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Bayes Rule

Suppose, we know P(ω1), P(ω2), P(x|ω1) and P(x|ω2), and that we have observed 

the value of the feature (a random variable) x

How would you decide on the “state of nature” – type of fish, based on this info?

Bayes theory allows us to compute the posterior probabilities from prior and class-

conditional probabilities
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Prior Probability: The total 

probability of correct class being 

class ωj determined based on prior 

experience

Likelihood: The (class-conditional) probability of observing a feature value of 

x, given that the correct class is ωj. All things being equal, the category with 

higher class conditional probability is more “likely” to be the correct class.

Posterior Probability: The 

(conditional) probability of correct 

class being ωj, given that feature 

value x has been observed

Evidence: The total probability of 

observing the feature value as x
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Bayes Decision Rule

Choose ωi if P(ωi | x) > P(ωj | x) for all i≠j, i,j=1,2,…,c

If there are multiple features, x={x1, x2,…, xd} 

Choose ωi if P(ωi | x) > P(ωj | x) for all i≠j i,j=1,2,…,c
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The Loss Function 

Mathematical description of how costly each action (making a class decision) is. Are 

certain mistakes costlier than others?

{ω1, ω2,…, ωc}: Set of states of nature (classes)

{α1, α2,… αa}: Set of possible actions. Note that a need not be same as c. Because we 

may make more (or less) number of actions than the number of classes. 

For example, not making a decision (rejection) is also an action.

{λ1, λ2,… λa}: Losses associated with each action

λ(αi| ωj}: The loss function: Loss incurred by taking action i when the true state of nature 

is in fact j.

R(αi| x): Conditional risk - Expected loss for taking action i
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Bayes decision takes the action that minimizes the conditional risk !
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Bayes Decision Rule

Using Conditional Risk

1. Compute conditional risk for each action taken

2. Select the action that has the minimum conditional risk. Let this be action k

3. The overall risk is then 

4. This is the Bayes Risk, the minimum possible risk that can be taken by any classifier !
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Conditional risk associated with taking action 

α(x) based on the observation x.

Probability that x

will be observed

Integrated over all 

possible values of x
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Two-Class

Special Case

Definitions:

α1: Decide on ω1, 

α2: Decide on ω2, 

λij: λ(αi| ωj) Loss for deciding on ωi when the SON is ωj

Conditional risk: 

R(α1| x) = λ11P(ω1| x)+ λ12P(ω2| x)

R(α2| x) = λ21P(ω1| x)+ λ22P(ω2| x)

Note that λ11 and λ22 need not be zero, though we expect λ11 < λ12, λ22< λ21

Decide on ω1 if R(α1| x) < R(α2| x), decide on ω2, otherwise 

The Likelihood Ratio Test (LRT): Pick ω1 if the 

LRT is greater then a threshold that is independent of x. 

This rule, which minimizes the Bayes risk, is also called 

the Bayes Criterion.
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Example

From R. Gutierrez @ TAMU
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Example
(to be Fully solved on Request on Friday)
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Minimum Error-Rate Classification: 

Multiclass Case

If we associate taking action i as selecting class i, and if all errors are equally likely, we 
obtain the zero-one loss (symmetrical cost function)

This loss function assigns no loss to correct classification, and assigns 1 to misclassification. 
The risk corresponding to this loss function is then 

What does this tell us…?

To minimize this risk (average probability of error), we need to choose the class that 
maximizes the posterior probability P(ωi|x)
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Maximum a posteriori (MAP) criterion

Maximum likelihood criterion for equal priors
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Error Probabilities
(Bayes Rule Rules!)

P(error) = +
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xB: Optimal Bayes solution

x*: Non-optimal solution
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In a two class case, there are two sources of error: x is in R1, yet SON is ω2, or vice versa
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Probability of Error

In multi-class case, there are more ways to be wrong then to be right, so we exploit the fact 

that P(error)=1-P(correct), where

Of course, in order to minimize the P(error), we need to maximize P(correct) for which we 

need to maximize each and every one of the integrals. Note that P(x) is common to all 

integrals, therefore the expression will be maximized by choosing the decision regions Ri

where the posterior probabilities P(ωi|x) are maximum:
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Discriminant Based 

Classification

A discriminant is a function g(x), that discriminates between classes. This function 

assigns the input vector to a class according to its definition: Choose class i if

Bayes rule can be implemented in terms of discriminant functions
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Each discriminant function generates 

c decision regions, R1,…,Rc, which are 

separated by decision boundaries. Decision 

regions need NOT be contiguous.
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Discriminant Functions

We may view the classifier as an automated machine that computes c discriminants 

and selects the category corresponding to the largest discriminant

A neural network is one such classifier

for Bayes classifier with non-uniform risks, R(αi|x): 

for MAP classifier (of uniform risks): 

for maximum likelihood classifier (of equal priors): 
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Discriminant Functions

In fact, multiplying every DF with the same constant, or adding/subtracting a 

constant to all DFs does not change the decision boundary

In general every gi(x) can be replaced by f (gi(x) ), where f(.) is any monotonically 

increasing function without affecting the actual decision boundary

Some linear or non-linear transformations of the previously stated DFs may greatly 

simplify the design of the classifier

What examples can you think of…?
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Normal Densities

If likelihood probabilities are normally distributed, then a number of simplifications can be made. 

In particular, the discriminant function can be written as in this greatly simplified form (!)

There are three distinct cases that can occur:
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Case 1: _________  Ii
2σ=Σ

Features are statistically independent, and all features have the same variance: Dist. are 

spherical in d dimensions, the boundary is a generalized hyperplane (linear discriminant) of 

d-1 dimensions, and features create equal sized hyperspherical clusters. Examples of such 

hyperspherical clusters are:
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If priors are the same:  

Minimum Distance Classifier
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Case 1:________Ii
2σ=Σ

This case results in linear discriminants that can be written in the form

1-D case

2-D case3-D case
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Note how priors shift the discriminant function away from the more likely mean !!!
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Case 2:_______Σ=Σi

Covariance matrices are arbitrary, but equal to each other for all classes. Features then form hyper-

ellipsoidal clusters of equal size and shape. This also results in linear discriminant functions 

whose decision boundaries are again hyperplanes: ( ) ( ) ( )[ ] ( )i
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Case 3:____________Arbitraryi =Σ

All bets are off !In two class case, the decision boundaries form hyperquadratics. 

The discriminant functions are now, in general, quadratic (nor linear) and non-contiguous
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Case 3:____________Arbitraryi =Σ

For the multi class case, the boundaries will look even more complicated. As an example

Decision

Boundaries
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Case 3:____________Arbitraryi =Σ

In 3-D
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Conclusions

The Bayes classifier for normally distributed classes is in general a quadratic 

classifier and can be computed

The Bayes classifier for normally distributed classes with equal covariance matrices 

is a linear classifier

For normally distributed classes with equal covariance matrices and equal priors is 

a minimum – Mahalanobis distance classifier

For normally distributed classes with equal covariance matrices proportional to the 

identity matrix and with equal priors is a minimum Euclidean distance classifier

Note that using a minimum Euclidean or Mahalanobis distance classifier implicitly 

makes certain assumptions regarding statistical properties of the data, which may or 

may not – and in general are not – true.

However, in many cases, certain simplifications and approximations can be made 

that warrant making such assumptions even if they are not true. The bottom line in 

practice in deciding whether the assumptions are warranted is does the damn thing 

solve my classification problem…?
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Error Bounds

It is difficult, at best if possible, to analytically compute the error probabilities, 

Particularly when the decision regions are not contiguous. However, upper bounds for

this error can be obtained:

The Chernoff bound and its approximation Bhattacharya bound are two such bounds 

that are often used. If the distributions are Gaussian, these expressions are relatively

easier to compute Often times even non-Gaussian cases are considered as Gaussian.


