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 1. Introduction

1 Introduction

1.1 Ancient Greek approach

Ancient Greek mathematics was deeply influenced by Pythagorean description of quantity ex-
clusively in terms of geometry, considering quantities as defined by the proportions of lengths,
areas and volumes between certain geometrical constructions. However, it soon became clear
that there are also such geometrical objects which are nonquantitative in this sense – the diag-
onals of several squares appeared to have irrational lengths. The problem of difference between
continuity of qualitative changes and discreteness of quantity has shown up for the first time.
Probably the most important attempt of presocratic philosophy to solve this problem was the
atomistic philosophy of Abderian school of Leucippus and Democritus. In some relation to the
Pythagorean notion of monad, they have developed the theory of atoms, the infinitesimally small
objects which were in neverending motion, forming the geometrical (as well as physical) struc-
tures and their properties. This theory intended to provide some kind of infinitary arithmetical
method (of countable but infinitesimal atoms) in order to describe continuity and movement in
quantitative terms. However, the theory of infinitesimals was shown to be logically inconsistent
by the famous paradoxes of Zeno. These paradoxes have deeply influenced the postsocratic
philosophy of ancient Greece (Zeno and Socrates have lived at approximately the same time),
leading to elimination of the actual change (dynamics) from the Aristotelian physics and to
consideration of only finite proportions between geometrical figures (as well as finite procedures
of construction) in the mathematics of Eudoxos and Euclid. Aristotle denied infinitesimals, and
denied also the possibility that numbers can compose into continuum, because they are divisible
[Aristotle:Metaph]. He has argued that a line cannot consist of points and a time cannot consist
of moments, because a line is continuous, while a point is indivisible, and continuous is this,
what is divisible on parts which are infinitely divisible.1 This has lead him to the denial of the
idea of actual velocity (that is, the velocity in a given point): nothing can be in the movement
in the present moment (...) and nothing can be in the rest in the present moment and to regard-
ing the idea of actual infinity as non-empirical and logically inconsistent [Aristotle:Physics].
Hence, the only possible kind of the change and appearance of the infinity was the potential one
(note that the word potentiality is a latin translation of the Greek word dynamis). In effect, the
physical change and movement is described by Aristotle as a result of transition from potential
dynamis to actual entelechia (that is, from continuous potentiality to the discrete act). The
measurable properties are considered by Aristotle to be always the actual ones, and that is why
the measurable part of his physics refers only to static properties. Nevertheless, from the Aris-
totelian point of view any real object (ousia) consists from both: potential dynamical matter
(hyle) and actual static form (morphe).

The Aristotelian description of dynamics is only qualitative, due to impossibility of quantita-
tive approach to continuum forced by Zeno paradoxes. These paradoxes forced the shape of
all postsocratic mathematics, which had also denied the possibility of using infinitesimals. In
order to describe quantitative aspects of qualitative (geometrical) objects, such as area of the
circle, Eudoxos had developed the finitary method of exhausting (later brillantly applied by
Archimedes), which enabled to obtain values of fields and volumes of the geometrical figures up
to any given precision. From the modern point of view, this method can be thought of as finitary
algorithm of approaching irrational numbers, however one should remember that ancient Greeks
have not considered irrationals as numbers.2 The notion of a number (quantity) was reserved

1Note that this reasoning uses implicitly the law of excluded middle (formulated by Aristotle in form it is

impossible to simultaneusly claim and deny [Aristotle:SecAn]) through saying that points cannot be divisible
and indivisible.

2In Plato’s Academia there was known also second finitary method of approaching the irrationals, developed
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exclusively to proportions (rational numbers). As a result of this identification, and due to the
logical inconsistency of infinitesimal methods shown in Zeno paradoxes, the ancient logically
consistent solution of the problems of change in time and description of quality (geometry) in
quantitative (arithmetical) terms had to be provided by elimination of the measurable dynamics
form physics and elimination of the infinitary arithmetical methods from mathematics.

1.2 Modern European approach

The reconciliation of the problem of relation between quantity and qualitative change in modern
Europe has lead to formulation of analytic geometry by Descartes and of differential and integral
calculus by Newton and Leibniz. In these times (XVIIth century) the ancient interpretation of
quantity as geometrical proportion was still widespread, and it was replaced by Cartesian inter-
pretation of quantity as function only in XVIIIth century. It is worth to note, that both Newton
and Leibniz denied to interpret the calculus in purely arithmetical or geometrical terms. New-
ton’s viewpoint on the foundations of calculus has drifted, starting from consideration of the
infinitesimally small objects which are neither finite, nor equal to zero [Newton:1669], through
the finite limits of “last proportions” between these objects [Newton:1676], ending on consid-
eration of constant velocity encoded in the notion of fluxions [Newton:1671]. As notes Boyer
[Boyer], Newton preferred the idea of continuity of change, so, in order to preserve the direct
physical meaning of the mathematical methods, he was avoiding the arithmetical notion of a
limit (contrary to his teacher, Wallis) and tended to formulation based on differential rather than
on infinitesimals. On the other hand, Leibniz was clearly stating that the fundamental object
of calculus are infinitesimals, understood as mathematical representatives of the philosophical
idea of monad. He treated infinitesimals as objects which existed mathematically, however were
not expressible arithmetically, despite the fact that their proportions were quantitative. In his
opinion, infinitesimals are not equal to zero but such small, that incomparable and such that
the appearing error is smaller than any freely given value and deprived of existence as actual
quantity : I do not believe that there exist infinite or really infinitely small quantities [Boyer].
So, while Newton has considered the “moment” of continuous change as physically real, Leibniz
denied the physical reality of infinitesimals. These opinions of Newton and Leibniz had lead to
logical confusion in the next century. Berkeley has shown that the Newtonian idea of actual
velocity has no consistent physical sense [Berkeley], while D’Alembert has denied Leibnizian in-
finitesimals as logically inconsistent: any quantity is something or not; if it is something, it does
not dissapear; if it is nothing, it disappears literally. (...) A presumption that there exists any
state between those two is a daydream. [Boyer]. Hence, one more time in history, infinitesimals
were regarded as unacceptable due to the tertium non datur principle. The serious research
in the foundations of analysis has developed only after the works of Euler, who had extended
and popularized Cartesian understanding of quantity in terms of function and had also provided
the serious arithmetization of analysis. The crucial step was done by Cauchy, who denied in-
finitesimals and, following Lhuilier, regarded the differential defined through infinitesimal limit
as fundamental notion of analysis. His definition of differentiation has denied the geometrical
description in favor to arithmetical one, based on functions and variables. This was similar to
the approach of Bolzano, who had moreover regarded the continuum as consisting of discrete
points. However, the description performed by Cauchy still had a dynamical sense of variables
and functions “approaching” the limit. The final foundational step was performed in the second
part of the XIXth century by Weierstrass, who had eliminated from analysis any elements of
dynamics, geometry and continuous movement, by reducing it totally to arithmetical and order-

by Theatetus and called anthyphareis. And while Eudoxos’ exhausting can be considered as ancient analogue of
Dedekind cuts, Theatetus’ anthyphareis can be considered as ancient analogue of modern method of continued
fractions, which was later absorbed in Cauchy definition of real numbers.
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ing considerations. The Weierstrassian definition of a limit of sequence, based on identification
of the sequence with its limit, denies the intuition of “approaching”. Hence, although the no-
tation f ′(t) = df

dt is widely used, from the Weierstrassian perspective the differential cannot be
thought of as a small amount of curve f divided by a small amount of time t. By these means,
the geometrical continuum has been regarded as purely arithmetical construction. However, in
order to obtain full logical consistency, the definition of limit had to be stated independently
from the definition of irrational numbers. This could be performed only in the framework of
Cantor’s set theory, which provided tools for handling the “trancendent” area of infinite sets.
Cantor’s set theory was based on arbitrary abstraction of actual infinity, which is grounded in
the axiom of excluded middle. This abstraction enables to identify in(de)finitely prolongable
constructions with their nonconstructible ‘results’, treating the latter as full fledged mathemati-
cal objects. This way Cantor’s abstraction served as foundation for Weierstrassian interpretation
of analysis. However, it soon has been shown that this theory is plagued by several paradoxes
(like Russell paradox). Two main solutions of this problem were provided by Zermelo–Fraenkel
[ZermeloFraenkel] set theory and Russell–Whitehead [RW:PM] type theory. Both these theories
provided a consistent framework for Weierstrassian arithmetical foundations for analysis, free
from any geometrical and dynamical notions in favor to static, infinitary and order-theoretic
ones. Both ZF and RW systems contain two axioms which are crucial for the formulation of
analysis in terms of Weierstrass: the axiom of choice and the axiom of infinity (in [RW:PM] the
analogues of these axioms are called MultAx and AxInf, respectively). The first axiom is equiv-
alent to continuum hypothesis which states that Cantorian ℵ1 is equivalent with the continuum
of analysis and geometry, while the second one is an assumption about possibility to have count-
able but infinite sets (producing the set {∅, {∅}, {∅, {∅}}, . . .}). These axioms are independent
from the rest of the system,3 hence they represent the arbitrary assumptions about the nature
of continuum. The axiom of choice depends on the law of excluded middle, so it reflects also
certain logical assumption. Together they represent Cantor’s abstraction of actual infinity.

An important byproduct of the Cauchy–Weierstrass line of interpretation was denial of the defi-
nition of integration as a process which is dual to differentiation. It was caused by the discovery
(by Bolzano and Weierstrass) of the examples of non-continuous but integrable functions. In
effect, the theory of integration, developed by Riemann, Lebesgue, Stiltjes, Radon and Nikodym
became independent from the theory of differentiation.

One can conclude that the interpretation of the Newton–Leibniz geometric and dynamic analysis
provided in purely static and order-theoretic arithmetical terms on grounds of set or type theory
is possible due to assumption of existence of infinitely many individual elements in set, validity
of the law of excluded middle, and an abstraction of actual infinity. This is the modern logically
consistent mathematical solution of the Zeno paradoxes an the problem of relation between
continuity and quantity.

1.3 Beyond modern approach

The arbitrary and idealistic character of the axiom of choice and abstraction of actual infinity was
criticized by Kronecker and Poincare as weak elements of Weierstrassian formulation of analysis.
However, it was Brouwer who had explicitly presented a concrete opposition and alternative to
it. He had denied the possibility of application of axiom of choice with respect to infinite sets,
especially in the form of abstraction of actual infinity. In his opinion, the proof of existence
of a certain mathematical object (proposition) must be given by the explicit construction, and

3In particular, the continuum hypothesis (C) was shown by Cohen to be independent from the other consituents
of the Zermelo–Fraenkel set theory.
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not by indirect reasoning based on idealistic assumptions. Brouwer called such mathematics
intuitionistic or constructive. By definition, it was free of paradoxes. Heyting developed an
algebra which has modelled the intuitionistic logic of Brouwer, denying the need of the law
of excluded middle, and directly generalizing Boolean algebra (which is an algebraic model of
an axiomatic system of classical logic). This was possible due to independence of the axiom of
excluded middle from the rest of Boolean logic, what is in precise analogy with the independence
of continuum hypothesis (C) from the rest of ZF system. The intuitionistic Brouwer–Heyting
logic disregards the axiom of excluded middle in the same way as non-Euclidean geometry
disregards fifth postulate of Euclid. In both cases the denial of the additional independent
axiom leads to great development of more general mathematical structures, however, it requires
stronger proofs. [Tarski–Stone representation]

The development of model theory by Tarski and others has lead to possibility of consideration
of different models of analysis based on ZF(C) set theory. In particular, Robinson has developed
non-standard analysis, which gave consistent meaning to invertible infinitesimals, as well as
infinitely large numbers. [NSA]

[Forcing, Cohen, Kripke semantics]

[Type theory, intuitionistic type theory]

At the same time the geometers Weil, Eilenberg and Grothendieck have laid the foundations for
completely algebraic theory of nilpotent infinitesimals. Their intention was to formalize, at least
partially, the completely geometric (as opposed to arithmetic) intuition of infinitesimals, present
in the works of Riemann and Lie. This new algebraic approach became possible due to Kähler’s
definition of a tangent bundle of space M as a ring C∞(M) of smooth functions on M divided
by an ideal m2 of functions which square is equal to zero, and definition of a cotangent bundle as
a ring m/m2, where m is an ideal of functions equal to zero. First order nilpotent infinitesimals
are just the elements of ideal m2, and k-th order nilpotent infinitesimals are the elements of
mk+1. Such definition enabled to use nilpotents and differentials in algebraic geometry, which
is not equipped with smooth background, but deals very well with rings and ideals.

1.4 From infinitesimals to microlinear spaces

The infinitesimal analysis (and differential geometry) can be developed as an algebraic system
based on an assumption that the structure of the real line may be modeled by such commutative
unital ring R, that there exists the object of nilpotent infinitesimals

D := {x ∈ R|x2 = 0} ⊂ R, (1)

and D 6= {0}. This implies that R cannot be considered to be equal to the set-theoretic field R.
Condition D 6= {0} forces the existence of some infinitesimal x ∈ R that is not equal to zero,
but is ‘such small’ that x2 = 0. The Kock–Lawvere axiom

∀g : D → R ∃!b : D → R ∀d ∈ D g(d) = g(0) + d · b (2)

imposed on the structure of this ring says that every function on R is differentiable. On the
plane R×R this axiom means that the graph of g coincides on D with a straight line with the
slope g′(0) := b going through (0, g(0)),
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where the line tangent to g at 0 is tangent on an infinitesimal part of domain D ⊂ R (and not
in the sense of a limit in a point!). This implies that every function is infinitesimally linear.
However, the Kock–Lawvere axiom is not compatible with the law of excluded middle. Let’s
define a function g : D → R such that

{
g(d) = 1 iff d 6= 0,

g(d) = 0 iff d = 0.
(3)

The Kock–Lawvere axiom implies that D 6= {0}, because otherwise b would be not unique. So
(using the law of excluded middle) we may assume that there exists such d0 ∈ D that d0 6= 0.
From the Kock–Lawvere axiom we have immediately 1 = g(d0) = 0+ d0 · b. After squaring both
sides we receive 1 = 0.

This result means that we cannot make anything meaningful based on Kock–Lawvere axiom using
the classical logic in which the law of excluded middle holds. However, we are not restricted to
such logic, and we can use the weaker logic which does not use this law. After the substraction
of this law from the set of axioms of classical logic, we obtain the set of axioms of intuitionistic
logic. The usage of the latter is very similar to the usage of classical logic. The only difference
is the need of performing all proofs in the constructive way, without assuming the existence of
objects which cannot be explicitly constructed, hence without the axiom of choice. Of course, the
post-Weierstrassian set-theoretic line R is not a good model of R. However, we will show later
that there are good models of R which reexpress all constructive contents of post-Weierstrasian
analysis.

We call a property P of an object A decidable if ⊢ (P (x) ∨ ¬P (x)) for every x ∈ A (the ⊢ sign
reads as ‘is satisfied’). The Kock–Lawvere axiom implies that equality in R is not decidable:

∃x, y ∈ R 6⊢ (x = y) ∨ (x 6= y) (4)

(we will see later that R is not decidable not only for the property of equality of elements,
but also for other properties, such as the ordering). Clearly, this non-decidability is introduced
by the subobject D of the infinitesimal elements. The non-decidability of infinitesimal objects
can be interpreted as their ‘non-observability’ (in the Boolean frames)4. Infinitesimals appear
then with a perfect agreement with Leibniz’ idea of “auxiliary variables” [Fearns:2002]. But this
leads to an important conclusion: we cannot think about the real line R as consisting of equally
‘observable’ points laying infinitesimally close to each other (also because so far we have not
defined any ordering structure). Only some elements of space are measurable and decidable,

4We will show below that the non-observability of infinitesimals is strenghtened by the generalized Kock–
Lawvere axiom and the way of construction of the microlinear (differentiable) spaces.
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and only these elements can be “pointed” while one considers some kind of movement (this is
very important issue for dissolving Zeno paradoxes). This means also that the differentiability
and smoothness of functions and curves on R actually relies on ‘unobservable’ elements of R.

To enhance differentiability to any order of Taylor series, we have to consider also an object

Dn := {x ∈ R|xn+1 = 0} ⊂ R. (5)

I would be good if sums and multiplications of infinitesimals would be infinitesimal too. However,
D is not an ideal of R (e.g. (d1 + d2)

2 = 2d1d2 6= 0). Hence, in order to hold infinitesimality,
we have to consider more wide class of infinitesimal objects, such that appropriate polynomials
of infinitesimal elements are forced to cease. These are so-called spaces of formal infinitesimals
(called also nilpotent objects, infinitesimal affine schemes, or just infinitesimal spaces), defined
as spectra of Weil algebras,

D(W ) := SpecR(W ) = {(d1, . . . , dn) ∈ R
n|p1(d1, . . . , dn) = . . . = pm(d1, . . . , dn) = 0}, (6)

whereW is a Weil R-algebra with a finite presentation in terms of an R-algebra with n generators
divided by the ideal generated by the polynomials p1, . . . , pm:

R[X1, . . . , Xn]/(p1(X1, . . . , Xn), . . . , pm(X1, . . . , Xn)).

For example, one can consider

D := SpecR(R[X]/(X2)) = {d ∈ R|d2 = 0},

SpecR(R[X,Y ]/(X2 + Y 2 − 1)) = {(x, y) ∈ R2|x2 + y2 − 1 = 0}.

The structure R[X]/(X2) appears very naturally if one defines the multiplication in R×R by the
rule (a1, b1)(a2, b2) := (a1a2, a1b2+a2b1). In such case the Kock-Lawvere axiom (2) can be stated
as requirement that the map α : R[X]/(X2)→ RD such that α : (a, b) 7→ [d 7→ a+db] should be
an isomorphism. Noticing that D = SpecR(R[X]/(X2)), one can use the formal infinitesimals
for the generalization of the Kock–Lawvere axiom into form: For any Weil algebra W the R-
algebra homomorphism α : W → RD(W ) is an isomorphism. This generalization allows to solve
the problem that the result of addition or multiplication of infinitesimals is not an infinitesimal,
equivalent with the fact that (formal) infinitesimals do not form an ideal of R. Consider the
addition d1 + d2 and the multiplication d1 · d2. They can be formulated in categorical terms as
commutative diagrams

D ×D
id //
r

// D ×D
+ // D2 (7)

and

D ×D
id //
r

// D ×D
· // D, (8)

where r(d1, d2) = (d2, d1). We can say, that functions ‘perceive’ the multiplication and addition
of infinitesimal as surjective, if the diagrams

RD×D RD×D

Rid

oo
Rr

oo RD2

R+
oo (9)

and

RD×D RD×D

Rid

oo
Rr

oo RD
R·

oo (10)

are commuting equalizer diagrams. However, this is true thanks to the generalized Kock-Lawvere
axiom and the fact that the diagrams of Weil algebras which generate (7) and (8) are commut-
ing equalizer limit diagrams. So, despite (7) and (8) are not coequalizer diagrams, they are
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‘perceived’ to be such by all functions on R. This is a basic example of an operation on in-
finitesimals which is ‘thought to be surjective’ by functions on R. Another operations are given
by another limit diagrams of Weil algebras. In general, the generalized Kock-Lawevere axiom
forces that functions which work on infinitesimals ‘perceive’ their multiplication, addition and
other operations as surjective, because it establishes that for the limit diagrams of Weil algebras

LimW
µi

{{

µj

$$
Wi

f
//Wj ,

(11)

the diagram

RD(LimW )

RD(µi)

xx
RD(µj)

&&
RD(Wi)

RD(f)
// RD(Wj),

(12)

is also a limit, despite that the diagram

D(LimW )

D(Wi)

D(µi)
88

D(Wj).
D(f)oo

D(µj)
ff

(13)

is not a colimit. Here we symbolically write f : Wi → Wj to denote any diagram which can
be a base for some limit cone of Weil algebras {Wi}i∈I , with Lim W given by projective limit
lim
←−i∈I

Wi. This way all algebra of infinitesimal elements works ‘invisible’ (and ‘unobservable’ !)
from the point of view of ordinary functions, which are differentiable thanks to these infinites-
imals. In such case R is called to ‘perceive (64) as colimit’, and (64) is called a quasi-colimit.
The procedure of proving that concrete quasi-colimit diagrams of formal infinitesimal objects
are perceived as colimits is a basic type of proof in infinitesimal geometry, and it plays here the
same role as the procedure of proving that the higher-order terms in standard differential geom-
etry are becoming negligible. However, in the case of infinitesimal geometry all operations are
performed purely geometrically and categorically, without any consideration of the infinitesimal
limit (in an analytic sense) or a system of local coordinates.

We can consider now the formal infinitesimals D(W ) as an image of the covariant functor
D = SpecR from the category W of Weil finitely generated R-algebras to the cartesian closed
category E of intuitionistic sets, which contains models of such objects like R, D(W ), etc.
Moreover, we have the functor R(−) : E → E . The generalized Kock–Lawvere axiom says that
the covariant composition of functors

WopSpecR // E
R(−)

// E

sends limit diagrams in W to limit diagrams in E . This axiom allows to define the notion of
infinitesimally differentiable (microlinear) manifold, without use of topology or coordinates. Let
D be a finite inverse diagram (cocone) of infinitesimal spaces which is an image of a functor
D = SpecR applied to some finite diagram in the category of Weil algebras, and is send by R(−)

to a limit diagram in a cartesian closed category E . An object M of E is called the microlinear
space if the functor M (−) sends every D in E into a limit diagram. In such case M is said to
perceive D as a colimit diagram, and D is called a quasi-colimit. Hence, if M is a microlinear
space and X is any object, then MX is microlinear. Any finite limit of microlinear objects
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is microlinear. R and its finite limits as well as its exponentials are microlinear. And any
infinitesimal space is microlinear too.

The notion of microlinear space encodes the full differential content of the post-Weierstrassian
notion of ‘differential manifold’. It clearly needs no topology, neither the local covering and
coordinates, in order to construct and handle the differential geometric objects. Later we will see
how one can add topological structure to microlinear spaces (what will result in the definition of
a formal manifold). This separation of topological and arithmetical constructions from algebraic,
geometric and differential ones is the key and striking achievement of infinitesimal analysis.

1.5 The zoology of infinitesimals

Consider now a problem of definition of a tangent bundle of a differential manifold. The com-
mon definition of a tangent space (fiber of tangent bundle) at some point p ∈ M is based on
consideration of equivalence class of functions on this manifold which have equal their Taylor
expansion term up to order 1:

f ∼ g ⇐⇒ f(p) = g(p) ∧
∂fi
∂xj

(p) =
∂gi
∂xj

(p).

This definition can be shown to be independent on topology of the manifold. Such equivalence
class of smooth (inifinitely differentiable) functions is called a 1-jet at p. For example, the 1-jet
of a function f(x, y) at p is spacified by the set

{f(p),
∂f

∂x
(p),

∂f

∂y
(p)}.

One can define naturally k-jets by condition of equality on higher terms of Taylor expansion, up
to k. In order to algebraically handle the notion of element of k-jet of n-dimensional manifold
M , one can consider an infinitesimal object Dk(n) defined as

Dk(n) := {(x1, . . . , xn) ∈ R
n|xi1 · . . . · xik+1

= 0 for any k-tuple (i1, . . . , ik+1)}.

Clearly, Dk = Dk(1) and D = D1(1). Dk(n) is a representing object of the notion of k-jet in n
variables jk, i.e. jk is equivalent to map Dk(n)→ R. The space Jk of all k-jets jk of R, defined
by

f, g ∈ Jkp ⇐⇒ f(p) = g(p) ∧
∂fi
∂xj

(p) =
∂gi
∂xj

(p) ∧ . . . ∧
∂(n)fi

∂xj1 · · · ∂xjn
(p) =

∂(n)gi
∂xj1 · · · ∂xjn

(p),

is equal to the space RDk(n). Dk(n) are contained in duals D(W ) of all Weil algebras. The
latter represent the generalized jet bundles. This means that the generalized Kock–Lawvere
axiom states that every jet is representable.

Dn
∞ = {x ∈ Rn|∃k ∈ N xk = 0} = ⋓kDk(n)

D(W ) is a subobject of two bigger infinitesimal objects:

△ := {x ∈ R|¬(x ∈ Inv R)} = {x ∈ R|¬¬x = 0}

and

△△ := ⋒n>0(−
1

n
,
1

n
= {x ∈ R|¬(x#0)},
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where the apartness relation # and the object of invertible elements Inv R are defined as:

x#y := ∃n ∈ N −
1

n
< x− y <

1

n

Inv R := {x ∈ R|∃y ∈ R xy = 1}.

All these type of infinitesimals form a following sequence of subobjects:

D(n) ⊂ Dn ⊂ Dk(n) ⊂ D
n
k ⊂ D(W ) ⊂ △n ⊂ △△n.

△△ is an ideal of R, what implies that one can distinguish physical (measurable) elements of R
from nonphysical ones in terms of the apartness relation, which “cuts off” all arithmetic of in-
finitesimals. In all models which contain (are capable to model) only the nilpotent infinitesimals,
the equation △ = △△ is satisfied. However, there are also some models in which one can consider
also the object I of invertible infinitesimals :

I := {x ∈ R|x ∈ △△∧ x ∈ Inv R} = ⋓n>0(−
1

n
,
1

n
)− {0}.

From this definition it follows that I ⊂ △△ ⊃ △ and I ∩ △ = ∅. Using physical terminology,
we would describe non-invertible infinitesimals △ as ‘ultraviolet’ and invertible infinitesimals I
as ‘infrared’. Note that while the object △△ needs an order relation to be defined, this relation
is not necessary neither for △ nor for I. If we would like to ‘objectivize’ now the real line R,
removing all non-observable elements, we have to divide it through the ideal △△, introducing
the ‘totally objective’ real line R/△△. Note that doing so we have to introduce ordering on this
real line. This space consists only of elements which are measurable. But the price we have to
pay is losing of all infinitesimal elements. Hence, in order to build some differential calculus,
we have to introduce now the concept of an ‘infinitesimal limit’ in the Cauchy–Weierstrass
sense, and consider all elements of this procedure – the limit and all intermediate stages — as
objective, measurable ones. As a result, we get ordinary calculus with its both infrared and
ultraviolet divergences which we have to regard as objective (because we work in R/△△), but we
cannot regard as objective (due to infinities). This paradox can be resolved only by relaxing our
objectivist attitude and considering also such elements of real line which are not objective. It is
one of the great advantages of the infinitesimal geometry.

A strikink difference between objects D(W ) and △△ is that the former is purely geometrical and
algebraic, while the latter is involved in the topology and order. While D(W ) represents jets
and their prolongation, △△ represents germs, that is, the equivalence classes of functions on a
topological space, equal on the given topological neighbourhood of a fixed point. (It is important
to note, that the notions of germ dependends on topology, but it does not depend on continuity
or smoothness. Hence, in a certain sense, it is more connected with integration rather than
differentiation.) One can say that the ‘level of jets’ (and of their prolongations) is the maximal
nilpotent infinitesimal arena.

The crucial property of infinitesimal geometry, which is responsible for many of its advantages,
is the cartesian closedness of the category in which we formulate such objects as R, Rn, D(W ),
RD(W ), and so on. Cartesian closed category is such category that for each pair of its objects
(‘sets’, ‘spaces’) A and B there exists an object BA of all morphisms from A to B, called the
exponential, satisfying the exponential law

A×B → C

B → CA
, (14)

or, equivalently,
Hom(A×B,C) ∼= Hom(B,CA). (15)
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In the cartesian closed categories we have a natural way of speaking about exponential objects
of all maps from one object (space) to another. It implies that the space RR of all smooth
differentiable functions from R to R is also a ring with infinitesimals, and the space MM1

2 of
all functions between two differentiable (microlinear) spaces M1 and M2 is also a differentiable
space! Such construction cannot be performed in the classical set-theoretic differential geometry
– the set of all maps between two fixed manifolds is not a manifold. This difference is very
important for the mathematical foundation of the path–integral formulation of quantum theory
and we will discuss it later.

Cartesian closedness leads also to strict equivalence between vector fields, infinitesimal flows
and infinitesimal deformations of the identity maps of manifolds. Such equivalence in Newton–
Weiestrass differential geometry is only a metaphor. Recall that any curve on space M may be
regarded as subset k of M parametrized by the piece I of line, k : I →M , or k ∈M I .

I

k

M

By an analogy, in order to generate space which is tangent to the space M in some point x, we
should take an element t of M parametrized by an infinitesimal piece of line D.

M

D

t

It means that the tangent vector attached at x is a map t : D → M or t ∈ MD such that
t(0) = x. The tangent bundle is an object TM := MD together with a map π : MD → M
sending each tangent vector t ∈ MD to its base point π(t) = t(0) = x. The set TxM := MD

x

of tangent vectors with base point x is the tangent space to M at x. The cartesian closedness
implies that there is a unique isomorphism between tangent vectors

X :M →MD,

infinitesimal flows on M
X ′ : D ×M →M,

and infinitesimal deformations of identity map of M

X ′′ : D →MM .

The tangent bundle for any space is now generated by the functor (−)D : M 7→ MD. Through
the cartesian closedness one can concern the tangent bundle of any function space, by the
isomorphism (MD)M ∼= (MM )D. By definition, the tangent bundle MD of M is also a bundle
of 1-jets of M . The k-jets bundle of M is given by the object MDk(n) together with the map
MDk(n) →M . The generalized k-jet bundle (called a prolongation) of M is defined as MD(W ).

This way the space TM =MD of all tangent vectors of M is literally the space of all infinitesimal
movements D →M in infinitesimal time distance D.
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1.6 Algebraic geometry and schemes

The main idea of algebraic geometry is to study geometrical figures defined by solutions of
polynomial algebraic equations over some spaces. For example, a two-dimensional sphere with
unital radius S2 placed in three-dimensional real space R3 is defined by the polynomial equation

x2 + y2 + z2 − 1 = 0, (x, y, z) ∈ R3. (16)

This description contains two parts: x2+y2+z2−1 = 0 describes the essence of the concept S2,
while (x, y, z) ∈ R3 defines only a particular implementation (instance) of this geometric figure.
Generally, the solutions of systems of polynomial equations





f1(x1, . . . , xn) = 0
...
fm(x1, . . . , xn) = 0

(17)

can be considered for different spaces. An affine algebraic geometry studies (17) over fields k
which are algebraically closed, that is every (positive-degree) polynomial fi ∈ k[x1, . . . , xn] is
the product of linear polynomials. The space k[x1, . . . , xn] has the structure of ring, making
possible the consideration of the geometrical objects (like S2) from the algebraic viewpoint and
with its tools.5 The system (17), called a locus, curves out a geometric shape A ⊂ kn of solutions
(called an algebraic set), but it also ‘curves out’ an ideal I ⊂ k[x1, . . . , xn], generated by the
set {f1, . . . , fm}. This ideal may be extended with all polynomials g which vanish on A, such
that any natural power of g also vanishes on A (such ideals are called radical). The famous
Hilbert Nullstellensätz states then that there is bijective correspondence between radical ideals
of the ring k[x1, . . . , xn] and the algebraic sets A in kn.6 However, in order to study more subtle
structure of geometric objects with algebraic tools, one has to move far then this duality, into
the consideration of algebraic analogs of manifolds. The properties of algebraic sets

A(
⋃
i Ii) =

⋂
iA(Ii), kn = A(0),

A(I1I2) = A(I1) ∪A(I2), ∅ = A(1),

enable to use them as closed sets which define the Zariski topology.7 With the help of this
topology, one can define an ‘affine algebraic manifolds’, called affine varietes, as such algebraic
sets, which are closed (in Zariski topology) and irreducible. The last term means, that an
algebraic set under consideration cannot be presented as a union of two other algebraic subsets
of kn. It can be shown, that the algebraic set A is irreducible iff its ideal I(A) is prime, so
the equivalent definition of an affine variety states, that it is an algebraic set A equipped with
Zariski topology and with ideal I(A) ⊂ k[x1, . . . , xn] which is prime (one can treat this as
a generalisation of Nullstellensätz, because every maximal ideal is prime, but not converse).
The Zariski topology can be also formulated directly on the set Spec(k[x1, . . . , xn]) of prime
ideals, by defining closed subsets V (I) ⊂ Spec(k[x1, . . . , xn]) as such that consist of all ideals in
Spec(k[x1, . . . , xn]) which contain I as a subset. Taking the dual view, we may say that V (I)
consist of ideals of all affine subvarietes (with respect to the Zariski topology on kn) which are
contained in A(I). Hence, these two definitions are compatible, however the definition of Zariski
topology on the spectrum of ring is more general. In effect, we can notice that the duality

5The basic model of this inteplay is the fundamental theorem of algebra, which states that every polynomial
over C (an algebraic object) bijectively corresponds to the set of its roots (a geometric object).

6More precisely, algebraic sets are not subobjects of cartesian product kn, but of affine space An
k , that is, kn

without origin, what removes the possibility of addition of points.
7In other words, closed sets in Zariski topology on kn are given by A(U) = {x ∈ kn|f(x) = 0 ∀f ∈ U ⊂

k[x1, . . . , xn]}. This definition implies that Zariski topology is generally neither Hausdorff, nor Tychonoff.
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between polynomials over C and set of its roots, extended to Nullstellensätz duality between
algebraic sets and radical ideals, has been ‘substitued’ on a higher level by the duality between
affine varietes and spectrum of prime ideals with Zariski topology.

By taking an ideal I(X) corresponding to some algebraic set X, and dividing k[x1, . . . , xn] by
it, one obtains the affine coordinate ring of X. The duality between algebraic and geometric
description can be observed in the fact that two affine algebraic varietes are isomorphic iff their
affine rings are isomorphic.

The affine varietes are geometrical objects which generalize the space of solutions of (17). For
a given affine variety A some of its points (given by maximal ideals) correspond to particular
points in kn, but there are also other points, given by non-maximal prime ideals, corresponding
to subvarietes of A. Hence, affine varietes are more general than affine sets, but this way they
enable to encode more information about the geometrical structure. Further generalizations
which we will consider, namely schemes, topoi and stacks, follow the same path: they enhance
the expressible power of duality between geometry and algebra through generalization of the
structure.

The idea of Grothendieck, which has radically extended the range of the applicability of algebraic
geometry, was to consider a space as a spectra of a commutative ring (with no additional
assumptions). He called such space an affine scheme. But even more striking was his idea of a
scheme, that is, a space which is locally reconstructed from an algebra (locally isomorphic to an
affine scheme). Such scheme can be thought of as an entity ‘glued’ from affine schemes, but from
more fundamental perspective, it is a space which arises from localisation of a given algebraic
structure.

An affine scheme was defined by Grothendieck as the space SpecR of prime ideals a commutative
ring R, equipped with the Zariski topology and a sheaf of commutative rings of polynomial
functions defined over the Zariski open sets of the spectrum. The ring of global sections of this
sheaf is equal to R. A scheme is a space equipped in a topology and a sheaf of commutative
rings, such that the restriction of a sheaf to every open set is a ring which spectra is an affine
scheme. This way affine schemes provide an algebraic analogue of coordinate systems on schemes.
The latter are often viewed just as topological spaces, which are equipped with (sheaves of)
commutative rings assigned to all its open sets, and arising from ‘gluing’ of the spectra of these
rings. This ‘gluing’ perspective, representing covariant point of view (that is, considering space
as arising from certain imbeddings of smaller constituents) may be more easy to grasp, but is
less general. As observed by Grothendieck, and advocated by Lawvere, generally in all algebraic
geometry the contravariant structures are more well behaved (eg. cohomology as opposed to
homology). In the case of schemes, the contravariant pespective leads to consideration of local
spaces (affine schemes) as a result of localisation of certain global structure. In this sense, the
local space (affine) is ‘taken out’ from the global object (scheme).

A particular example of a scheme is an algebraic variety, which is a scheme which sheaf consists
of finitely generated k-alebras (quotients of polynomial k-algebras by prime ideals), for any field
k. Again, variety could be considered as a ‘glueing’ of affine varietes along common open sets,
but it is better to consider it as a localisation of a certain algebraic object.

A Grothendieck topos provides a further generalisation of this idea: it is a generalized topological
space, equipped with the set-valued functors assigned to this space. Due to Yoneda embedding,
every object of the base topological space can be represented fully and faithfully in terms of the
set-valued functor. While schemes are categories of sheaves of commutative algebras over the
space equipped locally with Zariski topology, toposes are sheaves of sets over categories equipped
with Grothendieck topology.
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1.7 Algebraic differential geometry and toposes

So far we have discussed the system of infinitesimal analysis and geometry build axiomatically
“from scratch”. However, at the end of the day we have to pose the question which categories
are properly modeling this system, as well as what is the general relation between this system
and the classical differential calculus and geometry. The general solution of this problem was
proposed by Lawvere [] in analogy with some methods of algebraic geometry, and was developed
by Dubuc [„ „], Kock [„], Reyes [„ ,], Moerdijk [„] and others. It appears that good models of
infinitesimal analysis and geometry can be provided inside special type of categories, known as
topoi. In order to understand this construction, we have to reconsider to issues related with
algebraic geometry and classical differential geometry.

Every ordinary smooth differential manifold M may be equivalently described by the algebra
C∞(M) of smooth functions over it. The set of points of this manifold appears as the spectrum
of the given algebra C∞(M) and all structures on this set may be restored from the given corre-
sponding structures of C∞(M) (see eg. [JetNestruev] for details).8 The approach of interpreting
manifolds in terms of (sheaves of) rings is the standard tool in algebraic geometry. In particu-
lar, every affine scheme is equivalent to a certain commutative ring (and the category of affine
schemes is just dual to the category commutative rings with unit), while every scheme, consist-
ing of affine schemes, is described by sheaf of rings. Such algebraic perspective on geometrical
objects became very fruitful in the area of algebraic geometry, but it was not used in the classical
differential geometry due to concrete obstacles which characterize the category Man of classical
smooth differential manifolds. The category Man lacks finite inverse limits, what means that
the projective limit lim

←−i∈I
Ui of manifolds Ui as well as fiber products Ui ×Uj

Uk generally are
not manifolds. Hence, one cannot consider differential curves and manifolds with singularities
as differential manifolds, thus many tools of algebraic geometry become unavailable for studying
Man. The second disadvantage on Man is lack of cartesian closedness, what means that the
function space AB of all smooth maps between the manifolds A and B is not a manifold, and
there is no equivalence between A × B → C and B → CA. Physically it means that if one
considers, following [Lawvere:1980], A as object of (all possible states of) time, B as object of
some physical body, and C as some space, then the motion A × B → C is not equivalent to
the assignment B → CA of the body to its path in the space. This implies also foundational
problems in calculus of variations and in functional integration (because function spaces do not
belong to Man).

These problems can be solved by considering the category L of formal smooth varietes instead
of Man. Like in the case of affine algebraic varietes, L is defined as the category dual to the
category of certain commutative unital rings. These rings are called C∞-rings (or C∞-algebras),
and are defined as such finitely generated rings A in which one can functorially interpret any
smooth function f : Rn → Rm as the map f̃ : An → Am, such that all projection, composition
and identity maps on Rn are preserved by corresponding maps on An. A concrete example of
C∞-ring is naturally the ring C∞(M) of smooth functions over some manifold M ∈Man. It can
be shown [MoerdijkReyes] that there exists unique full and faithful contravariant functor from
Man to the category of C∞-rings which assigns finitely presented C∞(M) to each M . This also
implies that the dual category L of formal smooth varietes embeds Man fully and faithfully
(the embedding functor Man → L is denoted s). Objects of the category L generalize the
notion of the differential manifold, because L contains (finite) projective limits, including spaces
with singularities as a kind of generalized (“formal”) smooth manifold (variety). Moreover, it
contains also infinitesimal spaces, such as D(ℓA) = {x ∈ ℓA ∈ L|x2 = 0}. However, it is

8In other words, the smooth differential manifold is a topological space X equipped with a sheaf C∞(X) of
smooth functions over X such that the pair (X,C∞(X)) is locally isomorphic to (Rn, C∞(Rn)).
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not cartesian closed, so it cannot be used to model the system of infinitesimal analysis. In
order to achieve cartesian closeness, one has to embed L in the category SetL of presheaves
over L. The latter category consists of the set-valued functors Lop → Set. The embedding
L →֒ SetL

op

is provided by the standard technique of full and faithful Yoneda embedding
functor Y : L ∋ A 7−→ Hom(−, A) ∈ SetL

op

. The category SetL is cartesian closed and has
finite projective limits as well as contains infinitesimal spaces, so it can be used as a category
for modeling axioms of infinitesimal geometry. The category of ordinary differential manifolds
is fully and faithfully embedded in SetL by the sequence of functors

Set ManooUoo
s // L
Γ

oo // Y // SetL

It is worth to note that nilpotent infinitesimals appear also in Grothendieck’s theory of schemes,
in form of nilpotent affine schemes. However, due to lack of appropriate language (and seman-
tics), they cannot be directly handled and exploited. This is possible only after embedding of
nilpotent schemes, together with other schemes, into suitable topos.

An axiomatic system of infinitesimal geometry and analysis cannot be non-trivially modelled in
the category Set, because Kock–Lawvere axiom is inconsistent with Boolean logic, and sets are,
according to Stone representations theorem, models of Boolean logic. The well-adapted model
of this system should be a category which enables usage of intuitionistic logic (representations
of non-Boolean Heyting algebras), is cartesian closed, and has finite limits. Moreover, it should
make the spectra D(W ) = SpecRW of Weil algebras representable, and ensure the validity of
Kock–Lawvere axiom (as well as some other axioms, according to purposes).

In topos models of infinitesimal geometry which do not contain invertible infinitesimals, the
object D(W ) is equal to the object of all infinitesimals △△, which is the ideal of R. On the
other hand, in models with invertible infinitesimals (like Z and B), not only underlying logic
is weakened to intuitionistic, but also the underlying arithmetic is weakened. This means that
the space N = Y (ℓC∞(N)) does not coincide with the generic natural number objects (constant
set-valued sheaf of natural numbers) of toposes Z and B. The former expresses the weakened,
nonstandard arithmethic. The object I is modelled by a Yoneda embedding of the C∞-ring
C∞(R − {0})/(mg

{0}|R−{0}). The weaking of arithmetic means restriction of the validity of the

induction.9

1.8 Well-adapted topos models of infinitesimal analysis and geometry

Sh(L) arises from SetL after equipping the base category L of sheaves over L with some kind of
Grothendieck topology J . Sh(L) is a subcategory of SetL containing as objects all contravariant
functors from L to Set which form sheaves with respect to the Grothendieck topology J on L.

The functorial assigment SetC
op

→ ShJ(C) is called a sheafification functor and is valid for any
given category C and Grothendieck topology J on C. The pair (C, J) is called a site.

We would like to use object of Sh(L) as spaces which satisfy the Kock–Lawvere axiom. This
axiom is inconsistent with the classical logic, so due to Stone representation theorem (duality)
[Stone:1934], according to which every Boolean algebra is isomorphic to the lattice of closed–
and–open subsets of set-theoretical space, it cannot be non-trivially modelled within the category
Set of sets. Leaving aside the axiom of excluded middle, we implicitly perform a generalisation

9As noticed by Gonzalo Reyes, such formulation gives a potential possibility to overcome the restrictions of
Gödel theorem in the way suggested by Lawvere: namely by considering natural numbers of geometric, rather
then of arithmetic (in Peano sense) origin.
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from Boolean to Heyting algebras, so we have to find some universe adequate for representation
of such algebras. Heyting algebras share with the Boolean ones all logical connectives and
properties except the law of excluded middle (which is equivalent to the statement that double
negation means affirmation). The well-known example of the representation of Heyting algebra
are the open subsets O(X) of the given topological space X. If we define logical connectives as

A ∧B :=A ∩B,
A ∨B :=A ∪B,

1 :=X,
0 := ∅,
¬A := Int(X −A),

A⇒ B := Int((X −A) ∪B),

(18)

where A and B are open subsets of X, and Int(C) means the maximal open subset of C, we
can check that these open subsets satisfy all axioms of Boolean logic except the one of the
excluded middle. For example, if X = R, and A := {x ∈ R|x < 7}, then ¬A = {x ∈ R|x > 7},
hence A ∨ ¬A 6= 1, so open subsets of R form a non-Boolean Heyting algebra representation. It
appears that the more general structure, the category SetO(X)op of hom-functors (presheaves)
Hom(−, A) over the category of topological spaces O(X), defined as

O(X) ∋ B 7→ Hom(B,A) ∈ Set, (19)

for any A ∈ O(X), aldso contains a representation of Heyting algebra. It is given by the lattice
Sub(Hom(−, A)) of the subfunctors of functor Hom(−, A). One can check it evaluating this
functor for any B ∈ O(X) as a lattice of subsets of the set Hom(B,A).

SetO(X) is an example of Grothendieck topos. Lawvere and Tierney have found that in every
topos we can find the functor, denoted as Ω and called a subobject classifier, that is explicitly
responsible for the characteristic functions of subsets. It appears that the subobject classifier in
topos has always the structure of Heyting algebra, hence the statement

χA(B) = 1 if A ⊂ B,
χA(B) = 0 otherwise

(20)

is not universally satisfied. In the more general class of toposes of presheaves SetC
op

, where Cop

is categorical dual to any category C, Ω is a hom-functor (from the point of view of Cop) and
an object (from the point of view of SetC

op

), that classifies subobjects of SetC
op

. Using the
logical properties of Ω we can ‘speak inside the topos’ through its internal language based on
the Heyting algebra of the intuitionistic logic. If we want to concern some category with good
topological properties, we have to equip the base category C with some kind of Grothendieck
topology J , and form the Grothendieck topos of sheaves ShJ(C

op) over the site (C, J). ShJ(C
op)

is a subcategory of SetC
op

, and is called also a sheafification of SetC
op

, because is constructed
by all functors in SetC

op

which form sheaves with respect to the Grothendieck topology J on
Cop.

Hence, in general, we may try to interpret SDG/SIA in some topos, particularly in some topos
of sheaves over a given site, thanks to the inner Heyting algebra structure of the subobject
classifier of an elementary topos. This means that instead of the system of classical differential
calculus and geometry based on the concept of limits and interpretation of this system in set
theory, we can use a system of synthetic differential calculus and geometry based on the concept
of infinitesimals and interpretation of this system in topos theory.

Every interpretation of axioms of SDG/SIA in a particular category is called a model. By the
obvious reasons, we are at most interested in such models of SDG/SIA which allow to establish
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the link between the ‘classical’ analytic post-Weierstassian differential calculus and geometry
with the synthetic one. The structure of SDG/SIA implies that we have to work in complete
cartesian closed category, but the fact, that we have to interpret the intuitionistic logic of
statements somehow ‘naturally’ inside this category, leads us to the assumption that we will
work in a topos, which is complete and cocomplete cartesian closed category with the subobject
classifier.

One of the simplest models of SIA/SDG is the topos SetR-Alg of set-valued functors from the
category R-Alg of (finitely presented) R-algebras to the category Set of sets10. Each such
functor is a forgetful functor, which associates to an R-algebra the set of its elements, and to
every homomorphism f of R-algebras the same f as function on sets. We induce commutative
unital ring structure on functors R ∈ SetR-Alg in the following natural way: for every A ∈ R-Alg

we consider a ring R(A), together with operations of addition +A : R(A) × R(A) → R(A) and
multiplication ·A : R(A)×R(A)→ R(A), which are natural in the sense, that they are preserved
by the homomorphisms in R-Alg, thus also by the corresponding functors R-Alg → Set. The
functor R is a model of a synthetic real line R, while an object D ⊂ R has the following
interpretation in SetR-Alg:

R-Alg ∋ A
D
7−→ D(A) = {a ∈ A|a2 = 0}. (21)

The functorial construction of models may look quite esotherical at first sight, but in fact it
strictly expresses the difference and the link between our concepts and their models. One should
note that our concepts are formulated in abstract and ‘background-free’ way: as some relations
between objects and elements. For example, the concept (an algebraic locus) of a sphere S2 is

S2 = {(x, y, z)|x2 + y2 + z2 = 1}. (22)

We may now take different backgrounds to express S2, for example, by saying that elements of
S2 should belong to some commutative R-algebra (to some object in the category R-Alg). To
‘see’ somehow ‘naturally’ how such sphere S2, expressed in terms of R-Alg, ‘looks like’ we use
the set-theoretical ‘eyes’ or ‘screen’. This leads us to demand that S2 should give as an output
the set of triples of elements of A ∈ R-Alg which satisfy the ‘conditions’ given in the definition
of S2. So, the interpretation (model) of the concept (locus) S2 is a set-valued functor SetR-Alg:

R-Alg ∋ A
S2

7−→ S2(A) = {(x, y, z) ∈ A3|x2 + y2 + z2 = 1} ∈ Set, (23)

which means that S2 is modelled by the functor which takes these elements from the ring A
which fit the pattern x2 + y2 + z2 = 1, and produces a set which contains them. Recall that
the global elements of R(A) are the arrows 1→ R(A). The R-algebra corresponding to 1 ∼= {∗}

is the R-algebra with one generator R[X], while the arrow corresponding to 1
pxq
−−→ R(A) is an

R-algebra homomorphism R[X]
φx
−→ A. This means that

R ∼= HomR-Alg(R[X],−), (24)

is a representable functor:
R(A) ∼= HomR-Alg(R[X], A). (25)

By the Yoneda Lemma

Hom(R,R) ∼= Nat(Hom(R[X],−),Hom(R[X],−)) ∼= Hom(R[X],R[X]), (26)

10We consider R-algebras based on R ∈ Set, but we could consider also RC- or RD-algebras build from Cauchy
or Dedekind reals of some topos. We will assume also that all algebras and rings considered in this section are
finitely presented.
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so the maps f : R → R on the ring R (from the synthetic point of view) are the maps of
polynomials with coefficients in R (from the interpretational point of view). It can be shown
(see [Kock:1981] for details), that SetR-Alg satisfies the generalized Kock-Lawvere axiom (and
weak version of integration axiom), but it does not satisfy other axioms. Thus there is a need
to consider different models (universes of interpretation).

Note that R-Alg of R-algebras is defined as a category of arrows fA : R→ A, where commutative
rings A are such that xy = yx for every x ∈ fA(R) and for every y ∈ R. Hence, we may consider
the category R-Alg as the category of rings A equipped with the additional structure given by

the maps An
fA(p)
−−−→ Am preserving the structure of polynomials p = (p1, . . . , pn) : R

n → Rm in
such way that identities, projections and compositions are preserved: fA(id) = id, fA(π) = π
and fA(p ◦ q) = fA(p) ◦ fA(q). This means that construction of R-algebras and C∞-algebras is
similar.

There should be many algebraic theories A intermediate between only polynomials as operations
and all C∞ functions as operations, pehaps satisfying some suitable closure conditions, in par-
ticular the A generated by cos, sin, exp, e−1/x2 . [Lawvere:1979]

It can be shown, using the Hadamard lemma, that C∞-ring divided by an ideal is C∞-ring.

Another important example of C∞-ring is a ring of germs of smooth functions.

Definition 1.1 A germ at x ∈ Rn is an equivalence class of such R-valued functions which
coincide on some open neighbourhood U of x, and is denoted as f |x for some f : U → R. We
denote a ring of germs at x as C∞

x (Rn). If I is an ideal, then I|x is the object of germs at x of
elements of I.

Of course, C∞
x (Rn) is a C∞-ring and I|x is an ideal of C∞

x (Rn). The object of zeros Z(I) of
an ideal I is defined as

Z(I) = {x ∈ Rn|∀f ∈ I f(x) = 0}. (27)

We may introduce the notion of germ-determined ideal as such I that

∀f ∈ C∞(Rn) ∀x ∈ Z(I) f |x ∈ I|x ⇒ f ∈ I. (28)

The dual to the full subcategory of (finitely generated) C∞-rings whose objects are of form
C∞(Rn)/I such that I is germ-determined ideal is denoted by G (we take the dual category,
because we want to make a topos of presheaves SetG

op

, where sets will be varying on the (finitely
generated) C∞-rings and not on their duals). Recall that for R-algebras we used the functor

R-Alg ∋ A 7−→ R(A) ∈ Set, (29)

as the model (interpretation) of the naive-SDG ring R in the topos SetR-Alg. In the same way
we may define the intepretation of the ring R in the topos SetG

op

:

Gop ∋ A 7−→ R(A) ∈ Set. (30)

The topos SetG
op

of presheaves over the category of germ-determined C∞-rings equipped with
the Grothendieck topology is called the Dubuc topos, and is denoted by G.11 This topos is not
only very good well-adapted model of SDG, but it also has a good representation of classical
paracompact C∞-manifolds.

11More precisely, the topos G is a subcategory of SetG
op

obtained by sheafification, and we have an inclusion
G →֒ SetG

op

. The left adjoint a : SetG
op

→ G is called the sheafification functor. In other words, G is the
topos of sheaves on G.
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For some purposes we can also use the larger topos SetL
op

:= SetC
∞

. It does not have the
interpretation for an axiom R2 of local ring and an axiom N3 of Archimedean ring, but it is a
good toy-model, easier to concern than G is. Note that the equation (356):

R(A) ∼= R-Alg(R[X], A) (31)

has an analogue in case of the intepretation of SDG in topos SetL
op

:

R(ℓA) ∼= SetL
op

(ℓA, ℓC∞(R)), (32)

where ℓC∞(R) is the C∞-ring (the symbol ℓ denotes here the fact, that we are working within
the category which is dual to that of C∞ rings). Thus, a real line of an axiomatic SDG becomes
now

R ∼= Hom
SetL

op (−, ℓC∞(R)), (33)

or, using the formal logical sign which denotes interpretation in the model,

SetL
op

|= R ∼= Hom
SetL

op (−, ℓC∞(R)). (34)

This means that the element of ring R, the real number of naive intuitionistic set theory, is
some morphism ℓA→ ℓC∞(R). We say that we have a real at stage ℓA. Thus, our concept of
the real line R of Synthetic Differential Geometry can be modelled (interpreted) by the different
rings (stages) of smooth functions on the classical space Rn (which can be, however, defined
categorically, as an n-ary product of an object RD of Dedekind reals in the Boolean topos Set).
For example, at the stage ℓA = C∞(Rn)/I, where I is some ideal of the ring C∞(Rn), a real (real
variable, real number) is an equivalence class f(x) mod I, where f ∈ C∞(Rn). An interpretation
of the most important (naive) objects of SDG is following ([Moerdijk:Reyes:1991]):

smooth real line R = Y (ℓC∞(R)) = s(R)
point 1 = Y (ℓ(C∞(R)/(x))) = s({∗}) = {x ∈ R|x = 0}

first-order infinitesimals D = Y (ℓ(C∞(R)/(x2))) = {x ∈ R|x2 = 0}

kth-order infinitesimals Dk = Y (ℓ(C∞(R)/(xk+1))) = {x ∈ R|xk+1 = 0}
infinitesimals △△ = Y (ℓC∞

0 (R)) = {x ∈ R|∀n ∈ N − 1
n+1 < x < 1

n+1}

The symbol Y denotes the Yoneda functor Hom(−, ℓA) =: Y (ℓA), while s denotes the functor
s : Man∞ → SetL

op

, introduced in the proposition 11.3 (the symbol Y is often ommited, so
one writes ℓC∞(R)/I instead of Y (ℓC∞(R)/I)).

It seems that the ‘heaven of total smoothness’ of SDG should be somehow paid for. And
indeed, it is. The simplification of a structure of geometrical theory raises the complication of
its interpretation: we have to construct special toposes for intepreting SDG, going beyond set
theory and the topos Set. However, such complication may unexpectedly become a solution of
many of our problems. Particularly, the well-adapted model G of SDG is a topos of functors from
(sheafified germ-determined duals of) C∞-rings to Set, which means that we express differential
geometry not in terms of points on manifold, but through such smooth functions on it, which
have the same germ, what means that they coincide on some neigbourhood. In the Dubuc topos
G we have the interpretation (identification):

the real line R ∼= a functor R : C∞ ⊃ Gop // Set
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2 From Kock–Lawvere axiom to microlinear spaces

We want to express geometric constructions in a synthetic manner, thus in algebraic (as oppo-
site to analytic) and constructive way. This approach is powered by the view, that geometric
constructions really are algebraic, as far as theory descibes our concepts which should be more
general than particular structure of one fixed (mathematical, physical) universe.

In category-theoretic terms we may speak about constructions as arrows and about forms gen-
erated by these constructions as objects. Considering cartesian closed categories we have also a
natural way of speaking about exponential objects of all arrows from one object to another. As
we will see, handling SDG in some cartesian closed category, we can consider two manifolds M1

and M2 as well as their exponential object MM1
2 being the manifold of all maps (arrows) from

M1 to M2. Such construction cannot be done in a classical set-theoretic differential geometry –
the set of all maps between two fixed manifolds is not a manifold.

Comming back to our intention of eshablishing the close correspondence between algebra and
geometry, we can consider the geometric line as a commutative ring structure R. If we will state
that there exists such

D := {x ∈ R|x2 = 0} ⊂ R (35)

that D 6= {0}, then R cannot be a field (because there are such elements that are nilpotent but
not invertible), and should remain commutative ring. Condition D 6= {0}, roughly speaking,
means that there exists some element x ∈ R not equal to zero, but ‘such small’ that x2 = 0.
These are so-called (first-order) infinitesimals, which can be used to express the fundamental
axiom of synthetic differential geometry.

Kock-Lawvere axiom

∀g ∈ RD ∃!b ∈ R ∀d ∈ D g(d) = g(0) + d · b. (36)

The notation g ∈ RD one reads of course as ‘function g from D to R’ (and it means that we
intend to work in some cartesian closed category, i.e. in the category with exponentials). This
axiom says that the graph of g coincides on D with a straight line with slope b going through
(0, g(0)). For the case of R×R, we can draw it as

R

R

D

g

where the line tangent to g at 0 is tangent on an infinitesimal part of domain D ⊂ R. This
happens not in the sense of a limit in a point, but ‘really’: on a part of domain (what means
that every function is infinitesimaly linear). However, the Kock-Lawvere axiom leads straight
forward to an important proposition.
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Proposition 2.1 The Kock-Lawvere axiom is not compatible with the law of excluded middle.

Proof. Let’s define a function g : D → R such that

{
g(d) = 1 iff d 6= 0,

g(d) = 0 iff d = 0.
(37)

Kock-Lawvere axiom implies that D 6= {0}, because otherwise b would be not unique. So (using
the law of exluded middle) we may assume that there exists such d0 ∈ D that d0 6= 0. From the
Kock-Lawvere axiom we have immediately 1 = g(d0) = 0 + d0 · b. After squaring both sides we
receive 1 = 0. �

This result means that we cannot make anything meaningful based on Kock-Lawvere axiom
using the logic in which the law of excluded middle holds. However we are not restricted to such
logic, and we can use intuitionistic logic to develop our synthetic differential geometry theory. It
can be properly done if we will make all proofs in a constructive manner, proper for intuitionistic
logic.

Definition 2.2 An object A is decidable12 if

∀x, y ∈ A ⊢ (x = y) ∨ (x 6= y). (38)

Corollary 2.3 R is not decidable.

Such theory, build using the constructive reasoning and intuitionistic logic, obviously cannot be
properly interpreted in Set, but it can be done in some topos, because of the inner structure
of subobject classifier which is Heyting algebra (and the corresponding fact, that the poset of
subobjects of some fixed object is also Heyting algebra). So, instead of the system of classical
differential geometry based on the concept of limits and interpretation of this system in set
theory,13 we can develop a system of synthetic differential geometry based on the concept of
infinitesimals and interpretation of this system in topos14 theory. We can even compare these
two systems concerning so called well-adapted models of SDG. In sections 2.1-2.5 we will develop
system of differential geometry based on the Kock-Lawvere axiom. In section 2.6 we will consider
the question how such axiomatic construction based on existence of D ⊂ R is relevant to
our presuppicions about the real line. To achieve more meaningfull theory we will introduce
(axiomatically) ordering < and partial ordering ≤ on ring R and will inspect how this structure
corresponds to well-known constructions of Cauchy and Dedekind reals. In the same section we
will introduce the object of natural numbers (till this, we will handle naively our intuitionistic set
theory concerning that natural numbers are avaible). In section 2.7 we will introduce coordinates

12Generally, a property P on object A is decidable if ⊢ (P (x) ∨ ¬P (x)) for every x ∈ A. Thus, the defined
above ‘decidability’ is only ‘decidable equality’. However, by the Kock-Lawvere axiom, R is not decidable also in
the general sense. For example, order < on R (defined in the section 2.6) is also not decidable.

13Strictly speaking, the classical differential geometry is not fully decomposable into axiomatic system and
its interpretation. If one will take the book of Kobayashi and Nomizu [Kobayashi:Nomizu:1963], which is
standard reference in the field, then he (or she) will see that right from the first page of this book we are involved
in the Set-theoretical universe. We will show that this engagement comes not from the nature of differential
geometry itself, but rather from the historical involvments. As an outcome, we will be able to use many of
(constructive) definitions, propositions and proofs from book of Kobayashi and Nomizu, while staying at the
same time in the category-theoretical intuitionistic framework.

14In fact, as we will see later, it can be done quite satisfactionary also in ‘all sufficiently good’ [Kock:1981]
cartesian closed categories, what means such cartesian closed categories which preserve finite colimits.
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and local covering in aim to find does such definition (axiomatics) of R gives an ability to develop
vector spaces with bases which can be managed in the same way as the classical ones. In section
2.8 we will use previous developments to introduce the Riemmanian structure on the synthetic
manifold, finally constructing the well-defined and well-managable Riemann, Ricci and Einstein
tensors as well as curvature scalar, metric, connection and metrical connection.

If f : R → R is any function and x ∈ R is fixed, we may consider g : D → R such that
f(x+ d) = g(d). So, by the Kock-Lawvere axiom,

∃!b ∈ R ∀d ∈ D g(d) = g(0) + d · b, (39)

∃!b ∈ R ∀d ∈ D f(x+ d) = f(x) + d · b. (40)

Because b depends on x, we may define f ′(x) := b, and state the Taylor’s formula:

∀f ∈ RR ∀x ∈ R ∃!f ′(x) ∈ R ∀d ∈ D f(x+ d) = f(x) + d · f ′(x). (41)

It means that every function on R is differentiable. Moreover, it means that every function
is smooth, and this smoothness is very strong, as we even cannot split R into two parts (this
follows straight from the non-decidability of R). The following differentiation rules now become
true (for f, g ∈ RR, λ ∈ R, and id being f such that f(x) = x):

(f + g)′ = f ′ + g′,
(λf)′ = λf ′,
(fg)′ = f ′g + fg′,

(f ◦ g)′ = (f ′ ◦ g) · g′,
id′ = 1,
λ′ = 0.

(42)

Proof. Let us prove the third rule. Left hand side of equation states that for every d ∈ D there
is (fg)(x + d) = (fg)(x) + d(fg)′(x), while right hand side gives (fg)(x + d) = f(x + d)g(x +
d) = f(x)g(x) + df ′(x)g(x) + df(x)g′(x) + d2f ′(x)g′(x) = f(x)g(x) + d(f ′(x)g(x) + f(x)g′(x)).
Hence, we have d(fg)′(x) = d(f ′(x)g(x) + f(x)g′(x)). To get the result (fg)′ = f ′g + fg′

we should cancel d on both sides of equation. We cannot divide both sides by d, as far as
we do not understand what such operation means. However we may cancel them, because
from the uniquenes of b in (36) we get that d · b1 = d · b2 for every d ∈ D, hence b1 = b2.
The proof of fourth rule is analogous: r.h.s.: (f ◦ g)(x + d) = (f ◦ g)(x) + d(f ◦ g)′(x), l.h.s.:
(f ◦ g)(x+ d) = f(g(x) + dg′(x)) = f ◦ g(x) + dg′(x)(f ′g)(x), because d · g′(x) ∈ D. Finally, we
have (f ◦ g)′ = (f ′ ◦ g) · g′. �

It is easy to prove that for any δ = d1 + d2, where d1, d2 ∈ D, we have f(x + δ) = f(x) +

δf ′(x) + δ2

2! f
′′(x) (this makes sense only if 2 ∈ R), but it is not good definition of higher Taylor

series, because this equation should be true for every δ3 = 0, so not only for these δ’s for which
δ = d1 + d2. This yields us to define so called higher-order infinitisemals:

Dk := {x ∈ R|x
k+1 = 0} ⊂ R, (43)

and nilpotent infinitesimals:

D∞ := {x ∈ R|∃n ∈ N xn+1 = 0}, (44)

where R should be a Q-algebra (i.e. with 2, 3, . . . invertible in R), and D1 = D. Using this
definition we may naturally extend the Kock-Lawvere axiom and Taylor’s formula:

∀g ∈ RDk ∃!b1, . . . , bk ∈ R ∀d ∈ Dk g(d) = g(0) +

k∑

i=1

dibi, (45)
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∀f ∈ RR ∀x ∈ R ∃!f ′(x), . . . , f (k)(x) ∀d ∈ Dk f(x+ d) = f(x) + df ′(x) + . . .+
dk

k!
f (k)(x).

(46)
It is easy to generalize the Kock-Lawvere axiom into a vector version:

∀g ∈ (Rn)D ∃!(b1, . . . , bn) ∈ R
n ∀d ∈ D g(d) = g(0) + d · (b1, . . . , bn). (47)

We may regard ~b := (b1, . . . , bn) as an element of an R-module. Such R-module V which for
some ~b ∈ V and g ∈ V D (and not necessary V ∼= Rn) satisfies the given above vector version
of Kock-Lawvere axiom is called a Euclidean R-module. If we take any function f ∈ (Rn)R

n
,

such that f(~x+ d · ~u) = g(d), we get

∀f ∈ (Rn)R
n

∃(b1, . . . , bn) ∈ R
n ∀d ∈ D f(x1+d·u1, . . . , xn+d·un) = f(x1, . . . , xn)+d·(b1, . . . , bn).

(48)
We can define the directional derivative ∂~uf(~x) := ~b = (b1, . . . , bn), and the partial deriva-

tive ∂if(~x) :=
∂
∂xi
f(x1, . . . , xn) := ∂f(x1, . . . , xn)/∂xi := (0, . . . , 0, bi, 0, . . . , 0).

Proposition 2.4

∀~x ∈ Rn ∀λ, µ ∈ R ∂λ~u+µ~vf(~x) = λ∂~uf(~x) + µ∂~vf(~x). (49)

Proof. f(~x) + d · ∂λ~uf(~x) = f(~x+ d · λ~u) = f(~x) + d · λ∂~uf(~x), so ∂λ~uf(~x) = λ∂~uf(~x). Next,
f(~x + d(~u + ~v)) = f(~x + d~u) + d · ∂~vf(~x + d~u) = f(~x) + d∂~uf(~x) + d∂~vf(~x) + d2∂~u(∂~vf(~x)) =
f(~x)+d∂~uf(~x)+d∂~vf(~x), and f(~x+d(~u+~v)) = f(~x)+d∂~u+~vf(~x), so ∂~u+~vf(~x) = ∂~uf(~x)+∂~vf(~x).
�

Definition 2.5 The differential of f with respect to ~x is a map

f ′(~x) = df(~x) : ~u 7→ df(~x)(~u) = ∂~uf(~x). (50)

Note that we can easily generalize these notions from f : Rn → Rn to f : Rn → V , where V is
some Euclidean R-module, however it would be in general case rather formal definition. As we
see, basic constructions of differential calculus are quite easy. To refuse this feeling, let us state
the second ‘problematic’ proposition of SDG.

Proposition 2.6 D is not an ideal of R.

Proof. Let d1, d2 ∈ D. We have (d1 + d2)
2 = d21 + d22 + 2d1d2. If D is an ideal of R, then

d1 + d2 ∈ D, hence 2d1d2 = 0, and so d1d2 = 0. This means that ∀d1 ∈ D d2 = 0, hence
D = {0}, what is in contradiction with the Kock-Lawvere axiom. �

For the situation presented above, we have

(d1 + d2)
2 = d21 + d22 + 2d1d2, so (51)

d1 + d2 ∈ D ⇐⇒ d1 · d2 = 0. (52)

This is a big problem: the sum of two infinitesimals may not be an infinitesimal, thus our
infinitesimal calculations fall out of the infinitesimal region, and become strongly non-managable!
To solve this problem, we may define new types of infinitesimal objects, like

D∨D := D(2) := {(d1, d2) ∈ R
2|∀d1, d2 ∈ D d1·d2 = 0} = {(d1, d2) ∈ R

2|∀d1, d2 ∈ D d1+d2 ∈ D}
(53)
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and
D(n) := {(d1, . . . , dn) ∈ R

n|∀i, j ∈ {1, . . . , n}∀di, dj ∈ D di · dj = 0}, (54)

but D(n) 6= D × . . . ×D and D(2) 6= D ×D, because D is not an ideal of R. This raises the
question: is it reasonable to use infinitesimals if they seem to have so complicated properties?
These problems may be solved by introduction of the more general definition of infinitesimal
objects, and asserting the generalized version of Kock-Lawvere axiom. From the latter immedi-
ately will follow the proposition saying that, although D is not an ideal of R, it looks like an
‘effective ideal’ from the point of view of R, so the operations like

D ×D
+
−→ D2 : (d1, d2) 7−→ d1 + d2, or (55)

D ×D
·
−→ D : (d1, d2) 7−→ d1 · d2 (56)

are ‘thought by R’ (strictly speaking, by functions on R) to be surjective. As the final result of
those generalizations, we will receive the notion of microlinear space (or object), which will have
all properties needed for development of the differential geometry in synthetic context. Let us
begin with reformulating the Kock-Lawvere axiom in terms of cartesian closed categories.

Kock-Lawvere axiom v. 2 The map R×R
α
−→ RD given by (a, b) 7−→ [d 7→ a+db] is invertible.

If we will define the multiplication on R×R such that

(a1, b1) · (a2, b2) := (a1 · a2, a1 · b2 + a2 · b1), (57)

this will make R × R into R-algebra (denoted as R[ε]), and α into R-algebra homomorphism,
because of [d 7→ a1+db1]·[d 7→ a2+db2] := [d 7→ (a1+db1)(a2+db2)] = [d 7→ a1a2+d(a1b2+a2b1)].
So we may now express the Kock-Lawvere axiom one more time, as an isomorphism of R-algebras.

Kock-Lawvere axiom v. 3 The map R × R
α
−→ RD given by (a, b) 7−→ [d 7→ a + db] is an

R-algebra isomorphism R[ε]
∼=
−→ RD.

We would like to make such generalization of this axiom to include those situations, when we
deal not with R × R, but with R × . . . × R. This is motivated by wish of succesiful handling
objects like D(n) ⊂ D × . . . × D. As we see, these different types of infinitesimals share the
common property of being defined by the annihilation of some polynomials. Me may try to
isolate these polynomials by concerning them as some ideal, and divide our R-algebra by this
ideal.

Definition 2.7 Let R[X1, . . . , Xn] be a commutative ring with n generators X1, . . . , Xn. Let
pi(X1, . . . , Xn), . . . , pm(X1, . . . , Xn) be the polynomials with coefficients from R, and let I be the
ideal generated by these polynomials. A finitely presented R-algebra is an R-algebra

R[X1, . . . , Xn]/I ≡ R[X1, . . . , Xn]/(p1(X1, . . . , Xn), . . . , pm(X1, . . . , Xn)). (58)

Definition 2.8 Let E be some cartesian closed category, and let A ∈ Ob(E) be an R-algebra.
The spectrum SpecA(R[X1, . . . , Xn]/I) of finitely presented R-algebra R[X1, . . . , Xn]/I is a
subobject (‘subset’, naively speaking) of An, which consists of elements in An annihilating the
polynomials in I.

Examples
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1. SpecR(R[X]) = R,

2. SpecR(R[X]/(X2)) = SpecR(R[ε]) = {d ∈ R|d
2 = 0},

3. SpecR×R(R[X,Y ]/(X2 + Y 2 − 1)) = {(x, y) ∈ R×R|x2 + y2 − 1 = 0}.

By an analogy with (57), we may define now a more general way of making R × . . . × R = Rn

into R-algebra.

Definition 2.9 A Weil algebra over R is an R-algebra W (denoted sometimes as R⊗W ) such
that:

1. There is a R-bilinear multiplication map µ : Rn×Rn → Rn, making Rn into a commutative
R-algebra with (1, 0, . . . , 0) as a multiplication unit.

2. The object (‘set’) I of elements in Rn with first coordinate equal zero is a nilpotent ideal.

3. There is an R-algebra map π :W → R given by (x1, . . . , xn) 7→ x1, called the augmenta-

tion. (Its kernel is I, and it’s called an ideal of augmentation.)

The homomorphism of Weil algebras sends ideal I1 of augmentation of W1 into the ideal I2 of
augmentation of W2, so the diagram

W1

π1   

//W2

π2~~
R

(59)

commutes. For example, R and R[ε] are Weil algebras. Moreover, it is easy to see, that each
Weil algebra is a finitely presented R-algebra.

Definition 2.10 If W is some Weil algebra object, then objects D(W ) := SpecR(W ) are called
the (formal) infinitesimals or small objects (of R).

Hence, for Weil algebraW with a finite presentationR[X1, . . . , Xn]/(p1(X1, . . . , Xn), . . . , pm(X1, . . . , Xn))
we have D(W ) = SpecR(W ) = {(d1, . . . , dn) ∈ Rn|p1(d1, . . . , dn) = . . . = pm(d1, . . . , dn) =
0}. Similarly to Kock-Lawvere axiom v.2 we can define an R-algebra homomorphism α :
R[X1, . . . , Xn] → RD(W ) by α(pi)(d1, . . . , dn) = pi(d1, . . . , dn). This homomorphism naturally
promotes R[X1, . . . , Xn] to Weil algebra W ≃ R[X1, . . . , Xn]/I, because (d1, . . . , dn) annihilate
the polynomials of I, so W

α
−→ RD(W ) is an R-algebra homomorphism, which is natural in the

sense that we have the commutative diagram

W1

f

��

α1 // RD(W1)

RD(f)

��
W2 α2

// RD(W2).

(60)

Kock-Lawvere axiom v. 4 (generalized) For any Weil algebra W the R-algebra homomor-
phism

W
α
−→ RD(W ) = RSpecR(W ) (61)

is an isomorphism.
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To understand the meaning of this generalization of Kock-Lawvere axiom, consider a finite

diagram D in a category of R-algebras, represented below by Ri
f
−→ Rj . The limit of this

diagram is such Lim R that for every cone on D with vertex A there exists a unique arrow
A→ Lim R such that the diagram

A

σi

��

∃!
��

σj

��

Lim R

µi{{
µj ##

Ri
f

// Rj

(62)

commutes. It is (quite) easy to see, that Lim R can be expressed as an object (‘set’) such that

Lim R = {(ri)i∈I ∈
∏

i∈I

Ri|∀f : Ri → Rj f(ri) = rj}, (63)

where I is a small category indexing the diagram D. Of course, Lim R ⊆
∏
i∈I Ri is also an

R-algebra. But if we will take Weil algebras Wi instead of R-algebras Ri, their limit LimW does
not have to be Weil algebra (for example, a product Rn+1×Rm+1 of two Weil algebras is not a
Weil algebra, because its dimension should be n+m+ 1, and not n+m+ 2). However, we can
consider only these Lim W which are Weil algebras. When we are speaking about R-algebras
and Weil algebras, we are indeed speaking about two categories: R-Alg and W. We also speak
about R-AlgFP, i.e. the (cartesian closed) category of finite presented R-algebras. Let us also
denote our cartesian closed category of intuitionistic ‘sets’ (where belong all these objects like
D, D(2) and R), as E . Now we are able to treat SpecR(−) as a contravariant15 functor from
the category of finite presented R-algebras to E , so SpecR : (R-AlgFP)

op → E . However, in this
situation we want to concern only the restriction of domain of this functor to the category of
Weil algebras, i.e. D := SpecR : Wop → E , which produces the commutative diagram

D(LimW )

D(Wi)

D(µi)
88

D(Wj).
D(f)oo

D(µj)
ff

(64)

Functor D does not have to preserve limits, so this diagram does not have to be a colimit,
althrough it is a co-cone. Crucial for further development of SDG is assertion when the following
commutative diagram obtained by applying the functor R(−) to (64) is a limit diagram (of R-
algebras):

RD(LimW )

RD(µi)

xx
RD(µj)

&&
RD(Wi)

RD(f)

// RD(Wj),

(65)

because exactly then all arithmetic of functions working on infinitesimals will behave properly.
It becomes in those situations, when the covariant composition of functors

R-AlgFP
op ⊃Wop SpecR−−−−→ E

R(−)

−−−→ E (66)

sends limit diagrams in W to limit diagrams in E .

15It is contravariant, because SpecR(R[X1, . . . , Xn]/I) is a map R[X1, . . . , Xn]/I → R, thus
SpecR(R[X1, . . . , Xn]/I) = HomR-Alg(R[X1, . . . , Xn]/I,R), so SpecR(−) ⊂ HomR-Alg(−, R).
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Definition 2.11 Let D be a finite inverse diagram (co-cone) of infinitesimal spaces (objects,
‘sets’) obtained by applying a functor D = SpecR to some finite limit diagram of Weil algebras
(with vertex which also is a Weil algebra), and send by R(−) into a limit diagram. An object M
is called the microlinear space if the functor M (−) sends every D into a limit diagram, and we
say that M perceives D as a colimit diagram. Such D are sometimes called the quasi-colimits.

Corollary 2.12 If M is microlinear object and X is any object, then MX is microlinear. Any
finite limit of microlinear objects is microlinear. R and its finite limits as well as exponentials
are microlinear. Any infinitesimal affine scheme SpecR(LimW ) is microlinear.

The main technique of proof in SDG is to show that some diagrams of small objects are perceived
as colimits. These proofs are given constructively, to fit the requirements of intuitionistic logic
and Kock-Lawvere axiom. The situation of perceiving of co-cones of infinitesimals by microlinear
spaces in SDG corresponds to standard procedure of leaving infinitesimaly small values of higher
order as ‘equal’ to zero in classical differential geometry. The difference between these two
theories is now more clear in this perspective: classical differential geometry handles, rather
‘intuitively’ then formally, infinitesimaly small values, using only these orders which lead to
proper results. SDG does it formally and publicly on the algebraic and categorical grounds, what
leads to necessity of incorporation of ‘intuitiveness’ into formalism – and this is the rabbit’s hole
from where the intuitionism jumps out. It will be shown that microlinear space is a synthetic
equivalent of well-known classical notion of manifold. However, strictly speaking, the synthetic
equivalent of classical differentiable manifold is a formal manifold, which is a microlinear space
with families of coverings with coordinate charts (see section 2.7). The clue is that in SDG we
do not have to introduce the coordinates and local covering to construct the geometrical objects.

3 Vector bundles

We have made a passage from the Kock-Lawvere axiom formulated in terms of the commutative
ring R and the object of infinitesimals D to a more general form using the Weil algebras. Next
we have defined the notion of the microlinear object (space), which satisfies the generalized
version of Kock-Lawvere axiom in the same way as R satisfies the first version of it16. In this
section, using the properties of the microlinear space, we will define tangent and vector bundles,
vector fields, Lie bracket and Lie derivative.

Any curve on a space M may be regarded as an element k of M parametrized by an I, i.e.
k : I →M . It means that k ∈M I .

I

k

M

By an analogy, to generate a space tangent to the space M in some point x, we should take an
element t of M parametrized by an infinitesimal piece of line D, called the infinitesimal or the
generic tangent vector.

16To be precise, one should say that R (and not M) satisfies the generalized Kock-Lawvere axiom, but there
is given the correspondence between such R and microlinear space M , thus we may use such phrase by abuse.
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M

D

t

It means that t : D →M or t ∈MD and t(0) = x.

Definition 3.1 A tangent vector (or just tangent) to a microlinear space M with base point

(or attached at) x is a map t : D → M (i.e. the element of exponential object, t ∈ MD) such
that x = t(0). A tangent bundle is an object MD together with a map π : MD → M sending
each tangent vector t ∈ MD to its base point π(t) = t(0) = x. The set of tangent vectors with
base point x is called the tangent space to M at x and denoted MD

x . We define the notation
TM :=MD and TxM :=MD

x .

Definition 3.2 Consider some object E, the microlinear object M , the element x ∈M and the
arrow p : E →M . We call a fibre of p at x the arrow px := p−1(x). The vector bundle over M
is a such p that for every x the px is an R-module that satisfies the Kock-Lawvere axiom (thus,
it is an Euclidean R-module), i.e. the map α : px × px → (px)

D such that α(u, v)(d) = u+ d · v
is a bijection. Such px is called the vector space. The section of p is a map s : M → E such
that p ◦ s = idM , i.e. p(s(x)) = x for all x ∈M .

Proposition 3.3 The tangent bundle is a vector bundle.

Proof. We should prove that 1) TxM has an R-module structure, 2) TxM is an (Euclidean)
vector space for every x (i.e. it satisfies the vector version of the Kock-Lawvere axiom).

1. We will prove that the map π : MD → M , such that τ(t) = t(0) = x for t ∈ MD

and t(0) = x ∈ M , has an R-module structure. For M = R, using the first version of
Kock-Lawvere axiom, we can write

{
∀d ∈ D t1(d) = x+ d · a1,

∀d ∈ D t2(d) = x+ d · a2,
(67)

and define
∀d ∈ D (t1 + t2)(d) := x+ d · (a1 + a2),
∀d ∈ D 0(d) := x,
∀d ∈ D α · t1(d) := x+ d · αa1.

(68)

For general M the second definition does not change. Third can be rewritten as ∀d ∈
D αt(d) = t(αd). The problem is that for M 6= R the first definition is generally not
proper, as it makes use of the ring structure of R. However, M by definition is microlinear
space, so it perceives co-cones of small objects as colimits, e.g. the diagram

1
0 //

0
��

D

i2
��

D
i1

// D(2)

(69)
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is send by M to the limit (pullback) diagram

M MDM0
oo

MD

M0

OO

MD(2),
M i1

oo

M i2

OO (70)

if it is send by R to pullback diagram, what should be proven first, and it will be done now.
Let f, g : D → R, and let i1, i2 be the canonical injections i1(d) = (d, 0) and i2(d) = (0, d).
We put f(0) = g(0) = a, so f(d) = a + db and g(d′) = a + d′b′. We define h : D(2) → R
such that h(d1, d2) = a + bd1 + b′d2, hence h(i1(d)) = f(d) and h(i2(d)) = g(d). Such
h is a pullback of f and g over R if it is unique. Let’s take then some other morphism
k : D(2)→ R such that k ◦ i1 = f and k ◦ i2 = g. Then k(d1, d2) = a′ + b1d1 + b2d2 and so
k(0, 0) = a′, thus a′ = a. We have k(d, 0) = b1d and k(0, d) = b2d, thus we get b1 = b and
b2 = b, hence k = h, so h is unique and the diagram

k ∈ RD(2)

Rk◦i2

��

!
&&

Rk◦i1

++
h ∈ RD(2)

Ri1

//

Ri2

��

RD ∋ f

R0

��
g ∈ RD

R0
// R

(71)

is a pullback, so (70), by the microlinearity of M , is a pullback too. Consider now t1, t2 ∈
MD and χt1,t2 ∈M

D(2). The pullback

χt1,t2 ∈M
D(2)

��

//MD ∋ t1

��
t2 ∈M

D //M

(72)

means that there exists a unique mapping χt1,t2 : D(2)→M factorizable on t1 and t2. We
may define now t1 + t2 : D →M as

(t1 + t2)(d) := χt1,t2(d, d). (73)

We should prove that such defined (t1 + t2)(d) is associative. Considering the diagram

D
i1

!!
D(2)

j12

##
1

0

HH

0 //

0

��

D

i2
==

i1 !!

D(3)

D(2)

j23

;;

D

i2

==

(74)
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with
i1(d) := (d, 0),
i2(d) := (0, d),

j12(d1, d2) := (d1, d2, 0),
j23(d1, d2) := (0, d1, d2),

(75)

we may say that it is send by R to a ‘multi-pullback’ limit diagram, and so, due to micro-
linearity of M , there exists a limit diagram analogous to (72), with χt1,t2,t3 : D(3) → M ,
which factorizes as

χt1,t2,t3(d, 0, 0) = t1(d),
χt1,t2,t3(0, d, 0) = t2(d),
χt1,t2,t3(0, 0, d) = t3(d).

(76)

By the definition (73) we have χt1,t2,t3(d, d, 0) = (t1 + t2)(d), so χt1,t2,t3(d, d, d) = (t1 +
t2)(d) + t3(d) = ((t1 + t2) + t3)(d). Considering the path in the limit diagram which
correspons to j23 in (74), we get χt1,t2,t3(d, d, d) = t1(d) + (t2 + t3)(d) = (t1 + (t2 + t3))(d).
Thus, (t1 + t2) + t3 = t1 + (t2 + t3).

2. Now we will prove that all tangent spaces of microlinear space M satisfy the Kock-Lawvere
axiom, i.e.

∀φ ∈ (TxM)D ∃!t ∈ TxM ∀d ∈ D φ(d) = φ(0) + d · t, (77)

or, alternatively speaking, the homomorphism TxM×TxM
α
−→ (TxM)D such that α(u, v) =

u + d · v is a bijection for every x ∈ M . Consider φ ∈ (TxM)D and let u = φ(0). We can
define such τ ∈ MD×D that τ(d1, d2) := (φ(d1))(d2). We should prove that ∃!t ∈ TxM
φ(d)− φ(0) = d · t, but we may substitute φ(d) in TxM by φ(d)− φ(0), treating here φ(0)
as null vector. If the diagram

D ×D
i1 //
i2

// D ×D
� // D (78)

with i1(d1, d2) := (d1, 0) and i2(d1, d2) := (0, d2) is perceived by R as a coequalizer, then
it is send to an equalizer diagram by M , because M is microlinear. In such situation, for
τ ◦ i1 = τ ◦ i2 there exists a unique t ∈ TxM such that

τ(d1, d2) = t(d1 · d2) = (d1 · v)(d), (79)

thus φ(d1)(d2) = (d2t)(d2) and so φ(d1) = d1t. It rests to prove, that (78) is perceived by
R as coequalizer. It will be done in the proof of the proposition 3.9.

�

Now we will prove one very useful proposition.

Proposition 3.4 Maps of Euclidean R-modules are linear if they are homogeneus.

Proof. Let’s take some homogeneus F : V → W , where V and W are microlinear spaces.
We can take two maps φ(d1, d2) := F (d1v + d2u) and ψ(d1, d2) := F (d1v) + F (d2v). These are
the maps D(2) → V , and can be treaten similar to χt1,t2 in the proof of the proposition 3.3.
Thus, we may state φ(d, d) = ψ(d, d) = d · (F (v) + F (u)) = d · F (u + v), what implies that
F (v) + F (u) = F (u+ v). �
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Definition 3.5 An E-vector field on M is a section of a vector bundle p : E →M . The object
(‘set’) of E-vector fields on M is denoted as X (E) or X (p). The value of a particular vector
field Y on the element m ∈ M is denoted as Ym := Y (m). If E = MD, i.e. the E is a tangent
bundle MD π

−→ M , we write X (M) := X (MD) and say “vector field” instead of “MD-vector
field”. In such situation Xm ∈ TmM , and we use the notation Xm(d) = X(m, d) = X(m)(d) =
X(d)(m) = X(d,m) = Xd(m).

Recall that we develop SDG in a cartesian closed category, so

a vector field X :M →MD with X(m)(0) = m
is isomorphic to an infinitesimal flow of M X ′ : D ×M →M with X ′(0,m) = m
and is ∼= to an infinitesimal deformation of the identity map of M X ′′ : D →MM with X ′′(0) = idM .

Moreover, we can treat a tangent bundle as the functor (−)D :M 7→MD, acting on some space
M . This gives us an ability to concern the tangent bundle of any function space, because in
cartesian closed category

(Y D)A = (Y A)D. (80)

In particular, we have
(MD)M = (MM )D, (81)

so we may consider (MM )DidM ≡ TidMM
M as a space tangent to MM in the point idM .

Definition 3.6 The directional derivative or Lie derivative of f :M → R in the direction
X ∈ X (M) is the map LXf ≡ X(f) :M → R defined as

∀m ∈M ∃!LXf(m) ∀d ∈ D f ◦Xm(d) = f(m) + d · LXf(m). (82)

This definition follows from the Kock-Lawvere axiom, hence such directional derivative satisfies
the common derivarion rules, and for f, g :M → R, λ ∈ R, X ∈ X (M) we have:

X(λ · f) = (λ ·X)(f) = λ(X(f)),
X(f + g) =X(f) +X(g),
X(f · g) = f ·X(g) + g ·X(f). (Leibniz rule)

(83)

For any vector fields X,Y :M →MD we can calculate the value of (X ◦ Y )(f) = X(Y (f)):

X◦Y (fg) = X(Y (fg)) = X(gY (f)+f(Y (g)) = X(g)Y (f)+gX(Y (f))+X(f)Y (g)+fX(Y (g)).
(84)

Similarly we get

Y ◦X(fg) = Y (g)X(f) + gY (X(f)) + Y (f)X(g) + fY (X(g)). (85)

Hence, nor X ◦Y neither Y ◦X does not hold the Leibniz rule. However, the difference of X ◦Y
and Y ◦X does :

(X ◦ Y − Y ◦X)(fg) = g(X ◦ Y − Y ◦X)(f) + f(X ◦ Y − Y ◦X)(g). (86)

We may define the commutator of the vector fields X and Y as

[X,Y ] := X ◦ Y − Y ◦X, (87)

but can we give the meaningful description of an action of this object not on the multiplicated
pair of functions f, g : M → R, but on the multiplicated pair of infinitesimals? In the next
movement we will try to give a positive answer on this question.
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Definition 3.7 A Lie monoid (a Lie group) is a monoid (resp. group) which is a microlinear
space.

It means that for any monoid (or group) G we have the tangent bundle GD → G and its fiber
TeG = GD at the unit element e, which has the structure of an R-module (it was earlier proven
for any tangent bundle MD → M of microlinear space M). We may put now G = MM , and
consider the fiber TidMM

M of the tangent bundle (MM )D → MM of microlinear space MM ,
but we will do it later, giving now the definition of the Lie algebra and the Lie bracket on a lower
level (then this of microlinear spaces). Note that in the classical differential geometry the set
Diff(M) of diffeomorphisms of a manifoldM is not a Lie group. In SDG all diffeomorphisms of
the manifold are just the elements of the object MM , which is a microlinear space, thus a Lie
group.

Definition 3.8 A unitary module U over some commutative ring K with unit is called a Lie

algebra if it is equipped with bilinear Lie bracket operation

[−,−] : U × U → U, (88)

such that for any X,Y, Z ∈ U

[X,Y ] = −[Y, Z], (antisymmetry) (89)

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (Jacobi identity) (90)

Proposition 3.9 If G is a Lie monoid, then TeG has a unique Lie bracket operation, what means
that it forms a unique Lie algebra over TeG.

Proof.

0. First, we will prove that the diagram

D

0

EE
i1 //
i2

// D ×D
� // D (91)

is perceived by R as (double) coequalizer, i.e. that the diagram

RD RD×D

R�

oo RD
Ri2

oo
Ri1oo

R0

YY (92)

is a (double) coequalizer. Consider f : D×D → R such that for every d we have f(0, 0) =
f(0, d) = f(d, 0). Then we have f(d1, d2) = f(0, 0) + bd1 + bd2 + cd1d2, so, because
f(0, d) = f(0, 0) + b′d and f(d, 0) = f(0, 0) + bd, there are equations b′ = b = 0 and
f(d1, d2) = f(0, 0) + cd1d2. If we will take now g : D → R such that g(d) = f(0, 0) + cd,
then it is a unique map D → R which holds g(d1 ·d2) = f(d1, d2). Hence, (92) is a (double)
coequalizer.

1. (Uniqueness.) We may concern the general situation of a commutator of infinitesimal
transformations defined as τ : D×D → G such that τ(d1, d2) = t2(−d2)◦ t1(−d1)◦ t2(d2)◦
t1(d1), where t1, t2 ∈ TeG. From the microlinearity of G we have that it perceives the
diagram (91) with i1(d) = (d, 0) and i2(d) = (0, d) as a double coequalizer, thus it satisfies
the so-called property W (Wraith):
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For every τ : D×D → G such that τ(d, 0) = τ(0, d) = τ(0, 0) there exists a unique
t : D → G such that t(d1 · d2) = τ(d1, d2) for all (d1, d2) ∈ D ×D.

The uniqueness of [t1, t2] follows directly from the uniqueness of t.

2. (Bilinearity.) As homogeneity implies linearity for R-modules of tangent spaces, it suffices
to show that [λt1, t2] = λ[t1, t2] = [t1, λt2], but this is obvious by the definition.

3. (Antisymmetry.) From the definition of addition in TeG we have t1(d)◦ t2(d) = (t1+ t2)(d)
and t(−d) = (−t)(d) = (t(d))−1. So [t1, t2](d1 · d2) = [t1, t2](−(−d1) · d2) = ([t1, t2]((−d1) ·
d2))

−1 = (t2(−d2) ◦ t1(d1) ◦ t2(d2) ◦ t1(−d1))
−1 = t1(d1) ◦ t2(−d2) ◦ t1(−d1) ◦ t2(d2) =

[t2, t1](d2 · (−d1)) = (−[t2, t1])(d1 · d2).

4. (Jacobi identity.) The diagram (69) is perceived by R as a pullback, so

∀(d1, d2) ∈ D(2) ∀t1, t2 ∈ TeG t1(d1) ◦ t2(d2) = t2(d2) ◦ t1(d1). (93)

We may calculate now the Jacobi identity, denoting X := t1(d1), Y := t2(d2), Z := t2(d3),
XY := X ◦ Y , and using the fact that, by the equation above, we may comute only these
elements which share some common part. Thus

([t1, [t2, t3]] + [t2, [t3, t1]] + [t3, [t1, t2]])(d1, d2, d3) =
= [t1, [t2, t3]](d1, d2, d3) ◦ [t2, [t3, t1]](d1, d2, d3) ◦ [t3, [t2, t1]](d1, d2, d3)
= [X, [Y, Z]][Y, [Z,X]][Z, [X,Y ]] =
= [Y, Z]−1X−1[Y, Z]X[Z,X]−1Y −1[Z,X]Y [X,Y ]−1Z−1[X,Y ]Z =
= [Y, Z]−1[Z,X]−1X−1[Y, Z][X,Y ]−1Y −1[Z,X]Y Z−1[X,Y ]Z =
= [Y, Z]−1[Z,X]−1X−1[Y, Z]X[X,Y ]−1Y −1[Z,X]Z−1Y [X,Y ][Z−1, Y ]Z =
= [Z, Y ][X,Z]X−1[Y, Z]X[Y,X]Y −1[Z,X]Z−1Y [X,Y ][Z−1, Y ]Z =
= Y −1Z−1Y ZZ−1X−1ZXX−1Z−1Y −1ZY XX−1Y −1XY Y −1X−1Z−1XZZ−1Y Y −1X−1Y XY −1ZY Z−1

= e.
(94)

�

Corollary 3.10 The Lie bracket of two vector fields X and Y is the vector field [X,Y ] : D →
MM such that

[X,Y ](d1 · d2) = Y−d2 ◦X−d1 ◦ Yd2 ◦Xd1 . (95)

It is unique, bilinear, antisymmetric and satisfies the Jacobi identity. For any d ∈ D and any
(d1, d2) ∈ D(2) we have Xd◦X−d = idM , Xd1 ◦Xd2 = Xd1+d2 and Xd1 ◦Yd2 = Yd2 ◦Xd1 . Thus, a
Lie bracket is a commutator of infinitesimal transformations of an element m ∈M along vector
fields X and Y , as it is presented on the picture below.

1 2[X,Y](d  ,d  )(m)=r

m n=X(m,d  )

p=Y(n,d  )

r=Y(q,−d  )

q=X(p,−d  )

1

Y−d

Xd1

X

dY 2

[X,Y]d  ,d1 2
1

2
−d

2

2

1

Proposition 3.11 For any X,Y ∈ X (M) and f ∈ RM ,

[X, f · Y ] = f · [X,Y ] + LXf · Y. (96)
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Note that in the situation when commutator acts on functions, it is simple to prove this fact,
because [X,hY ](fg) = X(hY (fg)) − hY (X(fg)) = h(X(Y (fg)) − Y (X(fg))) + Y (fg)X(h) =
h[X,Y ](fg)+X(h) ·Y (fg). The question is, as always, does it work properly with infinitesimals,
i.e. with (d1 · d2) ∈ D2.

Proof. By (95) we have [X, fY ](d1, d2) = (fX)(−d2) ◦X(−d1) ◦ (fY )(d2) ◦X(d1). Following
the picture above, we may denote n := X(d1)(m), p := (fY )(d2)(m), q := X(−d1)(p). By (82)
we get d2 ·f(q) = d2 ·f(X−d1(p)) = d2(f(p)−d1 ·X(f(p))) = d2f(n)−d2d1X(f(n)) = d2(f(m)+
d1X(f(m))) − d1d2X(f(m)) = d2f(m), thus [X, fY ](d1, d2) = (fY )(−d2)(q) = Y−d2f(q)(q) =
Y−d2f(m)(q) = Y−d2f(m) ◦ X−d1 ◦ Yd2f(n) ◦ Xd1(m) = Y−d2f(m) ◦ X−d1 ◦ Yd2(f(m)+d1X(f(m)) ◦
Xd1(m) = Y−d2f(m) ◦ X−d1 ◦ Yd2f(m) ◦ Yd1d2X(f(m)) ◦ Xd1(m) = Y−d2f(m) ◦ X−d1 ◦ Yd2f(m) ◦
Xd1(m) ◦ Yd1d2X(f(m))(m) = [X,Y ]d1d2f(m) ◦ Yd1d2X(f(m))(m) = [X,Y ]d1d2f(Yd1d2X(f(m))(m)) ◦

Yd1d2X(f(m))(m) = f [X,Y ](d1, d2) ◦ Yd1d2X(f)(m)(m) = f [X,Y ](d1, d2) ◦ X(f)Y (d1, d2)(m) =
(f [X,Y ] +X(f)Y )(d1, d2)(m). �

4 Connections

Now we will define an affine connection and a parallel transport. Both of these terms say about
transporting a tangent vector t2 along tangent vector t1, hence about completing the cross
section of two vectors into a net of parallel cross sections given by the infinitesimal transporting
of one vector along another. Our first step will be the definition of these notions on the tangent
bundle MD π

−→ M , next we will generalize the notion of an affine connection on any vector
bundle E

p
−→ M . In the aftermath of this, we will introduce the covariant derivative ∇XY of

the E-vector field Y along vector field X. Finally, we will turn back with these notions to the
situation when E =MD, concerning the affine stucture of the microlinear spaces.

We want to define the object maintaining an infinitesimal connection between two vector fields
tangent to M , which makes possible to move from the configuration of these fields related to each
other (roughly speaking, their cross-section) in one point to the configuration of these fields in
other point close to first by an infinitesimal distance. In other words, we want to connect (thus
make a mapping from) the cross-section of two tangent bundles (i.e. the pullback MD×MMD of
two objects MD of mappings from infinitesimal line (microline) D to M , made over microlinear
space M) over every element of M to a bundle of cross-sections, i.e. the mapping from a
microsquare17 D ×D to M . Such map may be thought as an infinitesimal parallellogram

studied by Elie Cartan [Cartan:1928] as a tool for introducing the torsion and curvature. (In
fact, we will follow very tightly his paths, however without introducing the coordinates.) We
intend it to be linear, as it should preserve the linear structure of vector spaces. (In fact, it is
enough to impose the homogeneity, as this implies linearity.) So, we have to concern the map

17In fact, the name ‘microsquare on M ’ or ‘2-tangent’ is used to call the elements of MD×D, i.e. the mappings
from D×D to M , or even the elements of MD×D × (D×D), i.e. the mappings D×D → M together with their
infinitesimal domain.
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called the affine connection ∇ on a tangent bundle π :MD →M , given by the diagram

MD

��

MD ×M MDπ2oo

π1
��

∇ //MD×D ∼= (MD)D
K

oo

M MD,oo

(97)

where K is defined as (π1 ◦K(τ))(d) := τ(d, 0) and (π2 ◦K(τ))(d) := τ(0, d), and τ ∈MD×D is
a microsquare-tangent-vector. The connection ∇ is a section of K, i.e. (K ◦∇(t1, t2))(d1, d2) =
(t1(d1), t2(d2)). Now we may promote these ideas into a formal definition.

Definition 4.1 An affine connection on tangent bundle MD →M is the map

∇ :MD ×M MD →MD×D, (98)

such that for every (t1, t2) ∈M
D ×M MD, d1, d2 ∈ D and λ ∈ R,

1. ∇(t1, t2)(d1, 0) = t1(d1),

2. ∇(t1, t2)(0, d2) = t2(d2),

3. ∇(λ · t1, t2) = ∇(t1, t2)(λ · d1, d2),

4. ∇(t1, λ · t2)(d1, d2) = ∇(t1, t2)(d1, λ · d2).

Such defined connection is an exact realisation of the original idea of Elie Cartan:

A manifold with an affine connection is a manifold which, in the immediate neigh-
bourhood of any point, exhibits all the properties of an affine space and on which one
has a law relating two such infinitesimally close neighbourhoods.18

Definition 4.2 An affine connection is called symmetric if

∇(t1, t2)(d1, d2) = ∇(t2, t1)(d2, d1). (99)

18[Cartan:1955]. (In fact, we have not defined yet the idea of an affine space in a point. But this is easy,
because Kock-Lawvere axiom imposes the existence of a local tangent space, as well as local differentiability in
any point. We will turn back to the notion of affine space and define it in the next section.)
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Definition 4.3 A parallel transport p∇(t,h) from t(0) to t(h) along t is the map p∇(t,h) : Tt(0)M →
Tt(h)M such that for every λ ∈ R

1. p∇(t1,0)(t2) = t2,

2. p∇(t1,h)(λt2) = λp∇(t1,h)(t2),

3. p∇(λt1,h)(t2) = p∇(t1,λh)(t2).

So the value of p∇(t1,h)(t2) is the result of the transport of the vector t2 parallely to itself by
an infinitesimal distance h along the curve given by the vector t1. This gives a picture of
infinitesimal completing of a cross-section

into

As we see, this picture describes the notion of parallel transport as well as the notion of connec-
tion. In fact, they are equal in a precise sense.

Proposition 4.4 If M is microlinear, then any affine connection ∇ on M gives a parallel trans-
port p∇ on M given by

∇(t1, t2)(h1, h2) = p∇(t1,h1)(t2)(h2). (100)

Conversely, if p∇ is a parallel transport on M , then the map ∇ : MD ×M MD → MD×D given
by the equation above is an affine connection on M .

Proof. We will prove first that the diagram

D
i1 //
i2

// D ×D
+ // D2 (101)

with i1(d) = (d, 0), i2(d) = (0, d) and + : (d1, d2) 7→ d1 + d2 is perceived by R as a coequalizer.
This diagram commutes, because d1 + d2 = d2 + d1, so we should prove only the uniqueness.
Let f : D×D → R be such that f(d1, d2) = a+ bd1 + b′d2 + cd1d2. Then f(i1(d)) = a+ bd and
f(i2(d)) = a+ b′d. By commutativity, we have f(i1(d)) = f(i2(d)), thus b = b′. For the function
g : D2 → R such that g(δ) = a + bδ + c

2δ
2 we get g(d1 + d2) = a + b(d1 + d2) +

c
2(d1 + d2)

2 =
f(d1+d2), hence g is the unique map such that f(d1+d2) = g(d1+d2), and so (101) is perceived
by R as a coequalizer. Now we can turn back to the main subject of this proof. If ∇ is an affine
connection on M then for t ∈ TxM and for every h ∈ D we have the map

TxM
p∇
(t,h)
−−−→ Tt(h)M, (102)
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given by (100). We will prove that this map is a bijection. Consider σ(t) : D2 → M given by
σ(t)(d1 + d2) = ∇(t, t)(d1, d2), which is properly defined, because M by the microlinearity and
the proof above perceives (101) as coequalizer and, by definition of ∇, t(d) = ∇(t, t)(d, 0) =
∇(t, t)(0, d). Thus, we can say that for d ∈ D

[d 7−→ σ(t)(h+ d)] ∈ Tt(h)M. (103)

The bijection will be shown by proving that the inverse arrow of p∇(t,h) is p∇(d 7→σ(t)(h+d),−h), hence
that {

p∇(d 7→σ(t)(h+d),−h)(p
∇
(t,h)(s)) = s,

p∇(t,h)(p
∇
(d 7→σ(t)(h+d),−h)(s

′)) = s′.
(104)

Considering the diagram (69) perceived by M as a coequalizer, for (h1, h2) ∈ D(2) we get

p∇(t,h1+h2)(s) = p∇(d 7→σ(t)(h1+d),h2)
◦ p∇(t,h2)(s). (105)

For h = h1 = −h2 we get the first equation. Substituting s by p∇(d 7→σ(t)(h+d),−h)(s
′) in the first

equation, we get the second equation. �

If we want to transport the vectors of some vector (not necessary tangent) bundle E → M
‘parallely’ along the microlinear space, we have to define, what such parallelism means. It seems
to be natural answer, that the ‘parallelness’ of vectors in a vector bundle should be given in the
terms of this bundle somehow independently from the possible different structures of microlinear
spaces on which we may project our bundle of vector spaces. Thus we should concern ED, i.e. the
tangent space of a space E, but also we should recall that the ‘transport parallel to microlinear
space’ means ‘transport parallel along the vectors of tangent bundle of the microlinear space’.

E E

xy

x
y

ED
∋t−

t M

∋ D
M

E

In the concerned earlier situation, the connection between two vectors from tangent bundle
MD → M was defined as a map from the pullback of these spaces over M to the microsquare
MD×D ∼= (MD)D, i.e. to the tangent bundle of the tangent bundle. This leads to corollary, that
parallelism (the connection) of some vector bundle along tangent space MD over the microlinear



 4. Connections

space M is given by the map from the pullback E ×M MD to a tangent space ED of this given
vector bundle, i.e.

E ×M MD ∇ // ED (106)

v

t

t’ v’

v"

t"

M

v

v’

v"

E

As we want to maintain not only the parallelness of vectors given by E, but also their lenghts
and vector space structure, we must concern that the map ∇ is linear.

Definition 4.5 An affine connection on a vector bundle E
p
−→M is a map ∇ :MD ×M E →

ED such that

1. p ◦ ∇(t, v) = t, thus p ◦ ∇(t, v)(d) = t(d),

2. ∇(t, v)(0) = v,

3. ∇(λt, v)(d) = ∇(t, v)(λd) = (λ⊙∇(t, v))(d),

4. ∇(t, λv)(d) = (λ∇(t, v))(d) = λ(∇(t, v)(d)),

where ⊙ denotes the R-module multiplication in the vector bundle over E.

To check that such definition is well-established, we will prove first that vector bundle p : E →M
together with tangent bundle π : MD → M induces naturally two vector bundle structures on
MD ×M E, hence ∇ is a map of two vector bundles (over E and over MD).

Proposition 4.6 1. MD ×M E is a vector bundle over E by MD ×M E
p2
−→ E and a vector

bundle over MD by MD ×M E
p1
−→MD.

2. ED is a vector bundle over E by ED
π
−→ E and a vector bundle over MD by ED

pD
−−→MD.

Proof. First let us fix the notation, denoting the R-module operations in a vector bundle over
E as ⊕ and ⊙ for addition and multiplication, respectively. This convention will also hold on
next pages.

1. For MD ×M E the tangent bundle over E is given by

(t, v)⊕ (t′, v) := (t⊕ t′, v),
λ⊙ (t, v) := (λ · t, v).

(107)

The tangent bundle over MD is given by

(t, v) + (t, v′) := (t, v + v′),
λ · (t, v) := (t, λ · v).

(108)

The Kock-Lawvere axiom is satisfied in both situations, because MD ×M E is a pullback
of microlinear spaces, thus it is also a microlinear space.
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2. The first part is obvious, so we will prove only the second. Consider (ED)t := (pD)−1(t)
and Et(d) := p−1(t(d)). For φd : D → Et(d) we define φ : D → (ED)t by φ(d′)(d) := φd(d

′).
From the vector bundle structure of p we get

∀ud ∈ Et(d) ∃!ud ∈ Et(d) ∀d
′ ∈ D φd(d

′) = ud + d′ · vd. (109)

Substituting ud by u := [d 7→ ud] and vd by v := [d 7→ vd], u, v ∈ (ED)t, we get

∀u ∈ (ED)t ∃!v ∈ (ED)t ∀d
′ ∈ D φ(d′) = u+ d′ · v. (110)

So, the Kock-Lawvere axiom is satisfied. The R-module structure of pD : ED → MD is
given by

(u+(ED)t v)(d) := u(d) +Et(d) v(d),

(λ ·(ED)t v)(d) := λ ·Et(d)
(v(d)).

(111)

�

Suppose that in some point x we have got an element of a vector bundle v ∈ E and a tangent
vector t ∈MD:

(t, v) ∈MD ×M E. (112)

We would like to move the vector v along the direction given by t to the new point t(d) ∈ M ,
which is in the infinitesimal distance d from the point t(0) = x ∈M of the foothold of (t, v). In
other words, we want to transport v from the fibre Et(0) to the fibre Et(d). The connection ∇ is
the mapping

t̄ = ∇(t, v) ∈ ED

(0)

&&

(d)

++
∇(t, v)(0) = v ∈ Et(0)

p

��

∇(t, v)(d) ∈ Et(d)

p

��
p ◦ ∇(t, v)(0) = t(0) ∈M p ◦ ∇(t, v)(d) = t(d) ∈M

(t, v) ∈MD ×M E

∇

OO

(113)
So, connection ∇ :MD ×M E → ED ‘lifts up’ a pair of vectors from tangent and vector bundle
to one vector from ED, on which the operation of evaluation of infinitesimal move d may be
performed, to yield a transported vector ∇(t, v)(d) placed in the vector space (fibre) Et(d) over
the point t(d) ∈M . It may be represented on the picture
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t−

M

E

−

−t(d)

v=t(0)

Et(0)t(d)E

t’−

t(0)

t(d)

t

K

The connection gives for every t ∈ MD footholded in the point t(0) ∈ M its ‘image’ t̄ in ED,
footholded in the t̄(0) = v ∈ E.19 Evaluation of t̄ on the infinitesimal d will give t̄(d) ∈ E, the
parallel transport of v along the direction of t. Conversely, we may think at the begining about
some t̄ ∈ ED and consider the map K : ED →MD ×M E such that K(t̄) = (p ◦ t̄, t̄(0)). ∇ is a
section of such K, because

K∇(t, v) = (p ◦ ∇(t, v),∇(t, v)(0)) = (p ◦ ∇(t, v), v) = (t, v), (114)

so K∇ = idMD×ME . There are also such vectors t̄ which projected by K on MD give the
null vector (consider t̄′ on the picture above). Such t̄ have the property that t̄(d) ∈ Ep◦t̄(0), so

t̄ ∈ EDp◦t̄(0). Hence, we may say that

Ker K = {t̄|t̄ ∈ EDp◦t̄(0)}, (115)

and, by the obvious reason, call them vertical vectors. Such vectors cannot be used for the
infinitesimal parallel transport given by ∇, because are not the image of any t ∈ MD in ED.
Thus, we may decompose vectors in ED into two parts

ED = Ker K ⊕ Im ∇ =: V (ED)⊕H(ED), (116)

where
V (ED) = Ker K = {t̄|t̄ ∈ EDp◦t̄(0)} – vertical vectors,

H(ED) = Im ∇ = {∇(t, v)|(t, v) ∈MD ×M E} – horizontal vectors.
(117)

The sign ⊕ used above means that V (ED)→ E and H(ED)→ E are sub-bundles of a vector
bundle ED → E, and for every x ∈ E we may perform an R-module addition Vx ⊕ Hx. Such
sum of the vector sub-bundles is called the Whitney sum. So, any vector t̄ ∈ ED may be
decomposed into the sum

t̄ = V (t̄) + (V (t̄)− t̄), (118)

19Note that the directions of arrows K and ∇ on the picture above are rather symbolical: in fact, ∇ is a map
MD ×M E → ED, while K is a map ED → MD ×M E.
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where V (t̄) ∈ V (ED) and (V (t̄)− t̄) ∈ H(ED). We have then

V = idED ⊖ (∇ ◦K). (119)

−
(t)

t
− −

V(t)

x

M

E

t−V
−

(120)

From the Kock-Lawvere axiom, we have E×E ∼= ED. Consider now (u, v) ∈ E×M E  E×E,
which is an element of a pullback over M :

E ×M E
p1 //

p2
��

E

p

��
E p

//M,

(121)

and the map G : E ×M E  ED given by (u, v) 7→ [d 7→ u + dv]. The element u + dv ∈ E
is created by the pair (u, v) of two elements of E which lay in the same fibre over M (because
(u, v) ∈ E×M E). This means that t̄ = [d 7→ u+dv] is a vertical vector, because t̄(d) = u+dv ∈
Ep◦t̄(0) = Ep(u) = Ep(v). Hence,

Im G = V (ED) = Ker K. (122)

This leads to the commutative diagram

E ×M E
��

��

∼=

G
// V (ED) = Ker K

��

��
E × E

∼=

Kock-Lawvere axiom
// ED = Ker K ⊕ Im ∇

(123)

However, to be correct, we should prove that G and K are really bilinear as maps of vector
bundles.

Proposition 4.7 1. G and K are both bilinear as maps of vector bundles over E and over
MD.

2. Im G = Ker K.

3. E ×M E is a vector bundle over E by E ×M E
p1
−→ E and a vector bundle over M by

E ×M E
cm
−−→M , where cm is a canonical map for every fiber Em over m.

Proof.
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1. The linearity follows from the fact, that K and G are the maps of the R-modules which
satisfy the Kock-Lawvere axiom. Such maps are linear if they are homogeneus, and the
last is trivial, as G(λv) = λG(v) and K(λv) = λK(v).

2. In fact, we have yet proven that t̄ ∈ Im G ⇒ t̄ ∈ Ker K. It suffices to show the converse.
Let K(t̄) = 0 for some t ∈ ED. Then t ∈ Ep◦t̄(0), so p ◦ t is constant. By the Kock-Lawvere
axiom, we can find the unique (u, v) such that t̄ = G(u, v).

3. For the projection p1 : E×M E → E Kock-Lawvere axiom is satisfied by the microlinearity
of E ×M E. The R-module structure is given by

(u, v)⊕ (u, v′) := (u, v + v′),
λ⊙ (u, v) := (u, λ · v).

(124)

For E ×M E →M the R-module structure is given by

(u, v) + (u′, v′) := (u+ u′, v + v′),
λ · (u, v) := (λ · u, λ · v),

(125)

and the satisfaction of the Kock-Lawvere axiom is given for every fibre Em (for m ∈ M),
thus for every fibre product Em ×M Em.

�

It is good to show the correspondence between E ×M E and V (ED) on a picture,

−
(t)

t
−

x

M

−
t(0)

E

t−V
−

V(t)
−

C(t)
−

(126)

where t̄(0) and C(t̄) are the elements of Ep◦t̄, and V (t̄) = [d 7→ t̄(0) + d · C(t̄)]. Thus, V may
be considered as a map V : ED → E ×M E, i.e. V : t̄ 7→ (t̄(0), C(t̄)), while G ◦ V (t̄) = [d 7→
t̄(0) + d · C(t̄)]. So, taking into account (121), we get

p1 ◦ V = π : ED ∋ t̄ 7→ t̄(0) ∈ E,
p2 ◦ V = C : ED ∋ t̄ 7→ C(t̄) ∈ E.

(127)

In other words:

G◦ < π,C >= idE ⊖∇ ◦K. (128)
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p ◦ (t̄− V (t̄))(d) = p ◦ t̄(d) p ◦ t̄(0)
✛

✛

✻

❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨ C(t̄)

t̄(0)

V (t̄)

t̄(d)

∇K(t̄)(d) = (t̄− V (t̄))(d)
t̄− V (t̄)

p ◦ t̄ = p ◦ (t̄− V (t̄)) M

Ep◦t̄(0)Ep◦t̄(d)

t̄

s s

s

s

s

s

(129)

The ambivalence (or, maybe better to say, undistinguishment) between the transport of t̄(0) ∈ E
along p ◦ t̄ and along p ◦ (t̄ − V (t̄)) is measured by the V (t̄) ∈ ED or – equivalently – by the
C(t̄) ∈ E. V (t̄) is unambiguotious to C(t̄) in a precise sense of the Kock-Lawvere axiom: as
V (t̄) = [d 7→ t̄(0) + dC(t̄)],

∀V (t̄) ∈ ED ∃!C(t̄) ∈ E ∀d ∈ D V (t̄)(d) = t̄(0) + d · C(t̄). (130)

Note that from (128) we have t̄⊖∇ ◦K(t̄) = G(t̄(0), C(t̄)), so speaking in terms of C and ∇ is
equivalent (or, maybe better to say, ‘interchangeable’). A map C is called the connection map,
and in the context of classical differential geometry it has appeared in [Dombrowski:1962] and
[Patterson:1975]. It may be thought as a map from the ‘space of accelerations’ ED to the ‘space
of velocities’ E. We can also define the map ν : E  ED from ‘velocities’ to ‘accelerations’,
such that

ν : E ∋ u 7−→ [d 7→ d · u] ∈ ED. (131)

The given above properties of C ensure that we have

E
ν
−→ ED

C
−→ E = idE . (132)

Connection map C gives an ability to define a parallel transport on a vector bundles.

Definition 4.8 A parallel transport p(t,d) from t(0) to t(d) along t is the map p(t,d) : v ∈
Et(0) 7→ ∇(t, v)(d) ∈ Et(d). As the connection is linear, this map is bijective and induces the
inverse map q(t,d) : Et(d) → Et(0) called the parallel transport from t(d) to t(0) along t. The

notation p∇(t,d) and q∇(t,d) is sometimes used instead of p(t,d) and, respectively, q(t,d).

Proposition 4.9

∀t̄ ∈ ED ∃!V (t̄) ∀d ∈ D q∇(p◦t̄,d)(t̄(d)) = t̄(0) + dC(t̄). (133)

Proof. Identyfying q∇(p◦t̄,d)(t̄(d)) = V (t̄)(d), we get the equation (130), satisfied by the virtue
of the Kock-Lawvere axiom. �



 4. Connections

The extent, or a ‘gap’, between the vector from vector field (being the section of E) and its
‘copy’ transported along some vector field tangent to manifold M is commonly called covariant

derivative, and basically may be illustrated by the standard example:

M v

parallel transport

may have not "parallel" result

(Note that, in contradiction to earlier pictures, we considered here the elements of E as vectors.)
The covariant derivative is at the same time a generalization of the notion of derivative of a map
f : R→ V , where V is a Euclidean R-module.

Definition 4.10 Let E → M be a vector bundle, X ∈ X (M), Y ∈ X (E). We have M
X
−→

MD Y D

−−→ ED, and denote Y ·X := Y D ◦X :M → ED. If ∇ is an affine connection on E with
connection map C, the covariant derivative of Y along X is defined as the E-vector field

∇XY := C(Y ·X) :M → E, (134)

hence, by (119),

∀d ∈ D ((Y ·X)m ⊖∇(Xm, Ym))(d) = Ym + h · (∇XY )m. (135)

(X,Y)(m)(d)=

m=X(m)(0)X(m)

X
M

Y(m)=Y(Xm)(0)

YX(m)(d)

(Xm,Ym)(d)

C(YX)(m)= xY

E
d

YX

X(m)(d)

h

Y

(136)
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Proposition 4.11 The covariant derivative ∇XY is uniquely determined, and it measures the
gap in the parallelism between the YXm and Xm, i.e. the difference between YXm(d) transported
back along Xm and Ym.

Proof. The uniqueness is obvious by the equation (135) and the Kock-Lawvere axiom. We
should prove now that for every d, h ∈ D, m ∈M , X ∈ X (M) and Y ∈ X (E):

∇(d 7→ XXm(h)(d), YXm(d))(−h)− Ym = h · (∇XY )m. (137)

For φ : D(2) → E given by φ(d1, d2) := ∇(d 7→ XXm(d1)(d), YXm(d1))(−d2) we have φ(d1, 0) =
(Y ·X)m(d1) and φ(0, d2) = ∇(Xm, Ym)(−d2), so ((Y ·X)m ⊖ ∇(Xm, Ym))(h) = φ(h, h), thus
((Y ·X)m ⊖∇(Xm, Ym))(h) = ∇(d 7→ XXm(h)(d), YXm(h))(−h). �

We see, that this proposition and its proof was only another version of proposition 4.9 (while
its proof was only another version of the proof of the proposition 4.4).

Proposition 4.12 Let ∇ be an affine connection on a vector bundle E →M . For every X,X ′ ∈
X (M), Y, Z ∈ X (E), f :M → R:

1. ∇X+
MDX′Y = ∇XY +∇X′Y ,

2. ∇f ·XY = f · ∇XY ,

3. ∇X(Y + Z) = ∇XY +∇XZ,

4. ∇X(f · Y ) = f · ∇XY + LXf · Y. (Koszul law)

Proof.

1. (Y · (X +MD X ′))m = (Y ·X)m ⊕ (Y ·X ′)m and the linearity of C.

2. (Y · (fX))m = f(m)⊙ (Y ·X)m and the linearity of C.

3. ((Y + Z) ·X)m = (Y ·X)m + (Z ·X)m and the linearity of C.

4. We have (Y ·X)m ⊖ (Xm, Ym))(h) = Ym + h(∇XY )m. Thus for t(d) := XXm(h)(d) we can
write

∇(t, YXm(h))(−h) = Ym + h(∇XY )m. (138)

Substituting Y by f · Y we get h · (∇X(fY ))m = ∇(t, f(Xm(h))YXm(h)(−h) − f(m)Ym =
∇(t, (f(m)+h·X(f)(m))YXm(h))(−h)−f(m)Ym = (f(m)+h·X(f)(m))∇(t, YXm(h))(−h)−
f(m)Ym = f(m)(∇(t, YXm(h))(−h)− Ym) + h ·X(f)(m)∇(t, YXm(h)(−h) = f(m)(Ym + h ·
(∇XY )m−Ym)+h ·X(f)(m) ·(Ym+h ·(∇XY )m) = f(m) ·h ·(∇XY )m+h ·X(f)(m) ·Ym+0.
Cancelling h’s (by the Kock-Lawvere axiom for Em) we get ∇X(fX)m = f(m) · (∇XY )m+
X(f)(m)Ym.

�

5 Affine space

This section is inspired by the wish of giving the strict meaning to Cartan’s words:
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We say that the manifold is equipped with the “affine connection” if a law relating
affine spaces associated with any two infinitesimally close points m and m’ is spec-
ified. The choice of this law is quite arbitrary; it only has to enable us to say that
such and such point in the affine space associated with m corresponds to such and
such point in the affine space of m’, and that such vector in the first space is parallel
or equal to such and such vector in the second.20

So far we have defined the notion of an affine connection without defining the affine space. It
was a rather abstract way, in which we have used the idea of affine space implicitly, defining
the affine connection on a tangent bundle. Now we would like to define a notion of affine space
explicitly. Roughly speaking, an affine space is some space A together with some vector space
(R-module), such that we can add a vector v to the point x and receive the point y = x+ v, as
well as make the difference of two points x and y, obtaining the vector v = x− y.

Definition 5.1 We say that an (inhabited, i.e. ∃a ∈ A) object (‘set’) A is equipped with an
affine space structure or translation space structure or torsor structure of an additive
abelian group < V,+, 0 > (so, in particular, an R-module) if there are operations

V ×A
.
+
−→ A, (139)

A×A
.
−
−→ V, (140)

such that
∀τ1, τ2 ∈ A ∃!t ∈ V t

.
+τ1 = τ2 ⇐⇒ t = τ2

.
−τ1. (141)

An affine space is the pair < A, V > together with the structure < 0,+,
.
+,

.
− >.

This definition implies the identities

(τ2
.
−τ1)

.
+τ1 = τ2, (142)

(t
.
+τ1)

.
−τ1 = t, (143)

0
.
+τ = τ, (144)

(t1 + t2)
.
+τ = t1

.
+(t2

.
+τ). (145)

Consider now the pictures (126), (129) and (136). We would like to have an ability to move
from the ‘point’ t̄(0) to C(t̄), as well as move vector t̄ from t̄(0) to C(t̄). In general it is not
possible, but in case when M = ED we can introduce the affine space structure on the fibre
MD ×m MD → MD×D

m and move between microsquares from MD×D along the vectors from
MD
m = TmM . Such ED = (MD)D ∼= MD×D is called the iterated tangent bundle. ED

has two vector bundle structures (one over MD, second over E), and MD×D has also both
structures, with the following projections on MD (recall that for any exponential objects we
have (AB)C ∼= AC×B):

(MD)D
M i2
−−→MD, M i2(τ)(d) = τ(0, d),

(MD)D
M i1
−−→MD, M i1(τ)(d) = τ(d, 0),

(146)

together with the R-module structures:

(λ⊙ τ)(d1, d2) = τ(λd1, d2),
(τ ⊕ τ ′)(d1, d2) = (τ(−, d2) + τ ′(−, d2))(d1),

(λτ)(d1, d2) = τ(d1, λd2),
(τ + τ ′)(d1, d2) = (τ(d1,−) + τ ′(d1,−))(d2).

(147)

20[Cartan:1955]
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So, M i1 : MD×D →MD and M i2 : MD×D →MD are Euclidean vector bundles. From this we
get the following equations:

λ · (µ⊙ τ) = µ⊙ (λ · τ),
(τ1 ⊕ τ2) · (τ

′
1 ⊕ τ

′
2) = (τ1 · τ

′
1)⊕ (τ2 · τ

′
2),

λ · (τ1 ⊕ τ2) = (λ · τ1)⊕ (λ · τ2),
λ · (τ1 + τ2) = (λ · τ1) + (λ⊙ τ2).

(148)

For E =MD we have MD π
−→M in the place of E

p
−→M and

MD(2) ∼=MD ×M MD ∇
−→ (MD)D ∼=MD×D (149)

in the place of MD ×M E
∇
−→ ED. The map K : ED → MD ×M E becomes K : (MD)D ∼=

MD×D →MD ×M MD ∼=MD(2). Note that it is a restriction map induced by D(2)  D×D,
so there exists an inverse arrow K−1 : MD(2) →MD×D. Hence, for every τ ∈ MD(2) such that
τ(0, 0) = m ∈ M , we may consider its inverse image K−1(τ). We will show now, that K−1(τ)
is equipped with an affine space structure of the R-module TmM = MD

m , so the fibres of the
restriction maps

MD×D
m −→MD(2)

m (150)

have a natural structure of an affine space over MD
m . This will enable us to make a comparision

between τ and ∇K(τ) (hence, satisfy the Cartan’s comparision postulate), and to introduce the
familiar equations on covariant derivative, torsion and Lie brackets.

Definition 5.2 A strong difference is a pair of maps

.
− :MD×D ×MD(2) MD×D →MD, (151)

.
+ :MD ×M MD×D →MD×D, (152)

such that for t ∈MD, τ1, τ2 ∈M
D×D, τ1|D(2) = τ2|D(2) = τ :

(τ2
.
−τ1)(d) := f(0, 0, d), (153)

(t
.
+τ)(d1, d2) := g(d1, d2, d1 · d2), (154)

where (D×D)∨D := {(d1, d2, d3)|d
2
1 = d22 = d2 = d1d = d2d = 0} and f, g : (D×D)∨D →M

are such functions that

f(d1, d2, 0) = τ1(d1, d2), (155)

f(d1, d2, d1 · d2) = τ2(d1, d2), (156)

g(d1, d2, 0) = τ(d1, d2), (157)

g(0, 0, d) = t(d). (158)

Proposition 5.3 f and g are unique.

Proof. Consider the diagrams

D(2)

i

��

i // D ×D

ψ
��

D ×D
φ
// (D ×D) ∨D

(159)
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and
1

��

// D

ε
��

D ×D
φ
// (D ×D) ∨D,

(160)

where
φ(d1, d2) = (d1, d2, 0),
ψ(d1, d2) = (d1, d2, d1 · d2),

ε(d) = (0, 0, d),
(161)

while i are the inclusion arrows. Let us take two maps τ ′1, τ
′
2 ∈ R

D×D, given by

τ ′1(d1, d2) = a+ b1d1 + b2d2 + c1d1d2,
τ ′2(d1, d2) = a+ b1d1 + b2d2 + c2d1d2.

(162)

By definition f(d1, d2, 0) := a+b1d1+b2d2+c1d1d2+(c2−c1)d we obtain f(d1, d2, 0) = τ ′1(d1, d2)
and f(d1, d2, d1 · d2) = τ ′2(d1, d2), thus R perceives (159) as pullback, hence, by microlinearity,
M perceives it too. Similarly for (160). �

Proposition 5.4 The strong difference
.
− and

.
+ equips K−1(τ) with an affine space structure

of the R-module TxM =MD
x .

Proof. We have to show that equations (142-145) hold for
.
− and

.
+ defined by (153-158).

1. The definition of
.
+ gives us ((τ2

.
−τ1)

.
+)(d1, d2) = f̃(d1, d2, d1·d2) for f̃ such that f̃(0, 0, d) =

(τ2
.
−τ1)(d) and f̃(d1, d2, 0) = τ1(d1, d2). The definition of

.
− states (τ2

.
−τ1)(d) =

˜̃
f(0, 0, d)

for
˜̃
f(d1, d2, d1 · d2) = τ2(d1, d2). Thus, we have f̃ =

˜̃
f and f̃(d1, d2, d1 · d2) = τ2(d1, d2),

hence (τ2
.
−τ1)

.
+τ1 = τ2. The same procedure gives (t

.
+τ)

.
−τ = t and 0

.
+τ = τ .

2. To show that (t1 + t2)
.
+τ2 = t1

.
+(t2

.
+τ), consider the diagram

D ×D

0
��

0 // D

j1
��

(D ×D) ∨D
j2

// (D ×D) ∨D(2),

(163)

where (D × D) ∨ D(2) := {(d1, d2, e1, e2) ∈ D
4|d2i = e2i = diei = e1e2 = 0, i ∈ {1, 2}},

j1(d) := (0, 0, d) and j2(d1, d2, e) := (d1, d2, 0, e). For the unique g such as specified in
(157) and (158), we have ((t1 + t2)

.
+τ)(d1, d2) = g(d1, d2, d1 · d2). For the unique f :

(D × D) ∨ D → M given by f(d1, d2, 0) = τ(d1, d2) and f(0, 0, d) = t2(d) we can define
h : (D×D)∨D(2)→M given by h(d1, d2, 0, e) := f(d1, d2, e) and h(0, 0, d, 0) = t1(d), which
is unique, because for h : (D ×D) ∨D(2) → R the diagram (163) is send to the pushout
diagram, what can be easily checked in a standard manner. For such h we have h(0, 0, 0, e) =
t2(e), hence h(0, 0, e, e) = (t1 + t2)(e). Finally, we have h(d1, d2, e, e) = g(d1, d2, e). Now,
using that h(0, 0, e, 0) = t1(0), we conclude that (t2

.
+τ)(d1, d2) = h(d1, d2, 0, d1d2) implies

(t1
.
+(t2

.
+τ)) = h(d1, d2, d1d2, d1d2), and so t1

.
+(t2

.
+τ) = (t1 + t2)

.
+τ.

�

Hence, for m = τ(0, 0) we have:

K−1(τ)×K−1(τ)
.
−
−→ TmM, (164)
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TmM ×K
−1(τ)

.
+
−→ K−1(τ). (165)

Definition 5.5 The twist map Σ :MD×D →MD×D is a map such that

Σ(τ)(d1, d2) := τ(d2, d1). (166)

Clearly, it is a map of vector bundles:

MD×D

M i2 $$

Σ //MD×D

M i1zz
MD.

(167)

Corollary 5.6 Considering the proof given above, for τ, τ1, τ2 ∈ M
D×D
m , t ∈ MD

m , K−1(τ1) =
K−1(τ2), λ ∈ R, we have

τ2
.
−τ1 = Σ(τ2)

.
−Σ(τ1),

Σ(t
.
+τ) = t

.
+Σ(τ),

(168)

and
λ · (τ2

.
−τ1) = (λ · τ2)

.
−(λ · τ1) = (λ⊙ τ2)

.
−(λ⊙ τ1),

λ · (t
.
+τ) = λ · t

.
+λ · τ,

λ⊙ (t
.
+τ) = λ · t

.
+λ⊙ τ.

(169)

Proposition 5.7 For X,Y : D →MM ,

[X,Y ] = Y ·X
.
−Σ(X · Y ). (170)

Proof. We have (X · Y )(d1, d2) = Yd2 ◦ Xd1 , so Σ(X · Y )(d1, d2) = Xd1 ◦ Yd2 on D(2) (cf.
(3.10)). Let us define h : (D×D)∨D →MM such that h(d1, d2, e) = Xd1 ◦ [X,Y ]e ◦Yd2 . Hence,
h(d1, d2, 0) = Xd1 ◦ Yd2 = Σ(X · Y )(d1, d2), and h(d1, d2, d1 · d2) = Xd1 ◦ [X,Y ]d1,d2 ◦ Yd2 =
Xd1 ◦ (X−d1 ◦ Yd2 ◦Xd1 ◦ Y−d2) ◦ Yd2 = Yd2 ◦Xd1 = (Y ·X)(d1, d2). Thus, [X,Y ]e = h(0, 0, e) =
(Y ·X

.
−Σ(X,Y ))(e). �

Proposition 5.8 Let C : MD×D → MD be a connection map of an affine connection ∇, and
τ, τ ′ ∈MD×D such that K(τ) = K(τ ′). Then

C(τ) = τ
.
−∇ ◦K(τ) = τ

.
−∇(t1, t2), (171)

C(τ)− C(τ ′) = τ
.
−τ ′. (172)

Proof. By the definition of strong difference, we have (τ
.
−∇(t1, t2))(e) = f(0, 0, e), where

f : (D × D) ∨ D → M is a unique function such that f(d1, d2, 0) = ∇(t1, t2)(d1, d2) and
f(d1, d2, d1d2) = τ(d1, d2). From f(0, d2, 0) = t2(d2) we get f(0, d2, d1d2) = (t2+d1(τ

.
−∇(t1, t2)))(d2).

Now let us define g : D(2) ×D → M such that g(d1, d2, d) = f(d1 − d2, d, d1d), which is good
definition, because (d1, d2) ∈ D(2), d ∈ D ⇒ (d1 − d2, d, d1d) ∈ (D × D) ∨ D. For such g we
have g(d1, 0, d) = f(d1, d, d1d) = τ(d1, d) and g(0, d2, d) = f(−d2, d, 0) = ∇(t1, t2)(−d2, d), thus
g(d1, d1, d2) = (τ ⊖ ∇(t1, t2))(d1, d2) = f(0, d2, d1d2) = t2 + d1(τ

.
−∇(t1, t2))(d2). On the other

hand C : MD×D → MD is defined as (τ ⊖ ∇ ◦K(τ))(d1, d2) = (t2 + d1 · C(τ))(d2) (see (119)
and (130)), thus C(τ) = τ

.
−∇(t1, t2). The second equation follows immediately. �
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Corollary 5.9 Let X,Y : D →MM . As ∇XY = C(Y ·X), we have ∇XY = Y ·X
.
−∇(K(Y,X)),

hence
∇XY = Y ·X

.
−∇(X,Y ). (173)

Definition 5.10 The torsion of an affine connection ∇ with connection map C is a map T :
MD×D →MD such that for τ ∈MD×D

T (τ) := C(τ)− C(Σ(τ)). (174)

Connection is called torsion free if T (τ) = 0 for all τ .

Proposition 5.11 1. Connection is torsion free if it is symmetric.

2. T (X,Y ) = C(Y ·X)− C(Σ(Y ·X)).

3. T (X,Y ) = ∇XY −∇YX − [X,Y ].

Proof.

1. Let K(τ) = (t1, t2). By (174) we have T (τ) = C(τ) − C(Σ(τ)) = (τ
.
−∇ ◦ K(τ)) −

(Σ(τ)
.
−Σ(∇◦K(τ))) = (τ

.
−∇(t1, t2))−(Σ(τ)

.
−Σ(∇(t1, t2))) = (τ

.
−∇(t1, t2))−(Σ(τ)

.
−∇(t2, t1)).

Thus, symmetrical ∇ gives T (τ) = 0.

2. Obvious from (174).

3. T (X,Y ) = C(Y · X) − C(Σ(Y · X)) = (Y · X
.
−∇(Y,X)) − (Σ(Y · X)

.
−Σ(∇(Y,X))) =

(Y ·X
.
−∇(Y,X))− ((X · Y − [Y,X])

.
−∇(X,Y )) = ∇XY −∇YX − [X,Y ].

�

The notion of strong difference was considered in the context of classical differential geometry
by Kolař [Kolar:1977], [Kolar:1982] and White [White:1982]. The notion of iterated tangent
bundle in the classical context can be found in [Godbillon:1969]. In the synthetical context it
can be generalized to higher dimensional cases. In the series of papers of Hirokazu Nishimura
([Nishimura:1997a], [Nishimura:1997b] and further) the theory of three-dimensional strong dif-
ference of microsquares as well as elements of higher-dimensional theory was developed. The
higher-dimensional proofs are however engaged in quite long calculations (much longer then
these of propositions 5.4 and 5.8), so we will present here only the main idea and result of
this area of development. First, let us note that we can generalize a notion of a microsquare
τ : D × D → M to the notion of a n-microcube τ : D × . . . × D → M , i.e. τ ∈ MDn

, and
denote the object of n-microcubes at m as Tn(M,m) := MDn

m . Recall that in the proposition
5.7 we have expressed the Lie bracket [X,Y ] in terms of strong difference:

[X,Y ] = Y ·X − Σ(X · Y ). (175)

X and Y are the maps D →MM , hence they belong to T 1(MM , idM ). [X,Y ] ∈ T 1(MM , idM )
too (cf. corollary 3.10). On the other hand, Y ·X and Σ(X ·Y ) are the elements of T 2(MM , idM ),
hence we can say that the Lie bracket in T 1(MM , idM ) is expressed by the strong difference

.
−

in T 2(MM , idM ). This leads us to concern an object [X, [Y, Z]] ∈ T 2(MM , idM ), which should
be obtained by the strong difference in T 3(MM , idM ). However, in this three-dimensional case
there are three different strong differences

.
−1,

.
−2,

.
−3, corresponding to three different ways of

establishing the link between microcubes (3-microcubes) on M and microsquares (2-microcubes)
on MD. If we would like to establish the Jacobi identity in terms of strong difference, we will
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be involved in considering
.
−1,

.
−2,

.
−3 and also

.
−. Thus, it suffices here to say that in this

framework the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (176)

can be successfully established. We refer reader to the papers of Nishimura for details.

6 Differential forms

Definition 6.1 An n-microcube is a map γ from Dn to M . A marked n-microcube is an
n-microcube together with an element of Dn (called the marking):

(γ, h1, . . . , hn) ∈M
Dn

×Dn. (177)

An object of infinitesimal n-chains is the free R-module generated by the marked n-microcube
on M :

∀ai ∈ R

j∑

i=1

ai · (γi, h
i
1, . . . , h

i
n) ∈ Cn(M). (178)

γ
γ(0,0)

D

D

R

R

M

h

h

h hγ(   ,   )

1

2

21

Thus, the images of marked microcubes on M are the n-surfaces. We will define the differential
n-forms to measure such n-surfaces, i.e. to assign numbers to n-forms (in one-dimensional case
it will be the length, in two-dimensional – area, in 3-dimensional – volume, and so on), however
we will do it in a bit more general way, considering them as morphisms not into the ring R, but
into some Euclidean R-module. Recall that in the previous chapter we have discussed the fact
that maps

M i1 :MD×D →MD (179)

M i2 :MD×D →MD (180)

are Euclidean fibre bundles. In the same way we may say that

M ik :MDn

→MDn−1
(181)

is an Euclidean fibre bundle. Thus , if we have some γ ∈M ik , then it is n-homogeneus

γ(d1, . . . , λ · dk, . . . , dn) =: λ ·i γ(d1, . . . , dk, . . . , dn), (182)

and the n-twist map Σ :MDn
→MDn

induces the permutation σ of indice numbers

Σ(γ)(d1, . . . , dn) := γ(dσ(1), . . . , dσ(n)). (183)
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Definition 6.2 The k-linear form α on M is a k-homogeneus map α :MDk
→ R. We denote

the object of k-linear forms on M as LkM or
⊗kM . The tensor product α⊗ β ∈ Lp+qM of

two k-linear forms α ∈ LpM and β ∈ LqM is defined as bilinear map

(α⊗ β) :MDp

×MDq ∼=MDp+q

∋ γ 7→ α(γ(−, 0, . . . , 0︸ ︷︷ ︸
q

)) · β(γ(0, . . . , 0︸ ︷︷ ︸
p

,−)) ∈ Lp+qM. (184)

Obviously, this definition implies that

(α⊗ β)⊗ δ = α⊗ (β ⊗ δ). (185)

LpM is an microlinear Euclidean R-module, because LpM  RM
Dn

. In particular, for k = 1,
we have α : MD → R, so it is a linear form which assigns the value in R to a vector from
tangent bundle MD. In this case we may define the object of linear forms on tangent bundle
T ∗M := L1M and its fibre over x, T ∗

xM := L1Mx.

Definition 6.3 The classical k-linear form α on M is a k-homogeneus map

α :MD(k) ∼=MD ×M . . .×M MD → R. (186)

We denote the object of k-linear classical forms as L̃kM or
⊗̃k

M . The classical tensor

product α⊗̃β ∈ L̃p+qM of two k-linear forms α ∈ L̃pM and β ∈ L̃qM is defined as bilinear
map

(α⊗̃β) :MD(p) ×M MD(q) ∼=MD(p+q) ∋ γ 7→ α(γ(−, 0, . . . , 0︸ ︷︷ ︸
q

)) · β(γ(0, . . . , 0︸ ︷︷ ︸
p

,−)) ∈ L̃p+qM.

(187)

This definition also implies that

(α⊗̃β)⊗̃δ = α⊗̃(β⊗̃δ). (188)

By the obvious reason, T ∗M = L1M = L̃1M and T ∗
xM = L1Mx = L̃1Mx. By introducing the

notation TM⊗̃TM for MD ×M MD, we may define the (classical) tensor bundles:

r-contravariant tensor bundle Tr :=
⊗̃

rM :=

r⊗̃
i=1

TM

s-covariant tensor bundle T s :=
⊗̃s

M :=

s⊗̃
j=1

T ∗M

r-contravariant-s-covariant tensor bundle T sr :=
⊗̃s

rM := (

r⊗̃
i=1

TM)×M (

s⊗̃
j=1

T ∗M)

(189)

as well as their fibres (Tr)x :=

r⊗̃
i=1

TxM , (T s)x :=

s⊗̃
j=1

T ∗
xM and (T sr )x := (

r⊗̃
i=1

TxM) ×M (

s⊗̃
j=1

T ∗
xM). Note that the connection ∇ :MD ×M E → ED was defined for any microlinear space E

which fibres are Euclidean R-modules. This enables us to easily extend the action of a connection
map from vector to (classical) tensor fields:

∇ :MD ×M

(⊗̃s

r
M

)
→

(⊗̃s

r
M

)D
, (190)
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i.e.
∇ :MD ×M T → TD. (191)

We can define naturally the covariant derivative on the (classical) tensor bundle T by

C(TD ◦X) = C(T ·X) = ∇XT =: (∇T )(X), (192)

with properties given by the proposition 4.12. The action of the covariant derivative ∇X is a
map ∇X : T → ∇XT . Note that in classical differential geometry connection on tensor fields
is often introduced by taking first the partial derivative and adding corrections to it, to get the
covariant result (see for example [Schutz:1982] or [Wald:1984]). Here we have got the conection
on tensor bundle easily without any coordinate-involving calculations.

Definition 6.4 A differential n-form on M with the value in some Euclidean R-module V is
the map ω :MDn

→ V such that for every i ∈ {1, . . . , n}, γ ∈MDn
, λ ∈ R

1. (n-homogeneity) ω(λ ·i γ) = λω(γ),

2. (alternation) ω(Σ(γ)) = sgn σ · ω(γ).

The object of differential forms ω : MDn
→ E is denoted as Λn(M,V ). For V = R we use

the notation ΛnM instead of Λn(M,R). A classical differential n-form is defined as a map
ω̃ : MD(n) → V with the same properties as (non-classical) differential n-form. The object of
classical differential forms is denoted as Λ̃n(M,V ). For V = R we denote it as Λ̃nR. We also
use the notation

ΛM :=

∞⊗̃

n=1

Λ̃nM. (193)

Note that we can define a differential n-form using the marked n-microcubes, writing publicly
the n-homogeneity and alternation conditions as

ω(λ ·i γ, h1, . . . , hn) = λ · ω(γ, h1, . . . , hn), (194)

ω(Σ(γ), h1, . . . , hn) = sgn σ · ω(γ, hσ(1), . . . , hσ(n)), (195)

and adding the degeneracy condition

ω(γ, h1, . . . , 0, . . . , hn) = 0. (196)

This condition, enables us by the Kock-Lawvere axiom to write the marked n-form as ω(γ, h1, . . . , hn) =
h1 · . . . · hn ·ω

′(γ), where ω′(γ) is the corresponding unique (not-marked) n-form. Thus, marked
and not-marked n-forms may be identified with each other. The action of marked n-form is
denoted as

ω :MDn

×Dn ∋ (γ, h1, . . . , hn) 7−→ ω(γ, h1, . . . , hn) = h1 · . . . · hn · ω(γ) =:

∫

(γ,h1,...,hn)
ω ∈ V,

(197)
which gives a map ∫

(−)
ω : Cn(M)→ V. (198)

Proposition 6.5 Λn(M,V ) is a microlinear Euclidean R-module and a module over the algebra
of functions from RM .
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Proof. First part is obvious, because Λn(M,V )  VMDn

, and VMDn

is an exponential of
microlinear spaces, thus a microlinear space. Taking some ω ∈ Λn(M,V ) and f ∈ RM , we may
define f · ω :MDn

→ V as

(f · ω)(γ) = f(γ(0, . . . , 0)) · ω(γ). (199)

�

As we see, ΛpM  LpM . The tensor product of two differential forms is a linear form, but is not
alternated, thus it is not a differential form. However, we may solve this problem, considering
the antisymmetrization map A : LpM → ΛpM .

Definition 6.6 The antisymmetrization map A(α) :MDk
→ R of the form α is defined as

A(α)(γ) =
∑

σ

sgn σ · α(Σ(γ)). (200)

Thus, A is a linear map A : LpM → ΛpM , and for any α ∈ LpM and β ∈ LqM we have

A(α⊗ β) = (−1)pqA(β ⊗ α). (201)

Definition 6.7 The exterior product of two differential forms ω1 ∈ ΛpM and ω2 ∈ ΛqM is
the differential form ω1 ∧ ω2 ∈ Λp+qM such that

ω1 ∧ ω2 = (p! · q!)−1A(ω1 ⊗ ω2). (202)

As a consequence of this definition we immediately get

ω1 ∧ ω2 = (−1)pqω2 ∧ ω1. (203)

Expressing the action of an exterior product of differential forms on some microcube, we get

ω1 ∧ ω2(γ(d1, . . . , dn)) =
1

p!q!

∑

σ

sgn σ · ω1(γ(dσ(1), . . . , dσ(p)))⊗ ω2(γ(dσ(p+1), . . . , dσ(p+q))).

(204)
Consider now the map f : M → N of microlinear spaces. We can define the contravariant
functor Λn(−, V ) such that

M
f //

Λn(−,E)

��

N

Λn(M,E) Λ(N,E),
f∗

oo

(205)

where f∗ is given by (f∗ω)(γ) = ω(f ◦ γ) for γ ∈ MD and ω ∈ Λn(N,V ). We should check
that this definition is correct, i.e. that f∗ω ∈ Λn(M,V ), but this follows immediately from the
definition above. Moreover, it naturally extends on the k-linear forms and their tensor products.
For α ∈ LpM we have f∗ : LpM → LpN given by (f∗α)(γ) = α(f ◦ γ). Obviously, this implies
that

f∗(A(α)) = A(f∗α), (206)

f∗(α⊗ β) = f∗α⊗ f∗β, (207)

f∗(ω1 ∧ ω2) = f∗ω1 ∧ f
∗ω2. (208)
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Definition 6.8 The boundary operator

∂ : Cn+1(M)→ Cn(M) (209)

is given by

∂(γ, h1, . . . , hn) :=
n+1∑

i=1

(−1)iF i0(γ, h1, . . . , hn)−
n+1∑

i=1

(−1)iF i1(γ, h1, . . . , hn), (210)

where F i0 and F i1 are marked n-microcubes defined as

F i0(γ, h1, . . . , hn) = (((d1, . . . , dn) 7→ γ(d1, . . . , di−1, 0, di, . . . , dn)), h1, . . . , ĥi, . . . , hn+1), (211)

F i1(γ, h1, . . . , hn) = (((d1, . . . , dn) 7→ γ(d1, . . . , di−1, hi, di, . . . , dn)), h1, . . . , ĥi, . . . , hn+1), (212)

where ĥi means dropping the i-th element hi.

Example Let γ ∈ MD2
and (d1, d2) ∈ D2. Then we have ∂(γ, d1, d2) = −F 1

0 (γ, d1, d2) +
F 2
0 (γ, d1, d2)+F

1
1 (γ, d1, d2)−F

2
1 (γ, d1, d2) = −(γ(0, ·), d2)+(γ(·, 0), d1)+(γ(d1, ·), d2)−(γ(·, d2), d1).

(γ, d1, d2) =
∂

✲ = ∂(γ, d1, d2)

✲

✻
✛

❄
(0, 0)

(d1, d2)

Proposition 6.9
∂∂ = 0. (213)

Proof. Let us denote (h1, . . . , hn) as h. We have ∂(∂(γ,h)) = ∂(
∑n+1

i=1 (−1)
iF i0(γ,h) −∑n+1

i=1 (−1)
iF i1(γ,h)) =

∑n+1
i=1 (−1)

i∂(F i0(γ,h))−
∑n+1

i=1 (−1)
i∂(F i1(γ,h)) =

∑n+1
i=1 (−1)

i[
∑n

j=1(−1)
jF j0 (F

i
0(γ,h)−∑n

j (−1)
jF j1 (F

i
0(γ,h))] −

∑n+1
i=1 (−1)

i[
∑n

j=1(−1)
jF j0 (F

i
1(γ,h)) −

∑n
j=1(−1)

jF j1 (F
i
1(γ,h))]. We

have F ja (F ib (γ,h)) = F i−1
b (F ja (γ,h)) for a, b ∈ {0, 1}. If we apply this to the equation above we

see that all the terms cancel. �

Definition 6.10 Let ∂ : Cn+1(M)→ Cn(M) and ω :MDn
×Dn → V . The exterior derivative

or exterior differential is the map

d : Λn(M)→ Λn+1(M). (214)

given by ∫

(γ,h1,...,hn+1)
dω :=

∫

∂(γ,h1,...,hn+1)
ω. (215)

Note that this definition implies that

h1 · . . . · hn · dω(γ) =

∫

(γ,h1,...,hn+1)
dω =

∫

∂(γ,h1,...,hn+1)
ω = ω(∂(γ, h1, . . . , hn)), (216)

hence

h1 · . . . · hn · dω(γ) =
n∑

i=1

(−1)ih1 · . . . · hn · (ω(γ
i
0)− ω(γ

i
1)), (217)
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where
γi0(d1, . . . , dn) = γ(d1, . . . , di−1, 0, di, . . . , dn), (218)

γi1(d1, . . . , dn) = γ(d1, . . . , di−1, hi, di, . . . , dn). (219)

Proposition 6.11
dd = d2 = 0. (220)

Proof. Follows immediately from the definition of d and ∂2 = 0. �

Proposition 6.12 For ω1 ∈ ΛpM and ω2 ∈ ΛqM

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2. (221)

Definition 6.13 The interior product Xy ω of a differential k-form ω with a vector field X
is the map

Xy ω :MDk−1
→ R (222)

given by
(Xy ω)(γ) := ω(Xd1(γ(d2, . . . , dk))). (223)

Definition 6.14 The Lie derivative LXω ∈ ΛpM of a k-linear differential form ω ∈ ΛpM
along the direction of the vector field X ∈ X (M) is given by

d · LXω(γ) := ω(Xd ◦ γ)− ω(γ). (224)

Proposition 6.15 The map

X (M)× ΛkM ∋ (X,ω) 7−→ Xy ω ∈ Λk−1M (225)

is bilinear and for ω1 ∈ ΛpM , ω2 ∈ ΛqM we have

1. Xy (ω1 ∧ ω2) = (Xy ω2) ∧ ω2 + (−1)pω1 ∧ (Xy ω2),

2. LXω = Xy dω + dXy ω.

3. LX(ω1 ∧ ω2) = LXω1 ∧ ω2 + ω1LXω2.

The proof of propositions 6.12 and 6.15 is involved in rather cumbersome combinatorical calcu-
lations, so we will not present it here, refering interested reader to works of Carmen Minguez
[Minguez:1985], [Minguez:1988a], [Minguez:1988b]. Note that so far we have considered differen-
tial forms with values in some Euclidean R-module V . We can consider also a situation when
there is a vector bundle p : E →M , hence there is given the commutative diagram

NDn

π
��

ω // E

p

��
N

φ
//M.

(226)
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Definition 6.16 Let M and N be the microlinear spaces, let p : E → M be the vector bundle,
and let φ : N → M be some morphism. A differential n-φ-form or differential n-form
with values in vector bundle p relative to φ is the map ω : NDn

→ E such that for every
i ∈ {1, . . . , n}, γ ∈MDn

, λ ∈ R:

1. (n-homogeneity) ω(λ ·i γ) = λω(γ),

2. (alternation) ω(Σ(γ)) = sgn σ · ω(γ),

3. ω(γ) ∈ Eφ(0,...,0).

The object of differential n-φ-forms with value in p is denoted as An(N
φ
−→M,p) or An(M,p). For

p :M ×R→M (i.e. the trivial bundle) we use the notation AnM instead of An(M,M ×R→
M). Now we would like to define the notion of exterior derivative for differential n-forms with
values in vector bundle. However, we cannot apply the definition (217), because in case of
n-φ-forms although

γi0(d1, . . . , dn) = γ(d1, . . . , di−1, 0, di, . . . , dn) (227)

is an n-microcube centered at γ(0, . . . , 0), the component

γi1(d1, . . . , dn) = γ(d1, . . . , di−1, hi, di, . . . , dn) (228)

is not. Thus, we have to make a parallel transport of ω(γi1) by the infinitesimal distance hi
back along the direction of tangent vector φ ◦ γi, where γi(d) = γ(0, . . . , 0, d, 0, . . . , 0) is a vector
tangent to N at γ(0, . . . , 0). This means that instead of ω(γi0)− ω(γ

i
1) we have to consider the

difference ω(γi0)− q
∇
(φ◦γ,hi)

(ω(γi1)). Clearly, this involves the use of connection.

Definition 6.17 The exterior covariant derivative or exterior covariant differential is
the map

d∇ : An(N
φ
−→M,p)→ An+1(N

φ
−→M,p), (229)

such that

h1 · . . . · hn+1 · d∇ω(γ) =
n+1∑

i=1

(−1)ih1 · . . . · ĥi · . . . · hn+1(ω(γ
i
o)− q

∇
(φ◦γi,hi)

(ω(γi1))). (230)

We will see that the exterior covariant derivative of some forms gives familiar geometrical notions.
Let’s begin with the torsion.

Definition 6.18 The identity 1-form with value in tangent bundle of M

MD

π
��

θ //MD

π
��

M
idM //M

(231)

is called the canonical form.

Proposition 6.19

d∇θ(γ) = C(γ)− C(Σ(γ)). (232)
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Proof. h1 ·h2 ·d∇θ(γ) =
∑2

i=1 h1 ·h2(θ(γ
i
0)−θ

′(γi1)) = −h2(θ(γ
1
0)−θ

′(γ11))+h1(θ(γ
2
0)−θ

′(γ21)),
where γ10(d) = γ(0, d), γ11(d) = γ(h1, d), γ

2
0(d) = γ(d, 0), γ21(d) = γ(d, h2), θ(γ

1
0) = γ10 and

θ(γ20) = γ20 , thus, using the equation 133,

θ′(γ11) = q∇(φ◦γ1,h1)(γ
1
1) = q∇(γ1,h1)(γ

1
1) = q∇(γ1,h1)(γ(h1, ·)) = V (γ)(h1, ·) = γ(0, ·)+h1·C(γ), (233)

so

− h2(θ(γ
1
0)− θ

′(γ11)) = −h2(γ
1
0 − (γ10 + h1C(γ)) = h2h1C(γ). (234)

On the other hand, we get

θ′(γ21) = q∇(φ◦γ2,h2)(γ
2
1) = q∇(γ,h2)(γ(·, h2)) = V (γ)(·, h2) = γ(·, 0) + h2 · C(Σ(γ)), (235)

thus

h1 · h2 · d∇θ(γ) = h2 · h1(C(γ)− C(Σ(γ)). (236)

Cancelling h1 · h2 on both sides, we get

d∇(γ) = C(γ)− C(Σ(γ)). (237)

�

Corollary 6.20 We have d∇θ((Y ·X)(m)) = T (X,Y )(m), an call d∇θ the torsion form of the
connection ∇ and denote it as Θ.

Remark 6.21 The connection map C : ED → E is an element of A1(E
p
−→ M,p), so it is an

1-p-form called the connection form denoted as ω.

ED

��

ω // E

p

��
R p

//M.

(238)

Definition 6.22 The covariant exterior derivative of connection form is called the curvature

form as is denoted as

Ω := d∇ω. (239)

Proposition 6.23

Ω = C ◦ CD − C ◦ CD ◦ Σ. (240)

Definition 6.24 Let Ω be the curvature form. A curvature or curvature tensor or Riemann-

Christoffel tensor is the map

R :MD ×M MD ×M MD →MD (241)

such that

R(X,Y, Z)(m) = Ω((Z · Y · Z)m), (242)

where

(Z · Y ·X)m(d1, d2)(d3) := (Zd3 ◦ Yd2 ◦Xd1)(m). (243)
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Proposition 6.25

R(X,Y, Z) = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ](Z). (244)

The infinitesimal proof of this proposition (such that is performed only on infinitesimals) is very
long, althrough not complicated, and the same is in the case of the proposition 6.23. We will
ommit them, refering for details to the [Lavendhomme:1996]. However, we will turn back to these
propositions later, when introducing the coordinates, and then we will show that such defined
curvature tensor and curvature forms are really the same objects as classical differential objects
defined under the same name (in particular, we will construct then also the coordinatized version
Rijkl of the curvature tensor R using the infinitesimal parallel transport along the infinitesimal
parallellogram).

Corollary 6.26 We have defined covariant derivative by the connection form

∇XY := ω(Y ·X), (245)

torsion by the torsion form
T (X,Y ) := Θ(Y ·X), (246)

and curvature by the curvature form

R(X,Y, Z) := Ω(Z · Y ·X), (247)

where Θ and Ω were defined as
Θ := d∇θ,
Ω := d∇ω,

(248)

where d∇ is an exterior covariant derivative and θ : TM → TM is a cannonical form.

It is important to note, that Nishimura in [Nishimura:1997b] and [Nishimura:1998], using his
calculus of three-dimensional strong infinitesimal difference, has proven the Bianchi identities:

d∇Θ = Ω ∧ θ, (the first Bianchi identity)
d∇Ω = d∇d∇ω = 0. (the second Bianchi identity)

(249)

The second Bianchi identity is true only for horizontal vectors taken into account, because they
are exactly the same as those which can be used to make an infinitesimal parallel transport along
the tangent bundle of microlinear space. In classical differential geometry the second Bianchi
identity is also given for the horizontal vectors only (see [Kobayashi:Nomizu:1963]).

7 Axiomatic structure of the real line

In this section we will develop the axiomatic structure of the real line (modelled by the ring R
with certain axioms imposed) to fit as precisely as possible to the natural presumptions that we
make about real line, staying, however, in the category-theoretic and intuitionistic universe of
discourse. So far we have established two axioms (the former was given implicitly):

Axiom 0 < R,+, ·, 0, 1 > is a commutative ring with unit.

Axiom 1 (Kock-Lawvere) ∀g ∈ RD ∃!b ∈ R ∀d ∈ D g(d) = g(0) + d · b, where
D := {x ∈ R|x2 = 0} ⊂ R.
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If we want to develop the differential geometry, the Kock-Lawvere axiom should be given in
generalized version.

Axiom 1 (generalized Kock-Lawvere) For any Weil algebra R ⊗W there is an R-algebra
isomorphism R⊗W ∼= RSpecR(R⊗W ).

It is quite obvious that we would like to concern such rings R which are not trivial.

Axiom R 1 (Non-triviality) ¬(0 = 1).

We have imposed that there is such D ⊂ R that d ∈ D ⇒ d2 = 0, so the important question is:
are there some not-nilpotent elements, such that x2 6= 0, x · y 6= 0, or even x · y = 1? (Note that
these conditions are not equal, because we have 0 α∨¬α for any naive-set-theoretical statement
about elements of ring R.)

Definition 7.1 An object of invertible elements in R is an object

Inv R := {x ∈ R|∃y ∈ R xy = 1}. (250)

To make the properties of R closer to these of the real line,21 we will impose that it is a local
ring, i.e. that the following axiom holds.

Axiom R 2 (Local ring)

∀x ∈ R x ∈ Inv R ∨ x− 1 ∈ Inv R. (251)

We have established locality, hence it is the right moment to introduce the ordering on R, in aim
to compare its elements. Again, it should be done gently, keeping an eye on the intuitionistic
logic of statements.

Axiom R 3 (Order) On R is given the order relation < such that, for every x, y ∈ R,

1. < is transitive, i.e. (x < y ∧ y < z)⇒ x < z,

2. < is compatible with the ring structure, in sense that

(a) 0 < 1,

(b) (0 < x ∨ x < 0) ⇐⇒ x ∈ Inv R,

(c) 0 < x⇒ ∃y (x = y2).

Note that the order < cannot be antisymmetric (∀x, y ∈ R x < y ∨ y < x), because it would
imply D = {0}, what is in contradiction with the Kock-Lawvere axiom. For any particular x,
the order < creates two objects of R:

Lx := {y ∈ R|y < x},
Ux := {y ∈ R|x < y}.

(252)

21Note one crucial issue, that there is no platonic real line, the proper line – we just want to express some our
ideas.
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R is not decidable, what means that for any statement α about elements of R we have 0 α∨¬α.
Thus, we have to say that

0 (y < x) ∨ ¬(y < x),
0 (y < x) ∨ (x < y).

(253)

This means that R cannot be decomposed into union of Lx and Ux:

R 6= Lx ∪ Ux. (254)

So, for a given x we cannot say that y ∈ Ux ∨ y ∈ Lx. The situation imposed on the ring R by
introduction of the order relation can be drawn as follows.

) (
< x > x

R = (255)

We may try to fill this gap by introducing the partial order relation ≤.

Axiom R 4 (Preorder) On R is given the preorder relation ≤ such that, for every d ∈ D and
x, y, z ∈ R,

1. ≤ is transitive and reflexive, i.e.

(a) (x ≤ y ∧ y ≤ z)⇒ x ≤ z,

(b) x ≤ x.

2. ≤ is compatible with the ring structure, in sense that

(a) 0 ≤ 1 ∧ ¬(1 ≤ 0),

(b) (0 ≤ x ∧ 0 ≤ y)⇒ 0 ≤ x · y,

(c) x ≤ y ⇒ x+ z ≤ y + z,

3. 0 ≤ d ∧ d ≤ 0.

This axiom gives the picture

|
|

≤ x

≥ x
R =

(256)

We may make now axioms R3 and R4 to be compatibile with each other.

Axiom R 5 (Compatibility of orderings) 1. x < y ⇒ x ≤ y,

2. ¬(x < y ∧ y ≤ x).



 7. Axiomatic structure of the real line

and get the picture22

R =





|
|

≤ x

≥ x

) (
< x > x

(257)

Using the partial order relation, we may define now the closed interval:

[a, b] := {x ∈ R|a ≤ x ≤ b}. (258)

From the axiom R4.3, we have that
D ⊂ [0, 0]. (259)

Moreover, we have [a + d1, b + d2] = [a, b]. In particular, it means that if x ∈ [a, b], then
x+ d ∈ [a, b]. This means, that if we have defined some f(x) on x ∈ [a, b], then f(x+ d) given
by the Kock-Lawvere axiom is also defined on [a, b]. Using the order relation, we can define now
the open interval:

(a, b) := {x ∈ R|a < x < b}. (260)

From the compatibility axiom we get

(a, b) ⊆ [a, b]. (261)

It should be now noticed, that in previous sections we have developed axiomatic SDG using
implicitly one more assumption, namely the existence of the object natural numbers N ⊂ R,

Axiom N 1 (Natural numbers)

∀n ∈ N ∃y ∈ R n = y, (262)

defined by the Peano axioms,

Axiom N 2 (Peano axioms) 1. 0 ∈ N ,

2. ∀x ∈ R (x ∈ N ⇒ x+ 1 ∈ N),

3. ∀x ∈ R ¬(x ∈ N ∧ x+ 1 = 0),

such that R is Archimedean ring,

Axiom N 3 (Archimedean ring)

∀x ∈ R ∃n ∈ N x < n, (263)

22Note that the axiom R5 could be given in a different way, for example in [Goldblatt:1979] and
[Grinkevitch:1996a], [Grinkevitch:1996b] it is given as follows:

Axiom R 5 (Compatibility of orderings – alternative version) 1. ¬(x < y) ⇒ y ≤ x,

2. (x < y ∧ y ≤ z) ⇒ x < z.

In fact, we work with intutionistic logic where familiar laws of double negation and excluded middle do not
hold, so we may give a range of slightly different axiomatics, each one expressing slightly different precognitions.
Such slightly different axiomatics may lead sometimes to slightly or not-so-slightly different conclusions, so it
is important, while working intuitionistically, to check the equality or non-provability of equality of statements
which seem to be similar.
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and for every statement φ(n) involving n ∈ N we have

Axiom N 4 (Induction)

φ(0)⇒ ((∀n ∈ N φ(n)⇒ φ(n+ 1))⇒ φ(n)). (264)

At the begining of this chapter it was said that existence of such infinitesimal objects like D in
R neglects that R can be a field in classical meaning of this word. Now we should turn back to
this theme, because there are really three notions of a field:

1. R is a geometric field if ∀x ∈ R x ∈ Inv R ∨ x = 0,

2. R is a field of fractions if ∀x ∈ R ¬(x ∈ Inv R)⇒ x = 0,

3. R is a field of quotients if ∀x ∈ R ¬(x = 0)⇒ x ∈ Inv R.

They are equivalent when we use the Boolean logic, but nonequivalent when the double negation
principle and the law of excluded middle do not hold, so in the intuitionistic logic. It means that
in intuitionistic universe of discourse we can choose one of these definitions as most important,
depending on this what we want to achieve.23 Note now, that there are two ways of construction
of real numbers: through the equivalence classes of sequences of rationals (this construction is
known as Cauchy reals RC) or, alternatively, by the sequences of splitting cuts (such construc-
tion gives the object called the Dedekind reals RD). It can be shown (see [Johnstone:1977])
that there is an ‘inclusion’ (a monic map) RC  RD in every such topos that both constructions
may be performed (the minimal condition is the existence of natural numbers object N in such
topos24). It can be also shown, that RD, if it exists, is a field of fractions (see [Mulvey:1974]).
In topos Set we have RD ∼= RC , and all three notions of field coincide under the gently care of
classical logic. More generally, it can be proven that RC ∼= RD if and only if the topos is Boolean
(again, see [Johnstone:1977] for details). In our situation of ring R modelled in some cartesian
closed category or topos, we have such elements d ∈ D ⊂ R for which 0 d = 0 ∨ ¬(d = 0), thus
R has to be the field of quotients, and cannot be modelled (non-trivially) in any Boolean topos.
This means also that R 6∼= RD.

Axiom R 6 (Field of quotients)

∀x1, . . . , xn ∈ R ¬(
n∧

i=1

(xi = 0))⇒ (
n∨

i=1

(xi ∈ Inv R)). (265)

(The symbols
∧

and
∨

denote the multiple conjunction and alternative, respectively.) We will
moreover assume that R is a formally real ring.

Axiom R 7 (Formally real ring)

∀x1, . . . , xn ∈ R
n∨

i=1

(xi ∈ Inv R)⇒

(
n∑

i=1

x2i

)
∈ Inv R. (266)

23Of course, as says Mulvey in [Mulvey:1974], the answer to the question of which is the right definition to

take for a field is that the question itself is not well-posed.
24The natural number object N in topos is not the same as the object of natural numbers N axiomatically

introduced in SDG. These two notions may coincide under the interpretation (N can be the interpretation of N),
but we should resist and refuse identification of them, because they live in two different worlds.
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Proposition 7.2

∀x ∈ R x < 0 ∨ (∀n ∈ (N − {0}) −
1

n
< x <

1

n
) ∨ x > 0. (267)

Proof. If x ∈ R, then x ∈ Inv R∨x−1 ∈ Inv R, what means that (x < 0∨x > 0)∨(x < 1∨x >
1), what is equal to x > 0∨ x < 1. From this, for any n ∈ (N −{0}), we get x < y ∨ y < x+ 1

n .
�

If we will define the object of infinitesimals △△ as

△△ := {x ∈ R|∀n ∈ N −
1

n+ 1
< x <

1

n+ 1
} ⊂ R, (268)

then we may say, that the equation (267) provides the decomposition of R:

R = R− ∪△△∪R+, (269)

where R− := {x ∈ R|x < 0} and R+ := {x ∈ R|x > 0}. If we will impose that R is Pythagorean
ring,

Axiom R 8 (Pythagorean ring)

∀x1, . . . , xn ∈ R
(
sumn

i=1x
2
i

)
∈ Inv R⇒ ∃



√√√√

n∑

i=1

x2i


 ∈ Inv R, (270)

then we can prove the following proposition

Proposition 7.3 △△ is a maximal ideal in R.

Proof. [Grinkevich [Grinkevich:1996a]] Let’s take d ∈ △△, r ∈ R and ε := 1
n+1∀n ∈ N (note

that ε is defined for every n ∈ N). This means that ε > 0 and −ε < d < ε. By the equation
(267) there are three cases:

1. r > 0, so r ∈ Inv R. This means that ε/r > 0, thus −ε/r < d < ε/r and −ε < d · r < ε.
So, d · r ∈ △△,

2. r < 0 (this case is proven similarly),

3. −ε < r < ε. ε − r > 0 and ε − d > 0, so (ε − r)(ε − d) = ε2 − rε − dε + rd > 0.
We will define ε′ := ε2 − rε − dε. We have dr > −ε′, ε2 > 0 and εr, εd ∈ △△ (because
d, r ∈ △△). This implies that ε′ > 0. From the other hand ε(ε − d)/(ε + d) > 0, so
ε(ε − d)/(ε + d) > r, and ε′ = ε2 − rε − dε > dr. Thus, we have −ε′ < dr < ε′.
At the end we will show that for any ε′ we can find proper ε. We have a polynomial
ε2 − ε(d + r) − ε′ = 0. R is Pythagorean ring, so we can use the standard calculation
method, and receive ε = (d + r +

√
(d+ r)2 + 4ε′)/2 > 0. This means that the quantifier

∀n ∈ N promotes from ε to ε′, and we have finally ∀n′ ∈ N − 1
n′ < d · r < 1

n′ , so d · r ∈ △△.

From the equation (267) we have that R = Inv R ∪ △△, thus any other ideal with nilpotent
elements which contains △△ is equal to R. Hence, △△ is a maximal ideal. �
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Thus, we have the sequence of inclusions

D ⊂ D2 ⊂ . . . ⊂ Dn ⊂ . . . ⊂ D∞ ⊂ [0, 0] ⊂ △△, (271)

and we can write
⊢ x < 0 ∨ x ∈ △△ ∨ x > 0. (272)

but we still have the undecidability

0 x < 0 ∨ x > 0, (273)

and
0 x < r ∨ r < x, (274)

and
0 x < r ∨ x = r ∨ x > r. (275)

△△ is a maximal ideal of R, so we can just divide R by △△ and work with the elements of R/△△.
However, this would hide from us all infinitesimal arithmetics, which is one of main advantages
of SDG. Thus, we will go different way, ensuring the decidability of wide range of sentences by
introducing the notion od apartness x#y, which will be a useful substitute for not-very-useful
assertion ¬(x = y), because it will give us an ability to make use from the decidable sentence
(272) instead of not decidable (275).

Definition 7.4 We say that a, b ∈ R are apart and write a#b, if a− b ∈ Inv R.

Corollary 7.5
a#0⇒ a ∈ Inv R. (276)

Proposition 7.6 For all a, b, c ∈ R:

1. a = b⇒ ¬(a#b),

2. ¬(a = b) ⇐⇒ a#b,

3. a#b⇒ ((a#c) ∨ (b#c)),

4. a#b⇒ (a+ c)#(b+ c),

5. (a#c) ∧ (c#0)⇒ a · c#b · c,

6. a · b#0⇒ (a#0 ∧ b#0),

7. a+ b#0⇒ (a#0 ∨ b#0),

8. a · b#c · d⇒ (a#c ∨ b#d).

Proof.

1. a = b⇒ a− b = 0⇒ ¬(a− b ∈ Inv R)⇒ ¬a#b,

2. ¬(a = b) ⇐⇒ ¬(a− b = 0) ⇒ (a− b ∈ Inv R) ⇒ a#b (last ⇒ by the axiom R6), on the
other hand a#b⇒ (a− b ∈ Inv R)⇒ ¬(a− b = 0),

3. a#b ⇒ (a − b ∈ Inv R). R is a local ring, thus x ∈ Inv R ∨ r − x ∈ Inv R for any x ∈ R
and r ∈ Inv R. Taking r = a− b and x = a− c, we get a− c ∈ Inv R ∨ c− b ∈ Inv R, thus
a#c ∨ b ∨ c.
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4. ∧(a#b)⇒ ¬(a < b ∨ a > b)⇒ ¬(a ∧ b) ∧ ¬(a > b)⇒ (a ≥ b ∧ a ≤ b).

5. a#b ⇐⇒ (a < b ∨ a > b)⇒ (a+ b < b+ c ∨ a+ c > b+ c)⇒ (a+ c#b+ c).

6. (a#b∧ c#0)⇒ ((a < b∨ a > b)∧ (c > 0∨ c < 0)). For c > 0 we get (ac < bc∨ ac > bc)⇒
ac#bc. Similarly for c < 0.

7. ab#0⇒ (a#0∨ab#a). If a#0 then a−1#0∧(ab)a−1#0, so b#0. If ab#a, then a(b−1)#0.
From 1#0 we get a#0 ∨ b− 1#0. If b#0, then b−1#0 and (ab)b−1#0, a#0. Similarly for
b− 1#0.

8. a+ b#0⇒ b#− a⇒ (b#0 ∨ −a#0).

9. From ab− cd#0 and a(b− d) + d(a− c)#0 follows that b− d#0 ∨ a− c#0.

�

8 Coordinates and formal manifolds

So far we have developed the system of differential geometry by fully coordinate-free method,
what is admirable, because it corresponds to natural feelings of many geometers that coordinates
are foundationally irrelevant. However, if we would like to establish more direct link between
classical and differential geometry, it is unavoidable to introduce the coordinates. Recall that
we have defined the vector space as such fibre Ex of a vector bundle E, which is a Euclidean
R-module, i.e. an R-module which satisfies the Kock-Lawvere axiom:

∀t ∈ EDx ∃!(v, u) ∈ Ex × Ex ∀d ∈ D t(d) = u+ d · v. (277)

(In particular, it means that RX is a vector space for any X.) Now we would like to introduce
a basis in Ex, to have an ability to decompose any vector into the sum of countable (or even
finite) elements. This would be done by maps from natural numbers.

Definition 8.1 A finite cardinal is an object

[n] := {m ∈ N |m < n+ 1} ⊂ N. (278)

An object A is said to be finite if these exists an epic arrow (‘surjection’) [n] ։ A.

Definition 8.2 A collection of vectors of vector space V is a map X → V from some decidable
object X. A finite collection of vectors of vector space V is a map [n] ։ V given by

N ⊃ [n] ∋ {1, . . . , n}
{v1,...,vn}

// // v ∈ V. (279)

These two definitions ensure that we will work with decidable sequences of vectors (however,
their values still may not be decidable!), what corresponds to our intuition of a ‘vector’ as being
something decomposable into decidable directions. Formally, a finite collection of vectors is a map
[n] ։ V , thus an object {v1, . . . , vn} ∈ V

[n], or an element of V at stage [n] : {v1, . . . , vn} ∈[n] V .
We will however ommit the supscript writing just {v1, . . . , vn} ∈ V or even v1, . . . , vn, in the
same manner as we did it earlier with the collections λ1, . . . , λn ∈ R.

Definition 8.3 A finite linear combination of vectors is a sum
∑n

i=1 vi, where vi are the
(‘elements of ’) finite collection of vectors {v1, . . . , vn} ∈ V .
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Definition 8.4 A finite collection of vectors {v1, . . . , vn} ∈ V is said to

• generate the module V if

∀v ∈ V ∃λ1, . . . , λn ∈ R
n∑

i=0

λivi = v, (280)

• be linearly independent in the module V if

∀λ1, . . . , λn ∈ R

(
n∑

i=0

λivi = 0⇒ ∀i λi = 0

)
, (281)

• be a finite basis if it generates the module V and is linearly independent in V . A number
n is then called the dimension of a basis.

Definition 8.5 An apartness relation # on vector space V is such that for any a, b, c ∈ V

1. a = b⇒ ¬(a#b),

2. ¬(a = b) ⇐⇒ a#b,

3. a#b⇒ (a#c ∨ c#a).

Definition 8.6 We say that a finite collection of vectors {v1, . . . , vn} ∈ V is

• strongly linearly dependent if

∃λj#0
∑

i

λivi = 0, (282)

• mutually free if

∃λj#0⇒
∑

i

λivi#0. (283)

Proposition 8.7 If finite collection of vectors is linearly independent, then it is mutually free.

Proof. In the intuitionistic logic we have the rule (α ⇒ β) ⇒ (¬β ⇒ ¬α). By taking
α := (

∑i
i=0 λivi = 0) and β := (∀jλj = 0), we have ((

∑i
i=0 λivi = 0) ⇒ (∀jλj = 0)) ⇒

(¬(∀jλj = 0) ⇒ ¬(
∑i

i=0 λivi = 0)) ⇒ ((∃jλj#0) ⇐⇒ (
∑n

i=1 λivi#0)). The last step is done
using the fact that ¬(a = b) ⇐⇒ (a#b). �

Corollary 8.8 A basis in V is a finite collection of mutually free vectors such that every vector
in V can be expressed as a finite combination of vectors from this collection.

Proposition 8.9 Any two basis in V have the same dimension.
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Proof. [Grinkevich [Grinkevich:1996a]] Let {v1, . . . , vp} be a basis in V , and let p ≥ 1. We
should show that if any other basis {w1, . . . , wr} has r elements, then r ≤ p and p ≤ r. We may
write

w1 = c1v1 + . . .+ cpvp, (284)

where c1, . . . , cp ∈ R. We have w1#0, because {w1, . . . , wr} are mutually free. Assuming that

∀ici = 0 leads to contradiction, so true is ¬(
p∧
i=1

ci = 0). From the axiom R6 we get that ∃ici#0.

Let’s take that i = 1, so c1#0. Then v1 lays in the space generated by a finite collection
{w1, v2, . . . , vp}. We will show that this collection is a basis of V , i.e. they are mutually free.
Consider a linear combination λ1w1 +

∑p
i=2 λivi such that ∃iλi#0. Using (284) we get

λ1c1v1 +

p∑

i=2

(λi + ciλ1)vi. (285)

There are two cases for λ1:

1. λ1#0. In this situation λ1c1#0, because c1#0.

2. λ1 ∈ △△. In this situation λ1ci ∈ △△, thus λi + ciλ1#0.

In any case, under assumption of mutual freedom of {v1, . . . , vp}, we get apartness of (285),
hence mutual freedom of {w1, v2, . . . , vp}. The rest part of proof is performed by an induction.
Inverse inequality is proven similarly. �

Apartness is a strong notion which ‘cuts off’ infinitesimals from the equations, making them
decidable (in both senses – of intuitionistic logic and of linear algebra) and it can be used to
perform constructive proofs. We have introduced basis in R-modules, but we would like also
to have local isomorphism between any tangent or vector bundle on microlinear space and Rn.
Thus, we would like to express categorially the notion of local diffeomorphism. To achieve it, we
should take some open covering of N by a family of Nα ⊆ N diffeomorphic to open subobjects
of Rn, i.e. ⊔αNα ։ N and Nα  Rn.

Definition 8.10 An arrow f : M → N between any two objects M and N is formal étale if
for any small object SpecRW and the canonical map

1
0
−→ SpecRW, (286)

called the base point of small object, the diagram

MSpecRW

M0

��

fSpecRW

// NSpecRW

N0

��
M1

f
// N1

(287)

is a pullback.

Proposition 8.11 Arrows Dn
∞  Rn and Inv R Rn are formal étale.

Proof.

1. Straight from the fact that the product of formal étale arrows is formal étale.
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2. First we will prove that

Inv W

��

// //W ∼= Rn

π1
��

Inv R // R

(288)

is a pullback (whereW is a Weil algebra). Let us take some {v1, . . . , vn} = v ∈W , such that
v1 ∈ Inv R. It means that we can divide v by v1, achieving {v1, v2, . . . , vn}. Now, let us take
some other vector u ∈ W , such that u is in ideal of W , for example u = −{0, v2, . . . , vn}.
This means that un = 0 and v = 1−u. Hence, we get (1−u) · (1+u+u2+ . . .+un+1) = 1,
which means that v ∈ Inv R, thus (288) is a pullback. Now we can use the generalized
Kock-Lawvere axiom and the fact that (−)X preserves limits, and get that the diagram

Inv (RSpecRW )

��

// // RSpecRW

��
Inv R // R

(289)

is a pullback, hence a pullback also is

(Inv R)SpecRW

��

// // RSpecRW

��
Inv R // // R.

(290)

�

Proposition 8.12 Class D of formal étale arrows has following properties:

1. D is closed under compositions and has all isomorphisms.

2. Inverse arrows of elements of D belong to D.

3. If v ∈ D and the diagram

·

v

��

// ·

u

��
· g

// // ·

(291)

is a pullback, then u ∈ D.

4. Epic and monic composites from epi-mono-factorization of an arrow from D belong to D.

5. If p is epic, p ∈ D and g ◦ p ∈ D, then g ∈ D.

Proposition 8.13 If M is microlinear and p : M ։ N is an regular epic25 and formal étale,
then N is microlinear. If N is microlinear and p : M  N is monic and formal étale, then M
is microlinear.

We will not prove here those two propositions, refering reader in first case to [Kock:1981] and in
second to [Kock:Reyes:1979a].

25A regular epic is a such epic that is a coequalizer.
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Definition 8.14 If U  Rn is monic and formal étale, then U is called an n-dimensional

model object.

Definition 8.15 A formal n-dimensional manifold is such M that there exists a regular
epic arrow ⊔iUi ։ M (i.e. a covering family by jointy epic class of arrows) for a family of
monic and formal étale maps Ui M such that every Ui is n-dimensional model.

Proposition 8.16 1. Any formal manifold is microlinear.

2. If M is formal manifold, then TM =MD is formal manifold.

3. If U is model object, then TU = UD is a formal manifold.

4. If M is n-dimensional formal manifold, then TxM ∼= Rn for every x ∈M .

Proof.

1. Straight from the proposition 8.13 and the definition of a formal manifold, by ‘tracing back’
microlinearity from Rn by the monic formal étale, and ‘pushing forward’ by regular epic
formal étale.

2. Comes from easy to prove fact that if outside and right rectangles in the diagram

· //

��

· //

��

·

��
· // · // ·

(292)

are pullbacks, then left square is pullback too. So, as the functor (−)X preserves pullbacks,
the top square in the diagram

MSpecRW
SpecRW

M00

��

fSpecRWSpecRW

// NSpecRW
SpecRW

N00

��
MSpecRW

M0

��

fSpecRW

// NSpecRW

N0

��
M1

f
// N1

(293)

is a pullback.

3. By the virtue of proof above and the proposition (8.13).

4. From (287) we have the pullback

X

��

  **
UD

��

// (Rn)D ∼= Rn ×Rn

π1
��

U // // Rn.

(294)
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π1 is unique by the Kock-Lawvere axiom, hence we get the product diagram

X

����

��
UD

!!~~
U // // Rn,

(295)

thus UD ∼= U × Rn. For a given x we get UDx
∼= Rn. The transition to TxM is given by

a regular epic ⊔i(U
D
x )i ։ TxM (which is formal étale by the second point of the recent

proof).

�

Definition 8.17 Let {Ui
ϕi−→ M} be a covering of formal manifold M by a family of local étale

monic arrow ϕi, where Ui are model objects. A pair (Ui, ϕi) is called a local card on M .

Consider now two local cards: (U,ϕ) and (V, ψ). Recall that we work in some topos, so we have
a pullback

U ∩ V //

��

U
��
ϕ

��
V // ψ //M

(296)

and epi-mono-factorization

U // ϕ //

""

M

||
ϕ(U).

(297)

From the properties of class of étale maps, we get that U ∩ V →M is a formal étale and monic
arrow, and ϕ−1 : ϕ(U)→ U is formal étale isomorphism. So, if U ∩ V is not empty, then there
is a change of model map ϕ ◦ ψ : V → U which is monic and formal étale.

Definition 8.18 We say that microlinear space is parallelizable if there is a fibrewise R-linear
isomorphism ϕ, such that the diagram

MD

!!

ϕ //M × V

{{
M

(298)

commutes for some R-module object V .

Corollary 8.19 Any n-dimensional formal manifold M is a microlinear space parallelizable by
the R-module object Rn trough the local card. Every such parallelization is called a local coor-

dinate system.

For now on we will simplify the notation for finite collections of vectors denoting (v1, . . . , vn) :=
{v1, . . . , vn}. Consider a local card (U,ϕ), where U ⊆ Rn and ϕ−1(m) = (0, . . . , 0) for some
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m ∈ M . For some tangent vector v ∈ TmM (thus, such v that v : D → M and v(0) = m)
we have that ϕ−1 ◦ v : D → U is a vector tangent to U with a base point (0, . . . , 0). We have
TU ∼= U ×Rn and ϕ−1 ◦ v(d) = (0, . . . , 0) + d(v1, . . . , vn) for (v1, . . . , vn) ∈ R

n. We will denote
as ∂i or ∂

∂xi
or ei such vectors that

∂i(d) = (0, . . . , 0) + d · (0, . . . , 0,
i
1, 0, . . . , 0). (299)

Vectors ∂i ◦ ϕ form basis (∂1 ◦ ϕ, . . . , ∂n ◦ ϕ) in TmM . We will usually abuse this notation by
writing just (∂1, . . . , ∂n).

Definition 8.20 Two vectors a, b ∈ Rn are said to be apart, and denoted a#b if for some i
their coefficients ai, bi ∈ R are apart ai#bi in the sense of the apartness on R.

Proposition 8.21 Apartness on Rn defined above is the same apartness which was defined for
any R-module V .

Proof. It suffices to check the conditions given for apartness on V .

1. Obvious.

2. In one direction it is obvious. Second direction comes straight from the axiom R6.

3. Let a, b, c ∈ Rn and a#b, i.e. exists such i that ai#bi. Then we have ai#ci ∨ ci#bi, thus
a#c ∨ c#a.

�

Corollary 8.22 We will say that vectors u, v ∈ TmM are apart if ϕ−1 ◦u#ϕ−1 ◦v in T(0,...,0)U .

Now we would like to introduce a dual basis in the space of the (k-)linear forms. It seems easy,
but we have also to establish a direct link between basis from vector space and the basis from
the space of linear forms (covector space). In classical linear algebra it is done by introducing
the Kronecker delta symbol:

δij :=

{
0 ⇐⇒ i 6= j,
1 ⇐⇒ i = j,

(300)

and by defining the dual basis {f1, . . . , fn} of the space of linear forms as

f i(ej) := δij , (301)

where ej are the elements of the basis of the corresponding vector space. However, we are working
in the smooth and intuitionistic framework, and so we should not use such functions like (300).
Thus, we have to ‘emulate’ intuitionistically the Kronecker delta by something smooth, imposing
the following axiom.

Delta Axiom
There exists a delta function δ : R→ R such that

δ :=

{
x = 0 ⇒ δ(x) = 1,
x ≥ 1 ∨ x ≤ −1 ⇒ δ(x) = 0.

(302)

and defining
δij := δ(i− j). (303)
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Now the definition (301) of the basis f i in the space of linear forms is correct. We could propose
an alternative definition

δ :=

{
x = 0 ⇒ δ(x) = 1,
x#0 ⇒ δ(x) = 0,

(304)

but it would be incorrect, since such δ(x) would not be smooth, as it would have not enough
‘space’ in order to move smoothly from 0 in 0 to 1 in #0. The infinitesimal distance is undecid-
able, but it does not mean that it is large!

With the definitions given above, we may, systematically using the apartness relation, build
the system of intuitionistic linear algebra. However, in this work we are interested only in
expressing vectors and forms in bases in coordinate-involved manner, so for more exhaustive de-
velopment of intuitionistic linear algebra we refer reader to the works of Heyting [Heyting:1941],
[Heyting:1971] and Grinkevich [Grinkevich:1996a], [Grinkevich:1996b]. As an application of in-
troduced above notions of local coordinates, basis, and elements of intuitionistic linear algebra,
we will now ‘coordinatize’ the connection and curvature on a formal manifold.

Consider n-dimensional formal manifold with connection ∇ on the tangent bundle MD → M .
For some model object U  Rn the tangent bundle is modeled by UD → U , and connection
becomes a map

UD ×U U
D ∼= U ×Rn ×Rn

∇
−→ U ×Rn ×Rn ×Rn ∼= UD×D. (305)

This map is completely determined by the last component, because ∇ is a section of

K : U ×Rn ×Rn ×Rn → U ×Rn ×Rn (306)

such that

K : (u, v1, v2, v3) 7→ (u, v1, v2). (307)

For (305) we can write the operations ⊕ and + in (UD)D ∼= UD×D as

(u, v′1, v
′
2, v

′
3)⊕ (u, v′′1 , v

′′
2 , v

′′
3) = (u, v′1 + v′′1 , v

′
2 + v′′2 , v

′
3 + v′′3) (308)

and

(u, v1, v
′
2, v

′
3) + (u, v1, v

′′
2 , v

′′
3) = (u, v1, v

′
2 + v′′2 , v

′
3 + v′′3). (309)

The multiplication by scalars is given similarly. We will define the last component of an image
of ∇ as ∇̄, i.e.

∇(u, v1, v2) =: (u, v1, v2, ∇̄(u, v1, v2)). (310)

If the affine connection is symmetric, then ∇̄(u, v1, v2) is bilinear in v1, v2. We define the
components of connection or Christoffel symbols as

Γℓij := ∇̄(
ℓ
·,
i
·,
j
·). (311)

This means that

Γkij(x) = ∇̄(x, ei, ej)(ek). (312)

A pair of vectors v1, v2 at base point u may be denoted as a map D(2)→ U such that

(d1, d2) 7→ u+ d1v1 + d2v2. (313)

The connection ∇ associates to this map a map in D ×D → U given by

(d1, d2) 7→ u+ d1v1 + d2v2 + d1d2∇̄(u, v1, v2) = (u+ d1v1) + d2 · (v2 + d1∇̄(u, v1, v2)). (314)
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The vector v2+d1∇̄(u, v1, v2) is a result of parallel transport of v2 along v1 by d1, while u+d1v1
is its base point. The connection map C was defined as a difference between a vector in UD×D ∼=
U ×Rn ×Rn ×Rn and its horizontal part:

(u, v1, v2, v3) 7→ v3 − ∇̄(u, v1, v2). (315)

We have expressed ∇ and C in coordinates, so we can do the same with curvature tensor defined
as

Ω := C ◦ CD − C ◦ CD ◦ Σ. (316)

Considering two vectors v1, v2 in base point u, we can take some vector v3 and transport it
parallely, first along v1 by d1 and next along v2 by d2, or first along v2 by d2 and next along
v1 by d1. The difference between result of these two transports is exactly the action of curva-
ture expressed in (316). We can express now (316) using coordinates, particularly using (314).
Transport of v3 along v1 by d1 and next along v2 by d2 gives the vector

v3 + d1 · ∇̄(u, v1, v3) + d2 · ∇̄(u+ d1v1, v2, v3 + d1 · ∇̄(u, v1, v3)) (317)

attached at u + d1v1 + d2v2, while the transport along v2 by d2 and next along v1 by d1 gives
the vector

v3 + d2∇̄(u, v2, v3) + d1 · ∇̄(u+ d2v2, v1, v3 + d2 · ∇̄(u, v2, v3)) (318)

attached at the same point. We may now use the Taylor’s formula (41), considering ∇̄(·,−,=) as
a function of the first variable only. In such case, equations (317) and (318) become respectively:

v2 + d1 · ∇̄(u, v1, v2) + d2 · (∇̄(u, v2, v3) + d2 · ∂v1∇̄(u, v2, v3) + d1 · ∇̄(u, v2, ∇̄(u, v1, v3))), (319)

and

v2 + d2 · ∇̄(u, v2, v3) + d1 · (∇̄(u, v1, v3) + d2 · ∂v2∇̄(u, v1, v3) + d2 · ∇̄(u, v1, ∇̄(u, v2, v3))), (320)

where ∂v2∇̄ denotes the derivative of the function ∇̄ calculated with respect to v2 only. The
difference between them is

d1d2(∂v1∇̄(u, v2, v3) + ∇̄(u, v2, ∇̄(u, v1, v3))− ∂v2∇̄(u, v1, v3)− ∇̄(u, v1, ∇̄(u, v2, v3))). (321)

We may take now v1, v2, v3 as vectors of the canonical base ei, ej , ek and get, using the bilinearity
of ∇(u,−,=), the familiar expression on curvature tensor:

Rℓkji(u) := R((u, ei), (u, ej), (u, ek))ℓ =
∂

∂xi
Γℓjk(u)−

∂

∂xj
Γℓik(u)+

∑

α

Γαik(u)·Γ
ℓ
jα(u)−

∑

α

Γαjk(u)·Γ
ℓ
iα(u),

(322)
and

Rlkji(x) =
∂

∂xi
Γljk(x)−

∂

∂xj
Γlik(x) +

∑

α

Γαik(x) · Γ
l
jα(x)−

∑

α

Γαjk(x) · Γ
l
iα(x). (323)

Note that the introduction of local coordinates gives us the ability to use many of classical def-
initions, propositions and proofs in SDG. We could introduce coordinates earlier, but it would
not have any sense, because our intention and aim was to show that in SDG we can develop
theory on a more abstract and at the same time more fundamental level. Now, after establishing
the foundational framework, we would like to express the familiar results of classical differential
geometry in the familiar language of coordinates. In particular, many of constructive defini-
tions, propositions and proofs from the book of Kobayashi and Nomizu [Kobayashi:Nomizu:1963]
can be used in our context with no doubts. (Of course, it should be done keeping gently eye on
the cross-dependencies between various notions and methods of particular proofs.) For example,
we can import into SDG the propositions §III.7.2-§III.7.5.
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Proposition 8.23 (Kobayashi and Nomizu, §III.7.2) Let ∇ be a connection on M . Let Γijk be

the components of ∇ for some basis (x1, . . . , xn) and model object U , and let Γ̄ijk be the compo-

nents of ∇ for some basis (x̄1, . . . , x̄n) and model object V . On the intersection U ∩ V we have
transformation rule

Γ̄αβγ =
∑

i,j,k

Γijk
∂xj

∂x̄β
∂xk

∂x̄γ
x̄α

∂xi
+
∑

i

∂2xi

∂xγ∂x̄γ
∂x̄α

∂xj
. (324)

Proposition 8.24 (Kobayashi and Nomizu, §III.7.3) Suppose that for every local coordinate sys-
tem (x1, . . . , xn) we have a family of maps Γijk which satisfy (324). Then there exists a unique

connection ∇ such that its components are given by Γijk in the coordinate system (x1, . . . , xn).

In the context of SDG this statement is obvious by the construction, and it does not need any
special proof. Next two propostitions are also expressible in SDG without any doubts.

Proposition 8.25 (Kobayashi and Nomizu, §III.7.4) Let (x1, . . . , xn) be local coordinate system
on M equipped with the connection ∇. We will put Xi = ∂i = ∂

∂xi
for i ∈ [n]. Then the

components Γijk for ∇ are given by

∇Xj
Xi =

∑

k

ΓkjiXk. (325)

Proposition 8.26 (Kobayashi and Nomizu, §III.7.5) Consider a map X (M)×X (M)→ X (M),
denoted as (X,Y ) 7→ ∇XY , such that it satisfies the conditions from proposition 4.12. Then
there exists a unique connection ∇ on M such that ∇XY is a covariant derivative defined by the
connection map of ∇.

These propostitions are easy to prove in the context of SDG, second one by the uniqueness of
connection map C of connection ∇, and the unique definition of Γkji trough C and ∇ given
earlier.

9 Riemannian structure

Definition 9.1 A classical linear 2-form g : MD ×M MD → R on a formal manifold M is
called:

• symmetric if g(v, w) = g(w, v),

• nondegenerate if

{
v#0 ⇒ g(v, v) > 0,
v = 0 ⇒ g(v, v) = 0,

• nonnegative if g(v, v) ≥ 0.

A symmetric nonnegative nondegenerate classical linear 2-form is called a Riemannian struc-

ture or a metric tensor.

Definition 9.2 A norm of a vector v ∈ TM such that v#0 is defined as

‖v‖ :=
√
g(v, v). (326)
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Using some local coordinate system with base ei we can write

g =
∑

i,j

gije
i ⊗ ej , (327)

and so
g(u, v) =

∑

i,j

gije
i ⊗ ej(u, v) =

∑

i,j

gije
i(u)⊗ ej(v) =

∑

i,j

giju
ivj . (328)

This means that for any x ∈M we can take u, v ∈ TxM and for ϕ−1(x) = (0, . . . , 0) we have

gij = g(∂i, ∂j), g(u, v) =
∑

i,j

giju
ivj , (329)

where vi and ui are coordinates of vectors u and v in the basis ∂i. It can be proven, using the
intuitionistic linear algebra (see [Grinkevich:1996a]), that det(gij)#0.

Definition 9.3 A metrical connection or Levi-Civita connection Γ on M is such connec-
tion that the parallel transport pΓ(t,d)(g) of a metric g does not change it.

Proposition 9.4 The torsion free Levi-Civita connection is unique and satisfies the equation

Γg = 0. (330)

Proof. Let ḡ ∈
(
RM

D×MMD
)D

such that g = ḡ(0) and g = ḡ(d) for every d ∈ D. Then,

from the equation of the parallel transport (133) applied to ḡ, we get that C(ḡ), where C is
the connection map associated to Γ, has to be equal to zero. This means that C(g · X) = for
any X ∈ MD, thus ΓXg = 0, so Γg = 0. Consider now the connection ∇ on M given by the
equation

2g(∇XY, Z) := X ·g(Y, Z)+Y ·g(X,Z)−Z ·g(X,Y )+g([X,Y ], Z)+g([Z,X], Y )+g(X, [Z, Y ]).
(331)

It is easy to check that such defined map (X,Y ) 7→ ∇XY satisfies the properties given in
the proposition 4.12. By the proposition 8.26 we get that such ∇XY uniquely determines a
connection ∇. By the same constructive arguments as presented in [Kobayashi:Nomizu:1963],
we can prove that the metrical connection on a formal manifold is unique (cf. op. cit., theorem
§IV.2.2, proof B). �

Corollary 9.5 (Kobayashi and Nomizu, §IV.2.4) In the terms of local coordinate system (x1, . . . , xn)
the components of Γijk of a metrical connection Γ are such that

∑

l

glkΓ
l
jk =

1

2

(
∂gki
∂xj

+
∂gjk
∂xi

+
∂gji
∂xk

)
. (332)

Thus, we have established the classically well-known objects gij , Γ
k
ij and Rlijk in the synthetic

context. For now on we will assume that we work only with the Levi–Civita connections. We
can define now the

Ricci tensor Rkl := Rikil, (333)

the
curvature scalar R := gklRkl, (334)
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and the

Einstein tensor Gij := Rij −
1

2
Rgij . (335)

Using the standard calculations on the coordinates, it can be shown that from the tensor version
of Bianchi identities

∇mR
l
kij = 0, (336)

trough the contraction of indices,

{
∇m(R

i
jil −R

i
jli) = 0,

gjl∇m(R
i
jil −R

i
jli) = 0,

(337)

it follows that

∇j(R
ij −

1

2
Rgij) = 0. (338)

Thus, we have

∇jGij = 0. (339)

Moreover, straight from the equation (330) we get that ∇j(gijΛ) = 0 for any constant scalar
value Λ, so

∇j(Gij + gijΛ) = ∇
j(Rij −

1

2
gij(R− 2Λ)) = 0. (340)

Other properties of Rijkl, Rij , R and Gij are the same as in the classical differential geometry,
and can be proven by the same calculations.

10 Some additional structures

The system of Synthetic Differential Geometry can be extended in many directions, and we do not
intend to present here the comprehensive treatment of all areas. Thus, we will leave untouched
such fields of development as principal fibre bundles, integration, variational calculus, topology,
theory of solving of differential equations, theory of distributions, general actions, symplectic
framework and hamiltonian as well as lagrangian formalism, although they all are developed in
SDG (however, on different level of progress, in some areas still under construction). In this
section we would like only to show a couple of definitions and axioms, namely of the curves,
velocity and acceleration fields, geodesics, axiom of integration and perform a short discussion
about topology.

Definition 10.1 Let p : E →M be a vector bundle. A curve in E or a vector curve is a map
X : R→ E. The derivative of the curve X is the curve DX

dt : R→ E such that

DX

dt
(x) = C(d 7→ X(x+ d)). (341)

DX
dt (x) is unique by the uniqueness of the connection map. We have also p ◦X = p ◦ DXdt and,

by the properties of the connection map,

D(X+Y )
dt (x) = DX

dt (x) +
DY
dt (x),

D(f ·X)
dt (x) = f ′X(x) + f · DXdt (x),

D(X◦f)
dt (s) = f ′DXdt (f(x)).

(342)
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Definition 10.2 The velocity field of a curve a : R → M is a map ȧ : R → MD such that
ȧ(t)(d) = a(t + d). The acceleration field is a map ä : R → MD×D such that ä(t)(d1, d2) =
a(t+ d1 + d2). A curve a is called a geodesic curve with respect to connection ∇ if

∇(ȧ, ȧ) = ä. (343)

From these definitions we get that for a geodesic curve

Dȧ

dt
= C ◦ ä = ä

.
−∇K(ä) = ä

.
−∇(ȧ, ȧ) = 0. (344)

In other words, the geodesic curve is straight in the sense of the connection ∇.

So far we have developed such differential geometrical objects like tensor, vector and tangent
bundles, vector fields, connections, differential forms, Lie derivatives and brackets, inner product,
covariant derivative, exterior derivative, exterior covariant derivative, torsion and curvature.
All these notions were defined infinitesimally, and their properties were also investigated on
infinitesimal level. However, from physical point of view, we are interested mostly in local,
i.e. measurable objects and observables. We should specify then the rule of transfer from
infinitesimal to local level. This means that we have to add to our axiomatic system an axiom
of transfer between these two levels. This axiom should manage the local structure which we
intend to observe. Speaking more precisely: it is our choice, what particular local structure of
space (or space-time) we impose. This choice may come from our presumptions, such like ‘the
spacetime is partially ordered’. Once chosen local structure (or, better to say, the structure of
local structure) determines partially the axiom of transfer, because imposes several properties
on the codomain of transfer. As we intend to give the axiom of transfer between infinitesimal
and local levels of calculus, called the axiom of integration, we have to specify the conditions
imposed on local structure of space, which in SDG is modelled by the ring R. This have been
done earlier by introducing several axioms (R1-R8) of the ring structure. Now we are ready to
give the integration axiom.

Integration Axiom

∀f ∈ R[0,1]∃!g ∈ R[0,1]∀x ∈ [0, 1]∃!g′ ∈ RR∀h ∈ D g′(x) = f(x)∧g(0) = 0∧g(x+h) = g(x)+f ·g′(x).
(345)

Such g is denoted as

g(x) =:

∫ x

0
f(t)dt. (346)

The axiom given above has to be compatible with the orderings < and ≤. This is imposed by
two following axioms:

Axiom I2 (Compatibility of
∫

and <)

∀x ∈ [0, 1] f(x) > 0⇒

∫ 1

0
f(x)dx > 0. (347)

Axiom I3 (Compatibility of
∫

and ≤)

∀x ∈ [0, 1] f(x) ≥ 0⇒

∫ 1

0
f(x)dx ≥ 0. (348)

The following axiom forces the existence of the inverse function:

Axiom I4 (Inverse function)

∀f ∈ RR ∀x ∈ R f ′(x) ∈ Inv R⇒ ∃U, V ⊂ R (open subsets) such that x ∈ U ∧ f(x) ∈ V.
(349)
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These axioms are sufficient to develop the integral calculus, and are the basic tool to promote
all our statements from the infinitesimal to local level (see [Moerdijk:Reyes:1991] for details).

Note that so far we have not spoken about topology. A topology of the real line is a kind of
mathematical structure, so it can be given by some axioms which later can be interpreted in
some universe of discourse. We have said ‘a topology of the real line’ and not ‘a topology’,
because we wish to concern the geometrical objects as primary to the mathematical additional
structures. It means that the interpretation of topological axioms of the real line may vary
from one universe of discourse (topos) to another. Moreover, there can be valuable universes
of discourse which do not hold the axioms of topological structure, but nonetheless they can
have interesting differential geometric structure! We will give here only the topological axioms
in the pure form and with a minimal discussion of this topic. In fact, the subject of topology in
topos is very wide area, because toposes were born from the category of sheaves over topological
space and so they are in precise sense natural universes to talk about topology. The so-called
Grothendieck topology is one of the central ideas when talking about topology in topos, but, as
said earlier, we will leave this for further considerations. The topology O(R) on the real line R
is imposed in SDG by the following axioms:

Axiom T1 (Compactness) For every open cover U of the closed interval [0,1] there is a finite

collection [n]
{U1,...,Un}

// // O([0, 1]) which refines U .

Axiom T2 (Open refinement)

∀F ∈ P([0, 1])N (∀x ∃n x ∈ Fn ⇒ ∀x ∈ R ∃U ∈ O([0, 1]) ∃n ∈ N x ∈ U ⊂ Fn). (350)

So-called well-adapted models of SDG, what means such toposes which allow to compare the
classical differential geometry with synthetic one, have also a natural Grothendieck topology
(which is categorically defined property). In such case the Grothendieck topology at the stage
1 is the same as set-theoretical point-topology. On other stages we get the topology which may
be called ‘pointless’, because its basic entity are open covers defined on the space, where x is no
longer a set-theoretic global element (point) but some generalized element, varying over stages.
It means that on the one hand topology appears in SDG by the additional (not obligatory)
axioms, and then can be modelled in some models, while on the other hand the wide range of
well-adapted models of SDG has its own Grothendieck topology, which can be used in synthetic
differential geometry by imposing the axioms which enable our system to see this topological
structure of a model. However, in both cases we do not need to concern the topology when
talking about such geometrical objects like vector bundles, differential forms and connections.
And thus, we will leave this subject open for future considerations.

11 Well-adapted topos models

SDG is built on the axiomatic base. These axioms can be interpreted in different categories.
Every such interpretation of axioms of SDG in a particular category is called a model of SDG. By
the obvious reasons, we are at most interested in such models of SDG which allow to compare the
‘classical’ analytic post-Cauchy-Weierstassian differential geometry with synthetic one. At the
begining of this chapter we have considered that we develop SDG in some, not precised, cartesian
closed category. Later, by introducing the generalized Kock-Lawvere axiom, we have restricted
the class of categories avaible to development of SDG only to these, which have finite colimits.
So, we have to work in cocomplete cartesian closed category. But the fact, that we would like
to interpret the intuitionistic logic of statements somehow ‘naturally’ inside this category, forces
us to take an assumption that we work in topos, thus in the complete and cocomplete cartesian
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closed category with subobject classifier. For now on we will consider only toposes as models of
SDG.

The first, simplest example of a model of SDG is SetR-Alg, the topos whose objects are functors
from a category R-Alg of (finitely presented)26 R-algebras to the category Set of sets:

R-Alg
R
−→ Set. (351)

Each such functor is a forgetful functor, which associates to an R-algebra the set of its elements,
and to every homomorphism f of R-algebras the same f as function on sets.

Proposition 11.1 A functor R ∈ Ob(SetR-Alg) is a commutative ring with unit.

Proof. For every A ∈ Ob(R-Alg) we have a ring R(A), together with operations of addition
+A : R(A)×R(A)→ R(A) and multiplication ·A : R(A)×R(A)→ R(A), which are natural in the
sense, that they are preserved by the homomorphisms in R-Alg, thus also by the corresponding
functors R-Alg→ Set. This induces naturally the operations on R. �

Thus, we have shown that the functor R ∈ Ob(SetR-Alg) is a commutative ring (with unit).
This R will be a model of a synthetic real line R considered in the previous chapter. An object
D ⊂ R has the following interpretation in SetR-Alg:

R-Alg ∋ A
D
7−→ D(A) = {a ∈ A|a2 = 0}. (352)

This construction may seem very esotherical at first, but in fact it strictly expresses the difference
and the link between our concepts and their models. Our concepts are formulated in abstract
and ‘background-free’ way: as some relations between elements. For example, the concept of a
sphere S2 (called an algebraic locus) is

S2 = {(x, y, z)|x2 + y2 + z2 = 1}. (353)

We may now take different backgrounds to express S2, for example saying that elements of S2

should belong to some (commutative) algebra, thus, to some object in the category R-Alg.
We would like however to ‘see’ somehow ‘naturally’ how such sphere S2, expressed in terms
of R-Alg, ‘looks like’ (these words are in parthenenses to show where our presumptions are
hidden. This leads us to demand that S2 should give as an output the set of triples of elements
of A ∈ Ob(R-Alg) which satisfy the ‘conditions’ given in the definition of S2. Thus, S2 becomes
a set-valued functor from R-Alg to Set.

R-Alg ∋ A 7−→ S2(A) ∈ Set. (354)

So, the interpretation of the locus S2 in SetR-Alg is

R-Alg ∋ A
S2

7−→ S2(A) = {(x, y, z) ∈ A3|x2 + y2 + z2 = 1} ∈ Set, (355)

which means that S2 is considered as a functor which takes those elements from the ring A
which fit to a pattern x2 + y2 + z2 = 1, and produces a set which contains them. For now on
we will consider the case R = R, where R is the well-known classical field of the real numbers
(i.e. the object R := RC = RD in a Boolean topos Set). Note that the global elements of R(A)
are the arrows 1 → R(A), thus {∗} → R(A), because we are working in Set (of course, the

26We will assume that all algebras and rings considered in this section are finitely presented.
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fact that R(A) ∈ Ob(Set) is true also in the general case when R is some ring). The R-algebra
corresponding to {∗} is the R-algebra with one generator R[X], and the arrow corresponding to

1
pxq
−−→ R(A) is an R-algebra homomorphism R[X]

φx
−→ A. This means that

R(A) ∼= R-Alg(R[X], A), (356)

i.e. that R is a representable functor, and we have

R ∼= Hom(R[X],−). (357)

By the Yoneda Lemma it means also that

Hom(R,R) ∼= Nat(Hom(R[X],−),Hom(R[X],−)) ∼= Hom(R[X],R[X]), (358)

so the maps f : R → R on the ring R (from the synthetic point of view) are the maps of
polynomials with coefficients in R (from the interpretational point of view). It can be shown
(see [Kock:1981] for details), that SetR-Alg satisfies the generalized Kock-Lawvere axiom (and
some weak version of integration axiom), but it does not satisfy any other axioms of SDG. Thus,
we will move now to more appropriate models of SDG.

Consider the ring of smooth functions f : Rn → R and the ring of smooth functions g : Rm → R.
We can define a category of rings of smooth functions with such arrows that preserve the smooth
structure. Thus, if we denote the object of ring of smooth functions f : Rn → R by C∞(Rn,R)
or just as C∞(Rn), then the composition which preserves the smooth maps is given by

C∞(h) : C∞(Rk,R)n → C∞(Rk,R)m,
(g1, . . . , gn) 7−→ h ◦ (g1, . . . , gn).

(359)

To make such rings of smooth functions into the category, we have to define smooth homomor-
phisms between them as

C∞(ϕ,R) : C∞(X ⊆ Rn,R)→ C∞(Y ⊆ Rm,R),
ϕ : X → Y.

(360)

We can generalize these terms and define the category C∞ of C∞-rings (or C∞-algebras)
as a category of such rings A that are equipped with the additional structure given by the
map R → A such that the compositions (as well as identities and projections Rn → R of the

smooth maps Rn
f
−→ Rm are preserved by An

A(f)
−−−→ Am. These are the arrows of category

of C∞-rings and are called the C∞-homomorphisms. The category dual to the category of
(finitely generated) C∞-rings is denoted as L (so, Lop ≡ (C∞)FG).27 Note that R[X1, . . . , Xk]
was the (finitely generated) free R-algebra with k generators being the projections. Similarly
C∞(Rk,R) = C∞(Rk) is a free C∞-ring with k generators as projections. As a next example of
C∞-rings we can consider the (classical) manifold M of class C∞ and the ring of all R-valued
smooth functions on this manifold, the C∞-ring C∞(M,R). We can also divide some C∞-ring
by an ideal I, and get another C∞-ring C∞(X)/I.28 Another important example of C∞-ring is
a ring of germs of smooth functions.

27Note that R-Alg was defined as a category of arrows fA : R → A, where R and A are some commutative
rings, such that xy = yx for every x ∈ fA(R) and for every y ∈ R. Following this definition, we may consider
the category R-Alg of R-algebras as the category of rings A equipped with the additional structure given by the

map R → A and with the maps An A(p)
−−−→ Am preserving the structure of polynomials p = (p1, . . . , pn) : R

n → Rm

in such way that identities, projections and compositions are preserved: A(id) = id, A(π) = π and A(p ◦ q) =
A(p) ◦A(q). So, the constructions of R-algebras and C∞-rings are similar.

28From the Hadamard lemma for functions f : R → R and gi : Rn × Rn → R, where i ∈ [n], we have that
f(x)− f(y) =

∑n

i=1(xi − yi)gi(x, y) for x = {x1, . . . , xn} and y = {y1, . . . , yn}, where x, y ∈ Rn. This means that
A(f)(x)− A(f)(y) =

∑n

i=1(xi − yi)A(gi)(x, y) for some C∞-ring A. If we take now (xi − yi) = 0 mod I (where
I is the ideal), then A(f)(x)−A(f)(y) = 0 mod I. Thus, C∞-rings divided by an ideal are C∞-rings.
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Definition 11.2 A germ at x ∈ Rn is an equivalence class of such R-valued functions which
coincide on some open neighbourhood U of x, and is denoted as f |x for some f : U → R. We
denote a ring of germs at x as C∞

x (Rn). If I is an ideal, then I|x is the object of germs at x of
elements of I.

Of course, C∞
x (Rn) is a C∞-ring and I|x is an ideal of C∞

x (Rn). The object of zeros Z(I) of
an ideal I is defined as

Z(I) = {x ∈ Rn|∀f ∈ I f(x) = 0}. (361)

We may introduce the notion of germ-determined ideal as such I that

∀f ∈ C∞(Rn) ∀x ∈ Z(I) f |x ∈ I|x ⇒ f ∈ I. (362)

The dual to the full subcategory of (finitely generated) C∞-rings whose objects are of form
C∞(Rn)/I such that I is germ-determined ideal is denoted by G (we take the dual category,
because we want to make a topos of presheaves SetG

op

, where sets will be varying on the (finitely
generated) C∞-rings and not on their duals).29 Now we can turn back to interpreting the SDG,
recalling that for R-algebras we have used the functor

R-Alg ∋ A 7−→ R(A) ∈ Set, (363)

as the model (interpretation) of the naive-SDG ring R in the topos SetR-Alg. In the same way
we may define the intepretation of the ring R in the topos SetG

op

:

Gop ∋ A 7−→ R(A) ∈ Set. (364)

The topos SetG
op

of presheaves over the category of germ-determined C∞-rings equipped with
the Grothendieck topology is called the Dubuc topos, and is denoted by G.30 This topos is not
only very good well-adapted model of SDG, but it also has a good representation of classical
paracompact C∞-manifolds. More precisely,

Proposition 11.3 The real line R interpreted as a functor object in the topos G satisfies gen-
eralized Kock-Lawvere axiom, as well as axioms R1-R8, N1-N4, Delta Axiom and integration
axioms (and other not mentioned here). Moreover, there is a full and faithful covariant embed-
ding s from the category Man∞ of paracompact C∞-manifolds to the topos G which transforms
open coverings into covering families.

Proof. See [Moerdijk:Reyes:1991]. �

For some purposes we can also use the larger topos SetL
op

:= SetC
∞

. It does not have the
interpretation for an axiom R2 of local ring and an axiom N3 of Archimedean ring, but it is a
good toy-model, easier to concern than G is. Note that the equation (356):

R(A) ∼= R-Alg(R[X], A) (365)

has an analogue in case of the intepretation of SDG in topos SetL
op

:

R(ℓA) ∼= SetL
op

(ℓA, ℓC∞(R)), (366)

29Thus, we have G ⊂ L and Gop ⊂ Lop ⊂ C∞ as well as SetG
op

⊂ SetL
op

⊂ SetC
∞

.
30More precisely, the topos G is a subcategory of SetG

op

obtained by sheafification, and we have an inclusion
G →֒ SetG

op

. The left adjoint a : SetG
op

→ G is called the sheafification functor. In other words, G is the
topos of sheaves on G.
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where ℓC∞(R) is the C∞-ring (the symbol ℓ denotes here the fact, that we are working within
the category which is dual to that of C∞ rings). Thus, a real line of an axiomatic SDG becomes
now

R ∼= Hom
SetL

op (−, ℓC∞(R)), (367)

or, using the formal logical sign which denotes interpretation in the model,

SetL
op

|= R ∼= Hom
SetL

op (−, ℓC∞(R)). (368)

This means that the element of ring R, the real number of naive intuitionistic set theory, is
some morphism ℓA→ ℓC∞(R). We say that we have a real at stage ℓA. Thus, our concept of
the real line R of Synthetic Differential Geometry can be modelled (interpreted) by the different
rings (stages) of smooth functions on the classical space Rn (which can be, however, defined
categorically, as an n-ary product of an object RD of Dedekind reals in the Boolean topos Set).
For example, at the stage ℓA = C∞(Rn)/I, where I is some ideal of the ring C∞(Rn), a real (real
variable, real number) is an equivalence class f(x) mod I, where f ∈ C∞(Rn). An interpretation
of the most important (naive) objects of SDG is following [Moerdijk:Reyes:1991]:

smooth real line R = Y (ℓC∞(R)) = s(R)
point 1 = Y (ℓ(C∞(R)/(x))) = s({∗}) = {x ∈ R|x = 0}

first-order infinitesimals D = Y (ℓ(C∞(R)/(x2))) = {x ∈ R|x2 = 0}

kth-order infinitesimals Dk = Y (ℓ(C∞(R)/(xk+1))) = {x ∈ R|xk+1 = 0}
infinitesimals △△ = Y (ℓC∞

0 (R)) = {x ∈ R|∀n ∈ N − 1
n+1 < x < 1

n+1}

The symbol Y denotes the Yoneda functor Hom(−, ℓA) =: Y (ℓA), while s denotes the functor31

s : Man∞ → SetL
op

, introduced in the proposition 11.3 (the symbol Y is often ommited, so
one writes ℓC∞(R)/I instead of Y (ℓC∞(R)/I)).

It seems that the ‘heaven of total smoothness’ of SDG should be somehow paid for. And
indeed, it is. The simplification of a structure of geometrical theory raises the complication of
its interpretation: we have to construct special toposes for intepreting SDG, going beyond set
theory and the topos Set. However, such complication may unexpectedly become a solution of
many of our problems. Particularly, the well-adapted model G of SDG is a topos of functors from
(sheafified germ-determined duals of) C∞-rings to Set, which means that we express differential
geometry not in terms of points on manifold, but through such smooth functions on it, which
have the same germ, what means that they coincide on some neigbourhood. In the Dubuc topos
G we have the interpretation (identification):

the real line R ∼= a functor R : C∞ ⊃ Gop // Set

A functor R is representable by the C∞-ring ℓC∞(R), what means that

R ∼= Hom(−, ℓC∞(R)). (369)

The real x at stage 1, thus a global element of a real line R, is given in the axiomatic system by

x ∈ R ⇐⇒ x ∈1 R ⇐⇒ 1
x
−→ R. (370)

Under the interpretation in G it becomes

x ∈ Hom(−, ℓC∞(R)) ⇐⇒ x ∈1 Hom(−, ℓC∞(R)) ⇐⇒ 1
x
−→ Hom(−, ℓC∞(R)) ⇐⇒ (371)

31The existence of such functor is easy to accept, because in the classical case a differentiable manifold is

uniquely determined by the algebraic structure of its commutative ring of differentiable functions [Isham:1995].
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⇐⇒ x ∈ Hom(Hom(−, ℓC∞(R0)),Hom(−, ℓC∞(R))) ∼= x ∈ Hom(ℓC∞(R0), ℓC∞(R)), (372)

where the last isomorphism is obtained by the Yoneda lemma. So, the interpretation of a
concept of real at stage ℓC∞(Rn)/I is an equivalence class of smooth functions f(x) mod I,
where f ∈ C∞(Rn). The real number is ‘smoothly varying’ over some space Rn.

Some historical remarks

Synthetic Differential Geometry can be traced back to the famous Categorical Dynamics lec-
tures of William Lavwere given in Chicago in 1967 and published in [Kock:1979]. Some of
important ideas and notions present in SDG were given in works of André Weil, Alexandre
Grothendieck and Charles Ehresmann. The real development of SDG started in the second half
of 1970s, with the works of Wraith (unpublished), Kock [Kock:1977], [Kock:1978] and others.
Weil algebras were introduced by Weil in [Weil:1953]. The idea of a microlinear space was
presented in the work of Bergeron [Bergeron:1980]. The generalized Kock-Lawvere axiom was
given in [Kock:1981]. Vector fields and bundles were investigated in SDG in [Reyes:Wraith:1979],
[Kock:1979] and [Kock:Reyes:1979]. Connections (as well as connection maps) were introduced
in [Kock:Reyes:1979]. An important later development of this field is in [Moerdijk:Reyes:1991],
and we follow here mainly the presentation given in this book, although their treatment is
very condensed, and we have tried to give more graphical explanations. The iterated tan-
gent bundles were investigated in [Bunge:Sawyer:1984]. The strong difference with applica-
tions to connections are discussed in [Kock:Lavendhomme:1984]. Differential forms are developed
in [Kock:1979] and [Kock:etal:1980]. Further developments in this area were [Belair:1981],
[Kock:1981], [Minguez:1985], [Minguez:1988a] and [Minguez:1988b]. Curvature and torsion were
introduced in [Kock:Reyes:1979]. Further developments are [Kock:Lavendhomme:1984], [Lavendhomme:1987]
and [Lavendhomme:1996]. Nishimura in a series of papers [Nishimura:1997], [Nishimura:2000] and
[Nishimura:2001] has established the first and second Bianchi identities in the synthetic context
using the calculus of strong differences on microcubes. Axiomatic structure of SDG is discussed
in [Kock:1981], [Moerdijk:Reyes:1991] and [Grinkevich:1996a], [Grinkevich:1996b]. The subject
of intuitionistic fields and rings are concerned in [Mulvey:1974] and [Mulvey:1979]. The notion
of apartness appears for the first time and is developed in the works of Heyting [Heyting:1940],
[Heyting:1970]. However, Heyting has defined the apartness on the field of fractions, while in
SDG we consider R which is the field of quotients. The corresponding formulation for the case of
the field of quotients was given by Grinkevich in [Grinkevich:1996a]. Some elements of presenta-
tion of the basis in SDG are taken from Fearns [Fearns:2002] and Grinkevich [Grinkevich:1996a],
[Grinkevich:1996b]. Formal étale maps nad formal manifolds were concerned in the context of
SDG in [Kock:Reyes:1979]. Further development of this area is in [Kock:1981]. Grinkevich in
[Grinkevich:1996a] gives some new interesting details. The ‘coordinatization’ of curvature tensor
was given in [Kock:Reyes:1979] and is recalled in [Moerdijk:Reyes:1991]. The properties of the
metric were analysed in [Grinkevich:1996a] and are reviewed shortly in [Grinkevich:1996b]. The
theory of well-adapted models of SDG (presented briefly in the section 3.2) was created by Ed-
uardo Dubuc [Dubuc:1979], [Dubuc:1980], [Dubuc:1981a], [Dubuc:1981b], [Dubuc:1986] and was de-
veloped later by Moerdijk and Reyes and established in their monography [Moerdijk:Reyes:1991].
Dubuc was also an inventor of the topos G and the one who began the systematic studies of
C∞-rings, followed also by the works of Moerdijk and Reyes (and van Quê). The comprehensive
treatment of this are as well as a standard reference is the monography [Moerdijk:Reyes:1991]. So
far, the only books about SDG were: the foundational monography of Anders Kock [Kock:1981],
rather condensed but also readable monography about well-adapted models of Ieke Moerdijk and
Gonzalo Reyes [Moerdijk:Reyes:1991], the pedagogically naive-style presentation (i.e. without
introducing the categories and toposes) by René Lavendhomme [Lavendhomme:1996] (its earlier
version was published in French as [Lavendhomme:1987]) and the elementary textbook of John
Bell [Bell:1998]. The book of Moerdijk and Reyes, although it is about the smooth models of
infinitesimal calculus, gives also a very good treatment of connections in SDG, more general
than the one given in [Lavendhomme:1996]. These two boks are together with [Kock:1981] the
standard references in the field. In our presentation of SDG we made use of some parts of
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material presented in these books. Because of the lack of spacetime, we have omited some addi-
tional material, as integration, theory of principal fibre bundles, variational calculus or topology
(axiomatic and in models). We would like to note that this text does not cover also a different
version of a synthetic approach to differential geometric notions (such like curvature, connec-
tion and parallel transport) developed by Kock in the series of papers [Kock:1980], [Kock:1982],
[Kock:1983], [Kock:1985], [Kock:1996], [Kock:1998], whose idea is to deal directly with pure geo-
metrical notion of the points on a manifold, as well as their first and second neighbourhood on
the diagonal.
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