Lesson 19: Translating Functions

Classwork

Opening Exercise

Graph each set of three functions in the same coordinate plane (on your graphing calculator or a piece of graph paper). Then, explain what similarities and differences you see among the graphs.
a. $\quad f(x)=x$
$g(x)=x+5$
$h(x)=x-6$
b. $\quad f(x)=x^{2}$
$g(x)=x^{2}+3$
$h(x)=x^{2}-7$
c. $\quad f(x)=|x|$
$g(x)=|x+3|$
$h(x)=|x-4|$

Example

For each graph, answer the following:

- What is the parent function?
- How does the translated graph relate to the graph of the parent function?
- Write the formula for the function depicted by the translated graph.
a.

b.

c.

Exercises 1-3

1. For each of the following graphs, use the formula for the parent function f to write the formula of the translated function.
a.

b.

2. Below is a graph of a piecewise function f whose domain is $-5 \leq x \leq 3$. Sketch the graphs of the given functions on the same coordinate plane. Label your graphs correctly.

$$
g(x)=f(x)+3 \quad h(x)=f(x-4)
$$

3. Match the correct equation and description of the function with the given graphs.

Problem Set

1. Graph the functions in the same coordinate plane. Do not use a graphing calculator.
$f(x)=\sqrt{x}$
$p(x)=10+\sqrt{x}$
$q(x)=\sqrt{x+8}$

2. Write a function that translates the graph of the parent function $f(x)=x^{2}$ down 7.5 units and right 2.5 units.
3. How would the graph of $f(x)=|x|$ be affected if the function were transformed to $f(x)=|x+6|+10$?
4. Below is a graph of a piecewise function f whose domain is the interval $-4 \leq x \leq 2$. Sketch the graph of the given functions below. Label your graphs correctly.

$$
g(x)=f(x)-1 \quad h(x)=g(x-2) \text { (Be careful, this one might be a challenge.) }
$$

5. Study the graphs below. Identify the parent function and the transformations of that function depicted by the second graph. Then, write the formula for the transformed function.

