in (46) is

larger than Do near the crest of the waveform (Wt '" 0), when

channel depth is greatest. And the diffusion coefficient is smaller

than Do near the trough of the waveform (wt '" Ir), when the

channel is shallowest. Since the speed at which the waveform

diffuses is proportional to the square root of the diffusion

coefficient, with r> 0 the crest diffuses landward faster than the

trough, "catching-up" with the trough and causing a shorter-rising

asymmetry. Since the rate of decay of the waveform with distance

is also proportional to the square root of the diffusion coefficient,

with r> 0 the amplitude of the crest decays more slowly than that

of the trough, resulting in set up (Figure 4a).

The effect of r < 0 is simply the opposite of r> O. If r < 0,

(45) indicates changes in embayment width are more important than

changes in channel depth. With r< 0, the diffusion coefficient in

(46) is larger than Do near the trough of the waveform (wt '" Ir),

when the embayment is narrowest, and the diffusion coefficient is

smaller than Do near the crest (wt .. 0), when the embayment is

widest. Thus with r < 0, the trough diffuses landward faster then

the crest, causing a shorter-falling asymmetry, and the trough

decays more slowly than the crest, resulting in set down (Figure

4b).

With r held constant, duration asymmetry and set up or down

increase as IIkollL is increased or x/L is decreased (with x =0

landward) (Figure 5). This is a straightforward consequence of

the different diffusion speeds and decay rates of the crest and

trough of the waveform. As IlkollL increases or x/L decreases, the

effective distance over which the .signals travel increases.

Therefore the difference between the crest and trough travel times

and the difference between the degree of crest and trough amplitude

decay both increase.

These approximate analytic results are consistent with the

numerical experiments of Speer and Aubrey [1985]. Through finite

difference solutions of (1)-(2), they found that embayments with

large tidal amplitude to depth ratios and small areas of intertidal flats

tend to be shorter-rising, whereas embayments with small

amplitude to depth ratios and large areas of intertidal flats tend to be

shorter-falling. Speer and Aubrey also found tidal asymmetry to be

Cdt

2lr

Fig. 5. Time series of (40)-(41), (44), the approximate analytic solution of the zero-inertia equation with a time-varying diffusion

coefficient, with y= 0.5 during two tidal cycles calculated at xlL = 1,0.8,0.6,0.4,0.2, and 0 (xlL = 0 landward): (a) IlkollL = 112,

(b) IlkollL = I, (c) IlkollL = 2, and (d) IlkollL = 4.
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more sensitive to channel depth than intertidal flat extent This

latter fmding is also consistent with (45), which weights aiho more

heavily than iW/bo in the definition of Yo

The parameter I> scales the third harmonic as well as a transfer of

some energy back to the first harmonic via (41a). The effect of I> in

(46) can be understood if we recall that 8 is ultimately related to the

phase of the surface gradient. I> and 8 cause the time-varying

diffusion coefficient in (46) to be smaller when the surface gradient

(i.e., velocity) is largest. In other words, large velocities impede

the diffusion of the tidal signal.

The third harmonic does not contribute to duration asymmetries.

Unlike Yo I> is not a function of cross-sectional geometry, but, to

our order of approximation, Ii is constant for all cross-sections.

According to the approximate analytic solutions, the third harmonic

varies only as a function ofx/L and IlkollL. Thus the third harmonic

is less sensitive than the second harmonic to time variations in

channel cross-section. We should expect the magnitude of the third

harmonic to become progressively smaller relative to the zeroth and

second harmonics as the overall tidal signal displays stronger

duration asymmetry.

4. COMPARISON TO NUMERICAL SOLUTIONS

AND OBSERVATIONS

4.1. Methods

Forcing M2 amplitude and geometric parameters required as

inputs to the numerical and approximate analytic models are listed

in Table 2 for 12 tidal embayments on the Atlantic Coast of the

United States. The geometric parameters in Table 2 were

determined by fitting the hypsometry of each embayment to an

idealized, prismatic geometry with a cross-section of the form given

in Figure 1. SL is the horizontal area of the embayment that is

submerged at mean low water; SH is the area submerged at mean

high water; and So is the time-averaged area. Model widths were

determined by averaging these areas over the length of the each real

embayment. The parameter ho is the spatially averaged depth at

mean sea level of the portion of the embayment encompassed by

SL. The heights hI and h2 were chosen to best represent the

hypsometry of each embayment using prismatic, linearly sloping

intertidal storage areas (see Figure 1).

Once prismatic approximations of the twelve real embayments

were constructed, finite difference representations of (1)-(2), which

include the inertia terms, were solved for each embayment.

Manning's n was the only independently adjustable parameter, and

it was varied until the solutions of (1)-(2) were reasonably

consistent with the observed tides (Figure 6). For several of the

embayments there is significant disagreement between observed

and calculated M2 phase lag (Table 3; Figure 6b), especially for

small phase lags. This is largely due to the varied locations,

relative to the embayment inlets, of the outside, "forcing" tide

gauges needed to calculate the observed phase lags within the

embayments. Set up, M2, ~ and M6 were determined by least

squares harmonic analyses of both the observed surface elevations

and the numerical solutions to (1)-(2). Results of the harmonic

analyses appear in Table 3. Also included in Table 3 are analyses

of numerical solutions to (8), the governing equation without the

inertia terms and approximate analytic solutions to (8) given by

(40)-(41) and (44). These solutions were calculated with the same

n used in the solution of (1)-(2).

The embayments at Chatham, which is shorter-rising, and

North Inlet, which is shorter-falling, were examined in particular

detail. These systems each contain many tide gauges and provide

case studies for along-channel variation in tidal distortion.

4.2. Numerical Solutions

Numerical solutions to (1)-(2) and to (8), the equations of

motion with and without inertia, are consistent within the scaling

arguments presented in section 1.1. As predicted by (6), the two

numerical solutions for M2 disagree by about 5% or less. while

amplitudes of M4 and M6 disagree by about 10% and 15%.

respectively (Table 3; Figures 7a, 7c, and 7e). Phases predicted by

the two solutions for each tidal component disagree by only a few

degrees (Table 3; Figures 7b, 7d, and 7/). Disagreements between

the two numerical solutions are largest for embayments with

relatively deep channels (e.g., Wachapreague, Price), which is also

consistent with (6). Nonetheless, these relatively small

disagreements do not affect the basic dynamic balance. Thus, to
the degree that the zero-inertia equation clarifies the fundamental

physical balance while maintaining the most important nonlinear

processes, the zero-inertia equation is a valid approximation of the

more classical1-D equations typically applied to tidally dominated

shallow embayments.

The consistency of the approXimate analytic solutions and the

"exact" numerical results is quite good. The residuals in Figure 7

are all small in comparison to the range of the signal. Of course,

there are also important differences between the analytic and

numerical solutions. This is not surprising given that aa = 5a13ho

and ap =iW/bo. which were assumed to be small, actually approach

unity in several of the embayments of interest (Table 2). There are

also some systematic, X-dependent differences between the

numerical solutions and analytic approximations which are

illustrated by a closer examination of the solutions for Chatham and

North Inlet (Figure 8). Relative to the numerical results, the

approximate analytic solutions for M2 (Figures 8a-8b) tend to

underestimate both amplitude decay and phase lag for large x/L

(i.e., near the forced end) and overestimate them at small x/L (i.e.,

near the landward end). These discrepancies partly result from our

treatment of la"axl-Itl in evaluating (8) analytically.

By approximating la"axl-1tl as x-independent in our analytic

solution, we neglect two specific aspects of the fully nonUnear, x

dependent problem. First, we do not recover a factor of 1/2 that

would appear if we were to expand (8) by differentiating an x

dependent la"axl-1tl:

a II~c -Itl ac} _ . {ac} a {I~C 1/2} _ 1.1~C -ltl a
2
C- - - sIgn - - - - (47)

ax ax ax ax ax ax 2 ax ax2 '

Neglecting this differentiation overestimates the diffusion

coefficient in both (11) and (46) and, therefore, underestimates the

decay and delay of the tide. (We also tried differentiating la"dxI-ltl

before treating it as x-independent, i.e., by including the factor of

1/2. However that equally arbitrary approach caused the

approximate analytic solution to be too dissipative in comparison to

the numerical solutions. Hence we chose to treat la"axl- Itl as x

independent throughout the derivation.)

The second error resulting from our treatment of laC/axl- ltl

relates to the no-flow boundary condition, a"ax =0, at x =O. In

(21) and (26c) we approximate ac/ax for all x with its nonzero

value at x =L, therefore underestimating laC/axl- Itl at small x/L

(where the no-flow condition requires the surface gradient to

approach zero). Since (12) indicates that the diffusion coefficient is

proportional to lagdxt-1tl, at small x/L our approach underestimates



TABLE 2. Embayment-Wide, "Representative" Parameters Used in Calculating the Numerical and Analytic Solutions of the 1-0 Governing Equations for Real Tidal Embayments

Location L,km ho, m AM2(x=L), m Se' 106 m2 50,106 m2 511, 106 m2 h1,m h2, m aa a{3 r Manning's IlkollL Source 'Tl
~

n, m- l13 s [l'I

c
~
n
:c

Aubrey and Speer [1984,1985];
en

South Channel, 8.2 1.9 0.98 2.2 3.3 4.4 -0.55 0.75 0.86 0.33 0.53 0.055 J.8

~Nauset,MA Roman et af. [1990]

Chatham, 14 2.4 1.05 18 23 28 -0.57 0.83 0.73 0.22 0.51 0.051 2.1 D. G, Aubrey, unpublished data, ~
MA 1988; NOAA chart 13248 c

Stony Brook, 5.2 1.7 0.86 2.8 3.6 4.4 -0.77 0.83 0.84 0.22 0.62 0.050 1.0 USGS topo St. James;
en

~
NY NOAA chart 12364

ISharle River, 4.4 1.9 0.60 2.4 3.2 4.0 -0.60 0.60 0.53 0.25 0.28 0.035 0.41 USGS topo Asbury Parle

NJ
Manasquan, 9,2 1.5 0.58 3.9 4.5 5.0 -0.52 0.58 0.64 0.11 0.53 0.035 1.4 USGS topo Pt. Pleasant

~NJ :c
Wachapreague, 10 3.6 0.54 15 34 53 -0.55 0.55 0.25 0.56 -0.31 0.037 0.80 Byrne et ai. [1975]; g

VA Boon and Byrne [1981] ~
RUdee, J.l 4.5 0.48 0.23 0.35 0.48 -0.48 0.48 0.18 0.37 -0.19 0.040 0.01 NOAA chart 12205 is

VA z
Main Creek, 8.0 1.9 0.73 1.6 2.6 3.6 -0.53 0.67 0.64 0.38 0.26 0.045 J.5 Perry et ai. [1978] 0

'Tl

Murrells, SC :i!
Oaks Creek, 4.7 1.4 0.73 0.53 1.5 2.5 -0.53 0.67 0.87 0.67 0.20 0.035 J.5 Perry et ai. [1978] [l'I

:j
Murrells, SC c

North Inlet, 6.5 2.6 0.74 6.3 11 22 -0.19 0.70 0.47 1.0 -0.53 0.058 1.0 Nummedal and Humphries [1978]; [l'I

Z
SC NOAA chart 11503

~Price, 7.1 3.3 0.69 2.7 8.8 18 -0.49 0.70 0.35 1.0 -0.70 0.030 0.74 FitzGerald andNummedal [1983];

SC USGS topos Capers, Ft. Moultrie ~
Fort George, 8.0 2.6 0.74 4.1 5.3 6.5 -0.75 0.75 0.47 0.23 0.24 0.045 0.80 Kojima and Hunt (1980); ~

FL USGS topo Mayport ~
We derme bH =SHIL, bo =SoiL, be =SelL, I1b =bH - bo, a =5a13ho, fJ =I1blbo, and r= a(a - (J).

VI

~
VI



VI

TABLE 3. Observations (OB); Nwnerical Solutions of (1)-(2) Wilh Inertia (NI) and of (8) Ihe Zero-Inertia Equation (NZ); and (40)-(41), (44) Ihe Approximate Analytic Solution of the Zero-Inertia Equation (AZ) ~
Location, Source record, days JelL' AM2,m ;M2, deg AM41AM2 2;M2-;M4, deg AM61AM2 3;M2';M6, deg set up, m

OBNI NZAZ OBNINZAZ OB NI NZ AZ OB NI NZ AZ OB NI NZ AZ OB NI NZ AZ OB NI NZ AZ

South O1annel, Nauset, MA
Aubrey and Speer [1985] 58 1 .98 .98 .98 .98 00000000 .007 .000 .000 .000 275 ---- --.- ---'- .004 .000.000.000 180 n._ ._••• ___• .000 .000 .000 .000
Aubrey and Speer [1985] 58 .86 .66 .72 .73 .80 081918 14 .083 .105 .103 .027 063 067 065 035 .031.024.022.008 293 354 350 227 ----- .124 .111 .048
Aubrey and Speer [1985] 29 .73 .59 .64 .65 .68 17333128 .119.122.122.056 064 076 073 048 .032 .022 .020 .016 314017013 254 --.-•.152.135.090
Aubrey and Speer [1985] 87 .47 .54 .60 .59 .57 29514855 .142.134.131 .116 064 075 074 082 .021.026.026.032 339034030316 --.-- .156 .135 .158
Aubrey and Speer [1985] 58 .32 .57 .60 .59 .56 48565267 .142.142.135.142 059 073 073 099 .023.030.031 .038 024037031344 ------ .152 .132.185
Aubrey andSpeer [1985] 58 .12 .55 .60 .58 .56 42595576 .207.149.138.160 063 073 072 III .028 .034 .034 .043 108040035006 ----- .150 .129 .206

Chatham,MA

i!'Friedrichs el aI. [1992a] 29 1 1.11.11.11.1 00000000 .025.000.000 .000 285 _nO••--- •••-- .003 .000 .000 .000 215 ••-- .-__ 'm' .000 .ooo .000 .000
D. G. Aubrey, Wlpublished data, 1990 29 .98 .96 .97 .98 1.0 10030302 .008 .031 .029 .oo4 031049047036 .005 .010 .009 .ool 126321318217 ----•.038 .034 .009

~Friedrichs eI aI. [1992a] 3 .95 .80 .87 .88 .96 31090805 .033 .067 .062 .009 029 055 052 038 .015 .016 .016 .oo3 208332329221 --•••.083 .073 .022
Friedrichs el al. [l992a] 29 .80 .66 .67 .69 .74 35272621 .052.118.115.038 075 072 067 047 .033 .015 .016 .012 274 oo7 000 247 -.--•.156 .137 .084
Friedrichs eI al. [l992a] 9 .68 .66 .59 .60 .62 49444036 .074.122 .125 .064 074078073059 .049.016.018.019 006 030 022 273 ----- .175 .152.130 ~
Friedrichs eI al. [1992a] 29 .30 .54 .56 .54 .50 69686279 .159.141 .133.148 064 072 071 108 .014 .037 .038 .040 020047041 oo5 _no_ .169 .145 .231

~Friedrichs el al. [1992a] 29 0 .59 .56 .54 .50 73716590 .219.151 .136.169 055 071 070 124 .038 .044 .042 .046 092 050 043 032 -.-••. 167 .142.257
Stony Brook, NY

~Park [1985] 29 1 .86 .86 .86 .86 OOOOOOOO .035 .OOO .000 .ooo 057 •____n_ .---- ••-•••.000 .000 .000 ---- ...._........- .. _....... .000.000.000 .000
Park [1985] 58 .81 .85 .79 .78 .82 2811 11 10 .050 .075 .072 .040 041 058 058 056 -----•.009 .oo8 .011 _m 338 337 244 -._...029 .028 .014
Park [1985] 58 .60 .80 .77 .76 .80 38191819 .128.118.111 .077 045061 061 070 ------ .012 .010 .020 ---- 348 347 267 -._...031 .030.028 ~
Park [1985] 29 .21 .73 .76 .75 .79 46252329 .200.155 .141.117 056 064 063 085 mm .026 .021 .031 ---- 357 354 292 ----- .026 .026 .045

I
Shark River, NJ

NOS [1985] 29 .36 .60.60.60.60 --040405 .018.018.016.010 126 095 082 088 .035 .012 .010 .oo7 008008355271 ----- .002 .001 .000
Manasquan, NJ

NOS [1985] 29 1 .58 .58 .58 .58 OOOOOOOO .012 .000 .000 .ooo 186 --.- -••- ----- .028 .000 .000 .000 329 -.-- __no ---_ .000 .000 .000 .000
NOS [1985] 348 .35 .48.47.45 .45 -·403645 .094 .151 .136 .124 052 058 060 085 .039 .037 .034 .034 301 006004309 - ••_•.037 .030 .064

Wac:hapreague, VA

IBynu el aI. [1975] --- I .54 .54 .54 .54 OOOOOOOO -••'-- .000 .000 .000 ---- - ..-- ...--- -_....- __no••000 .000 .Ooo ---- --- ---- ---- .000 .000 .000 .000
J. D. Boon, IDlpublished data, 1983 347 0 .55.55.51 .52 1918 15 19 .042 .063 .047 .026 203 247 236 266 .041 .057.044 .026 337 173 160 105 __m_ .022 .005 -.007

Rudee, VA
NOS [1985] 29 .64 .48 .48 .48 .48 --OOOOOO .011.000 .000 .000 193276267 187 .017 .OOO .ooo .000 087 184 176 oo5 __on .000 .000 .000

0Main Creek, Murrells, SC '!I

NOS [1985] 58 I .73 .73 .73 .73 OOOOOOOO .006 .000 .000 .000 047---- ••--- ---- .005 .000 .OOO .000 181 .-.- ----- --- .000.000.000 .000 ~
NOS [1985] 68 .85 .59 .62 .62 .63 17 15 14 13 .100 .054.052.015 083081078035 .030.019.019.009 296 005 000 227 __n_ .050 .041 .013 III

NOS [1985] 74 .41 .58 .56 .54 .53 30433948 .070 .086 .080 .059 098 083 082 083 .038 .040 .039 .033 343 034 030 309 ---.- .069 .053 .043 g
NOS [1985] 106 0 .56 .56 .54 .53 45474359 .101 .094 .083 .073 091 082081 100 .032.046.043.041 002037032337 ----- .068 .052 .054 III

Oaks Creek, Murrells, SC Z
NOS [1985] 58 1 .73 .73 .73 .73 OOOOOOOO .006 .000 .000 .ooo 047---- .---- ---- .005 .000 .000 .000 181 .--- --.-- ._•• .ooo .ooo .000 .000

INOS [1985] 100 .83 .57 .59 .60 .62 20191715 .080.086 .078 .014 080 088 086 037 .034 .031 .029.010 290 015 012 231 _nn .080 .063 .012
NOS [1985] 90 .38 .57 .54 .53 .52 33433950 .091 .101 .085 .048 098 099 098 085 .027.045.046.034 327051046313 -.--•.104 .075 .036
NOS [1985] 106 0 .55 .55 .53 .53 47464260 .082.104 .084 .057 III 099 097 loo .048.048.049.041 014053048338 --.••. 105 .073 .043

North Inlet, SC

~NOS [1985] 29 I .74 .74 .74 .74 OOOOOOOO .oo7 .000 .000 .OOO 088-n- _m_ • ___ .003 .000 .OOO .ooo 086 ---- __on --•• .000.000.000 .000
Nummedal and HlU1Iphrus [1978] 29 .91 .64 .72 .72 .72 16060505 .043 .023 .019 .016 207176182229 .009 .009 .008 .oo5 126089095052 ·.067 .012 .008 ·.005
Nummedal andlllU1lphries [1978] 29 .85 .64 .71 .71.71 12090808 .062 .035 .030 .027 198 182 188233 .012.014.012.009 238099 104059 -.072 .018 .012 -.008
Eiser and Kjerfve [1986] 29 .65 .59.70.69.69 --181617 .053 .067 .058 .058 190 201 205247 .035.027.023.018 248 127 129082 •••-••.031 .020 ·.018
NOS [1985] 29 .46 .67.70.68.68 21221924 .058.079.069.081 202209 212 257 .015 .033 .027 .025 002 139 140099 _.m..035 .022 ·.026
Eiser and Kjerfve [1986] 29 .18 .60 .70 .68 .68 ·--242229 .074 .087 .076 .100 225 214 217 266 .031 .038 .030 .032 025 147 146 113 __m_ .038 .022 .-034

Price,SC
NOS [1985] 203 .84 .69 .69 .68 .68 -·060505 .037.038.032.025 245 222 226 248 .015 .020.017 .oo7 330 137 139071 n_.__ .016.004 ·.004

Ft. George, FL
Kojima and Hum [1980] 2 1 .74 .74 .74 .74 OOOOOOOO .061 .000 .000 .ooo

312 ________ nn_
.038 .000 .000 .000

141 __n __________
.000.000.000 .000

Kojima and HunJ [1980] 2 .88 .70.73.72 .73 25 05 05 04 .035.018 .015 .oo8 112074072 063 .040.010 .oo9 .006 325 347 345 245 ----- .oo5 .004 .001
NOS [1985] 29 .35 .72.72 .70 .71 -- 15 15 15 .032 .053 .047 .027 147079074079 .012.030.028.019 317 oo2 358 272 ----- .oo8 .006 .005

Dashes indicate values are either unavailable or IDldeftned.
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Fig. 6. Comparisons of nwnerica1 solutions to (l )-(2), the equations of motion including the inertia tenns, with observations at 32

tide gauges in 12 tidal embayments (see Table 3): (a) MI amplitude divided by MI forcing amplitude, and (b) Mz phase (deg.)
relative to forcing MI phase. The solid line is unit slope, std is the standard deviation of the residuals from their mean, and bias is

the mean residual.
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Fig. 7. Comparisons of nwnerica1 solutions to (1 )-(2), the equations of motion including the acceleration tenns, to numerical and

approximate analytic solutions of the zero-inertia equation for 32 tide gauges in 12 tidal embayments (see Table 3): (a) Mz amplitude

divided by M1forcing amplitude, (b) Mzphase (deg.) relative to forcing Mlphase, (c) local ~ to MI amplitude ratio, (d) local ~
to M1 relative phase (deg.), (e) local M6 to M1 amplitude ratio, and (f) local M6 to M1 relative phase (deg.). Nwnerica1 solution of

(8), the fully nonlinear zero-inertia equation are circles; (40)-(41), (44), the approximate analytic solution with a time-varying

diffusion coefficient are pluses. The solid line is unit slope, std is the standard deviation of the residuals from their mean, and bias

is the mean residual,

the magnitude of the diffusion coefficient and overestimates the

decay and delay of the tide. This effect. together with that

described in the previous paragraph, causes the decay and delay of

the tidal signal to be somewhat too small near the seaward end of

the embayment and somewhat too large near the landward end.

The nature of discrepancies in the higher-order harmonics is

analogous. For example, the approximate analytic solutions for

AM4!AM2 (Figure 8e) underestimate the transfer of energy to ~ at

large xlL (cf. an underestimate of M2 decay) and overestimate the

transfer at small xlL (cf. an overestimate of M2 decay).
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Fig. 8. Tidal surface elevation parameters as a function of distance for the tidal embayments at Chatham (pluses) and North Inlet

(circles): (a) M2 amplitude divided by M2 forcing amplitude, (b) M2 phase (deg.) relative to forcing M2 phase, (c) local M4 to M2
amplitude ratio, and (d) local ~ to M2 relative phase (deg.). Field observations are dotted lines; numerical solutions to (1)-(2),

which include the inertia terms, are solid lines; numerical solutions of (8), the fully nonlinear zero-inertia equation, are dashed lines;

(40)-(41), (44), the approximate analytic solution with a time-varying diffusion coefficient, are dash-dot lines.

4.3. Observations

For the M2 tide, the consistency of the analytic results with the

observations (Figures 8a-8b, and 9a-9b) supports the overriding

importance of just two nondimensional parameters, IlkoliL and x/L,

in determining the degree of amplitude decay and phase lag

throughout frictionally dominated tidal embayments. For example,

Chatham has a significantly larger value of IlkollL than North Inlet

and a correspondingly larger decay and delay of the M2 tide. In

both embayments, amplitude decay and phase lag increase

landward with decreased x/L. Observations are also consistent

with the analytically derived roles of r, IIkollL and x/L in

determining the amplitude and relative phase of M4 (Figures 8c-8d,

9c-9d). Chatham has a large IlkollL, r> 0, and a large M4; North

Inlet has a smaller IIkollL, r < 0, and a smaller M4. In both

embayments, AM4/AM2 increases in magnitude landward toward

x/L = O. In general, all the embayments with r> 0 are observed to

be shorter-rising (0· < 2fPM2-fPM4 < 180·), and all those with r< 0

are observed to be shorter-falling (180· < 2qlM2-qlM4 < 360·).

Regardless of the sign of r, observations indicate AM4/AM2

increases as the absolute value of rincreases (fable 3).

The observed and analyticAMdAM2 ratios are of the same order,

and both tend to increase landward (Table 3). Observed and

analytic M6 relative phases (3fPM2-fPM6) also increase as one moves

landward toward x/L = O. There is no discernible relationship

between time variations in cross-sectional geometry and the

observed M6 tide, which is consistent with our derivation of a

constant governing parameter, o. The inability of the analytic (or

numerical) results to better reproduce the observed M6 tide may

result from our treatment of Manning's n as constant in space and

time. Several field studies of shallow tidal embayments suggest n

can be a complex function of tidal height, flow direction, and

observation location within a single embayment [e.g., Swift and

Brown, 1983; Wallis and Knight, 1984; Lewis and Lewis, 1987].

The approximate analytic solutions and numerical results both

predict significant set ups of mean tidal elevation in several of the

shorter-rising embayments (fable 3). Unfortunately, none of the

tidal observations for shorter-rising embayments listed in Table 2

includes references to an absolute vertical datum. However, set up

has been documented in shorter-rising tidal rivers in Great Britain

with tidal amplitude to depth ratios too large to be represented by

the approXimation (aa)2 = (5a!3ho)2 « I employed in this study,

e.g., The Fleet [Robinson et al., 1983] and the Conwy [Wallis and

Knight, 1984], each with (aa)2 '" 1.8. Observations from North

Inlet do include elevation relative to an absolute datum and suggest

a significant set down of the tide within North Inlet [Nummedal and

Humphries, 1978]. Although the approximate analytic solutions to

(11) do predict a small set down for North Inlet (Table 3), the

numerical solutions predict a small set up. Perhaps the observed

set down is due to non-tidal dynamics or an aspect of the geometry

not captured in our prismatic approximation.

5. SUMMARY AND CONCLUSIONS

Scaling of the I-D equations indicates that the friction term is

typically 1 to 2 orders of magnitude larger than the inertial terms

over the range of geometric and hych:odynamic parameters common

to many shallow tidal embayments. Neglecting the inertial terms

leads to a single "zero-inertia" governing equation for tidal elevation

which has the form of a nonlinear diffusion equation. The zero

inertia equation clarifies the fundamental physical balance typical to

shallow tidal embayments, while retaining the principal sources of

basin-wide nonlinearity, namely, quadratic friction, time-varying

channel depth, and time-varying embayment width.

First-order solutions are found by assuming the diffusion

coefficient to be constant in both time and space. The first-order

solutions are governed by two nondimensional parameters, IlkollL

and x/L, where L is the length of the embayment, and llkoll-I , which

is proportional to the square root of the diffusion coefficient, scales

both the length of frictional dissipation and the physical length of

the diffusive waveform.

As llkollL increases, the speed at which the tidal signal diffuses
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decreases and the rate of decay of tidal amplitude with distance

increases. For IIkollL « 1, the solution reduces to a simple

pumping mode. whereas for IlkollL» 1. the solution reduces to an

exponentially decaying. progressive waveform. IlkollL increases as

depth is reduced, friction is increased, forcing amplitude or

frequency is increased. or total embayment width is increased

relative to the width of the charmeI.

Second-order solutions are found by approximating the

nonlinear diffusion coefficient as constant in space and expanding

only the time-varying portion. This approach conveniently

combines the primary nonlinear mechanisms into a single time

varying coefficient. Approximate analytic solutions for the zeroth,

second and third harmonic components are compact relative to more

formal perturbation analyses and are more easily adapted to

physical interpretation.

The zeroth harmonic. which determines set up or down. and the
second harmonic. which determines duration asymmetry, are both

governed by the parameters x/L, IlkoIlL. and r= 5a/3ho - db/boo

where a is forcing amplitude, ho is average charmel depth. db is the

amplitude of time variation in embayment width, and bo is average

embayment width.

If r > O. then time variations in channel depth are more

important than time variations in embayment width. With r> 0,

the diffusion coefficient is larger near the crest of the waveform

than near the trough. The crest diffuses landward faster and decays

slower than the trough, resulting in a shorter-rising asymmetry and

set up of mean elevation. If r < 0, variations in width are more

important than variations in depth. With r < O. the diffusion

coefficient is larger near the trough of the waveform, the trough

diffuses faster and decays slower, and the tide is shorter-falling and

set down.

The third harmonic is produced by fluctuations in the diffusion

coefficient associated with times of greatest surface gradient. The

only independent parameters governing tl)e third harmonic response

are 1Ik{)11L and x/L. Thus analytic results indicate the response of the

third harmonic is less geometry dependent then the response of the

zeroth or second harmonics.

"Exact" numerical solutions show that the zero-inertia equation

reproduces the results of the more general 1-D equations, including

harmonic overtides, to within the accuracy predicted by scaling

arguments for shallow tidal embayments. The approximate analytic

solution to the zero-inertia equation also reproduces the main

features of the numerical solutions, including the fundamental

behavior of M4 and M6• Disagreements between analytic and

numerical solutions are largely due to the neglect of space

dependence in the diffusion coefficient of the analytic solution.

Nonetheless. the insight provided into the numerical solutions by

the analytic approximations demonstrates the usefulness of the

simplified second-order approach.

Finally, observations are also consistent with the analytically

derived roles of y, 1Ik{)11L and x/L in determining the amplitude and

relative phase of M2• M4 and M6. Observed M2 amplitude decay

and phase lag generally increase with increased IlkollL or decreased

x/L (i.e.• landward). All observed embayments with with r> 0

have shorter rising tides, and all those with r < 0 have shorter

falling tides. Observations also indicate the amplitude of M4

generally increases as IIkollL increases. x/L decreases. or the

absolute value of r increases. The order of magnitude of the

observed M6 tide is also reproduced. but observations indicate a

significant, unexplained spatial variance that is speculated to result

from unresolved temporal and/or spatial variations in real

embayment friction factors.
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