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Lecture 10  Chapter 10

Simulation
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Simulation: Definition, Motivation

Simulation: to construct and test a computer model of the circuit

to be built. 

Costs of simulation are far less than the costs of fabricating 
the circuit directly.

Simulation only models those aspects of the circuit relevant to 
the level of abstraction concerned.

Avoids problems of physical observation (measuring) to 
influence the DUT (device under test)

For VLSI circuits simulation is not a guaranteed way of 
verification 

Impossible to enumerate all combinations of input 
patterns and internal states. 

However, simulation can increase the belief in the 
correctness of the design.

More simulation (hopefully) promotes more belief: huge 
dedicated simulation compute capacity
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NVIDIA Example (A.D. 2000)

∼ 850 employees (worldwide total incl. sales, mgmt, …)

∼ $85M of CAD tools

∼ $20M emulation

Engineering Compute Resources

Desktops: 200 Sun / 2150 pc’s

Servers: 

278 Sun / 634 Linux / 496 Gbytes RAM

14 Terabytes of storage

Most compute 
capacity 
used for 
simulation! 

Lecture 1
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Simulation

Goal

Predicting/checking of correct behavior 
(electrical/functional)

Checking/determination of performance

Debugging of circuits
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Simulation (2)

Simulation generally proves incorrect behavior only

Rarely proves correctness of circuit

Repeat

Simulation is a trade-off

Accuracy <=> computation time

Depends on

Phase in design process

Type of circuit

Size of circuit

Preference of designer
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Simulation (3)

Section 1 to 4 of:

VLSI Circuit Analysis, Simulation and Optimization

A.E. Ruehli, D.K. Beece

CompEuro 1986 tutorial

Gate-Level Simulation

M.A. d’Abreu

IEEE Design & Test of Integrated Circuits

December 1985, page 63 - 71

RSIM - A Logic-Level Timing Simulation

C.J. Terman

Proceedings ICCD 1983, page 437 - 440

Additional Reading
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Simulation Abstractions (models)

Fundamental characteristics: function, signal, time

Transistor

Nand-gate

Processor

…..

Function Every simulation level has its own primitives 
which express the electrical behavior

Signal

Logic

Analog wave form

Current, Voltage

…

Particular representation of signal
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Signal Strength

MOS Simulation hinges on implementation aspects 
outside of the pure Boolean Logic model

Bi-directional elements (pass gates)

Wired logic

Charge sharing

A signal is represented using value and strength

Signal strength is discrete model for signal 
impedance

Signal strength models behavior when signals 
directly combine.

Usually: strongest signal wins

Instead of voltage division

Handling of strength depends on simulator type

Depends on ‘analog capacity’ of simulator 
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Simulation Abstractions (models)

Time

Nanoseconds

Unity step

Delay less

…

Particular representation of time
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Simulation Abstraction (models) 

V(t), I(t)

ResistorsResponse

CapacitorsFrequency

Exact geometryTransistor Network equationsDevice

Truth Tables

Logic gatesBoolean eq’s

CellsLatchesState transitionsLogic

UnitsSequences

FunctionalOperation

FloorplanRegistersAlgorithmsRegister-Transfer

BusesExceptions

MacrocellsMemoryInstruction Set

Basic PartitionsProcessorsPerformanceArchitecture

GeometryStructureBehaviorLevel 

Domain
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Circuit Level

Function Equivalent circuit of transistor, resistors, 
capacitors, etc. differential equations

Signal Analog waveform

Time Integration-time step

Eg SPICE

Most detailed

analog;

nodal / tableau equations;

numerical integration;

Related: timing-level simulation:

analog, but with simplifications 
(macromodels, look-up tables);

piecewise-linear methods. 
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Switch Level
Function transistor as controlled switch, R, C

Signal logic, sometimes analog waveform

Time vary

transistors are modeled as bidirectional switches; 

mainly digital; 

circuits extracted from mask patterns can directly be 
simulated.
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‘‘gate’’ mainly refers to elements to be found in a component library 
(e.g. for standard-cell design): NAND,

NOR, MULTIPLEXER, D-FLIPFLOP, LATCH, etc.;

unidirectional signal flow; 

closely related to ‘‘fault simulation’’.

Gate Level for Digital Circuits

Function Logic function of small sub-circuits

Signal Discrete, logic values e.g. {0, 1, x}

Time varying
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Gate Level (ctd)
Disadvantages

May be incompatible with 
design style 
e.g: pass transistors are bi-
directional and gates  are 
uni-directional

011

001

010

100

b a r

011

101

110

100

b a r

x = 1
y = 1

Advantages
Higher simulation rate
Independent of technology
Connected with standard cell lib. 
Automatic test vector generation 
possible
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Register Transfer level

Function Registers and transfer functions

Signal Arithmetic values, bit-vectors

Time clock-cycles

Sequential circuits, early in design 

circuit is seen as composed of registers to 
store the state and combinational logic to 
compute the next state (FSM model).

Registers in circuit <=> memory-places in 
RTL model

Signals in circuit <≠> values in RTL model

Further reduction of simulation time

Fully independent of technology 

combinational logic

registers
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Behavioral Level
Function procedures in high-level language  describes 

complex components like alu’s, multiplexers, 
counters

Signal Arithmetic values, bit-vectors

Time Clock-cycle, nominal time

description in high-level 
language, e.g. Verilog
Need not model all registers
Faster simulation again
Useful in the first stages of 
design
In later stages to model 
‘surroundings’ of module 
under detailed analysis

module mux (out, p0, p1, select);
input p0, p1;
input select;
output mux_out;
always @ (select or p0 or p1)

case (select)
1’b0 : out = p0 ;
1’b1 : out = p1 ;

endcase
endmodule
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Mixed Level and Mixed-Mode.

Simulation of a circuit with each part at the most effective 
level

descriptions at different levels of abstractions coexist within 
the same simulation environment; 

critical parts of the design are described at a lower level 
than non-critical parts, while it is inefficient or infeasible to 
model the whole circuit at the level of the most critical part;

it might be easier to test a subsystem with stimuli from the 
system itself, rather than describing the stimuli explicitly; 

Test-bench concept

Hardware-software co-simulation: 

useful in hardware-software 
codesign;

becomes more and more 
important
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Components of a Simulator (1)

Simulator Kernel

the routines for doing the ‘‘real’’ simulation.

detailed description for event-driven simulation follows.

Routines for Processing of Circuit Description

input format: either written by the designer or obtained through 
an interface with a schematic entry tool. 

internal format: machine code or graph-based description.

input format has to be compiled into internal format.
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Components of a Simulator (2)

Routines for Stimuli Processing

stimuli: the input patterns for all time instants during the 
simulation.

they have to provide the kernel with the correct input patterns.

Routines for Output Processing

the simulator results are numbers; they have to be presented 
in a user-friendly form, e.g. as tables or waveforms.
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Zoom-in on Some Simulation Types

Gate-Level (§ 10.2)

Switch-Level (§ 10.3)

Mainly discuss simulator kernel issues
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Gate Level Simulation

Function Logic function of small sub-circuits (nand, 
nor, invert)

Signal Discrete, logic values, strength of signal

Time varying
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Signal Modeling

Discrete Signal values 

Many different models 

IEEE std_logic

don’t care-

weak 1H

weak 0L

weak unknownW

high impedanceZ

forcing 11

forcing 00

forcing unknownX

Un-initializedU

Note the mixture of 
value and strength

Minimum set for 
any simulator
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Signal Modeling (2)

Similar tables for:

More inputs
More logic values
Other gates

xX1X

X011

1110

X10

0 - Logic zero
1 - logic one
X - unknown

Three-value NAND gate

Gate models should deal 
with multiple-valued logic. 

Gate behavior can be 
represented by truth tables 
or compiled code. 
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Delay Models for Gate-Level 

Simulation

inertial delay: a change to an input signal has to last at least 
a certain time before it can trigger any reaction. 

propagation delay: some time passes between the start of a 
signal change at the gate input and the start of a signal 
change at its output. 

rise / fall delay: allow for high to low and low to high 
assymetry. 
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Propagation Delay

AKA transport delay

Associated with output of gate

Unit Delay Equal delay for all gates

Nominal Delay Specific for type of gate

Rise/fall Delay Specific for type of gate, different for    
rising/falling edge

Ambiguity Delay Minimum and maximum values for both 
edges 

Zero Delay Specific for type of gate
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Delay Model Example

propagation delay model

in_1

in_2
out

time

'0'

'1'

in_2
'0'

'1'

in_1

0 1 2 3 4 5 6 7 8 9

out

time

'0'

'1'

0 1 2 3 4 5 6 7 8 9

out

time

'0'

'1'

0 1 2 3 4 5 6 7 8 9

rise / fall delay model
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Inertial Delay.

Associated with input of gate

Can also include effects of (RC) wiring

Filter for short pulses  
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Gate-Level Simulation Kernel

Compiler-Driven Simulation

Execute all instructions in pre-determined sequence

Event-Driven Simulation

Simulator reacts to signals produced
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Compiler-Driven Simulation

Based on making an executable-code 
model of circuit; 

Efficient simulation mechanism

(few machine instructions per gate); 

Applicable to few delay models in 
synchronous circuits

(e.g. zero-delay model).

combinational logic

registers
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Compiler-Driven Simulation (2)

Leveling to specify evaluation order

Topological sort ~ longest path algorithm
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Zero-Delay Example

A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6

n1 ← A;

n2 ← B;

n3 ← C;

n4 ← D;

n5 ← E;

n6 ← OR(n1, n2);

n7 ← AND(n4, n5);

n8 ← AND(n6, n3);

n9 ← OR(n7, n8);

F  ← n9;
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Compiled Code for Unit-Delay 

Simulation

for (t tstart ; t tend ; t t 1)

new[1] A;

new[2] B;

new[3] C;

new[4] D;

new[5] E;

new[6] OR(old[1], old[2]);

new[7] AND(old[4], old[5]);

new[8] AND(old[6], old[3]);

new[9] OR(old[7], old[8]);

F new[9];

old new;

A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6
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Unit-Delay Simulation

Assumes that all gate delays 
equal 1.

Provides some information on 
signal evolution in time, 
especially to detect glitches.

time

'0'
'1'
'0'
'1'

0 1 2 3 4

n1

n2

n3

n4

n5

n6

n7

n8

n9

'0'
'1'
'0'
'1'

'0'
'1'
'0'
'1'

'0'
'1'
'0'
'1'

'0'
'1'

A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6

2

1
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Event-Driven Simulation

Only a small part of the circuit is active at any time  

Compiler-driven simulation becomes inefficient

Latency

Event-Driven Simulation Principles

Simulation predicting a sequence of state-changes 
based on a sequence of input states 

Event A gate need only to be evaluated when 
there is a change in the input

State-transition ⇔ event = (time, net, new value)

Sequence of state-transitions ⇔ event queue  

event queue  aka event list, time queue
net aka node
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Event-Driven Simulation (2)

Event-Driven Simulation Algorithm

Insert stimulus events into queue

While event queue not empty:

fetch event e of queue

t:= e.time

for all gates g with input connected to e.net:

evaluate g with new input e.value

if output of g changes:

schedule new event for output of g at t + ∆t where 

∆t is the delay associated with the transition 

Event = (time, net, new value)
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Data Structures and Functions 

for Event-Driven Simulation

Main functions: 

new_queue: to create a new 
event queue; 

first_event: to remove and 
return the earliest event in 
the queue. 

insert_event: to add an 
event to the queue.

(reschedule): if the time of 
an event changes 

struct event {

struct time;

struct net *node;

struct signal_value value;

…

};

struct event_queue {

…

};

ADT: Priority Queue
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Implementation of Event Queue

An assumption that is often valid: all gate delays are small 
integer multiples of minimum-resolution delay ∆t . 

The event queue can then be implemented by an array 
containing linked lists of simultaneous events (events at k∆t

are stored at array index position k). 
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Array-Based Event Queue

time

current
time

(n 1) t

n t

(n 1) t

(n 2) t

(n 3) t

Often: all gate delays are small integer multiples of minimum-
resolution delay ∆t . 

The event queue array containing linked lists of 
simultaneous events (events at k∆t are stored at array index 
position k). 

Time complexity?

Insertion: O(1)

Deletion: O(1)
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The Time Wheel

current
time

(n L) t n t

(n 1) t

(n 2) t

(n 3) t

time
...

...

An indexing modulo L leads to the time wheel data structure.

Useful if most events occur within time window L << (tend – tstart)
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More on Implementation

Events that take place more than later than L∆t after the 
current time should be stored in an overflow list. 

If necessary, the overflow list itself can be implemented as a 
time wheel with a coarser resolution, e.g. L∆t instead of ∆t . 

If the variance in delays in the system is larger than can be 
handled by time wheels, a priority queue should be used: 
adding and removing events will require O(log n) time instead 
of O(1) time (with n the number of events). 
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Gate-Level Simulation: Discussion.

Compiler-driven simulation evaluates many more circuit nets, 
but does not have the overhead of event-queue manipulation 
(the overhead can reach a factor of 100). 

Event-driven simulation can handle sophisticated delay models.

Some simulators use a combination of both methods. 

Yet another method is demand-driven simulation: it processes 
the circuit backwards from the outputs that the user wants to 
observe back to the inputs (but it can’t deal with circularities).

Simulation is always too slow hardware accelerated 
simulation



22

5/16/2009 43ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Home Brew Simulator

See http://www.maxmon.com

free stuff Homebrew 
[EDN, July ‘94]

 

d  q
q4

R5

d  q

R0

d  q
q1

R2

w1

G1

d  q
q2

R3

w2

G2

d  q
q3

R4

w3

G3

d  q
q0

R1

d  q
q5

R6

d  q
q6

R7

q7

clock

clear

xnor2 ("G1","q7","q1","w1"); 
xnor2 ("G2","q7","q2","w2");
xnor2 ("G3","q7","q3","w3");
dff ("R0","clear","clock","q7","q0");
dff ("R1","clear","clock","q0","q1");
dff ("R2","clear","clock","w1","q2");
dff ("R3","clear","clock","w2","q3");
dff ("R4","clear","clock","w3","q4");
dff ("R5","clear","clock","q4","q5");
dff ("R6","clear","clock","q5","q6");
dff ("R7","clear","clock","q6","q7");

Homebrew.zip
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/* Usage: sim stimulus_file response_file */

#include "models.c" /* Include the models */
#include "sim.c" /* Include the simulator */
Main (int argc, char *argv[])
{

char *stimulus = argv[1], /* stimulus file */ 
char *response = argv[2]; /* response file */

initialize(); /* initialize */

xnor2 ("G1","q7","q1","w1"); /* begin circuit description */
xnor2 ("G2","q7","q2","w2");
xnor2 ("G3","q7","q3","w3");
dff ("R0","clear","clock","q7","q0");
dff ("R1","clear","clock","q0","q1");
dff ("R2","clear","clock","w1","q2");
dff ("R3","clear","clock","w2","q3");
dff ("R4","clear","clock","w3","q4");
dff ("R5","clear","clock","q4","q5");
dff ("R6","clear","clock","q5","q6");
dff ("R7","clear","clock","q6","q7");

simulate (stimulus, response); /* go simulate it */
}

Slightly edited homebrew 
simulator example

Normally use ‘linker’
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AND Model Code

void and2(char *name, char *net_in1, char *net_in2, char *net_out)
/*
* To add an and2 component into the circuit description. Add the
* component then hookup each net to each pin.
*/

{
Cmp *cmp;
cmp = cmp_add(cct, name, 3, and2_simulate);/* add component */
if(cmp) {

net_connect(cct, net_in1, cmp, 1); /* hook pin to net */
net_connect(cct, net_in2, cmp, 2);
net_connect(cct, net_out, cmp, 3);
/* set the driver pin on this component */
pin_set_driver(cmp, 3);

}
}

Function pointer
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AND Simulation Code.

void and2_simulate(Cmp *cmp, int not_used, Event *ev)
{

int val;
Pin *pin = PIN_ADDR(cmp, 1); /* first input pin */
Net *net;

/*
* ‘AND’ each of the input pins to determine output. 
*/
val = pin->net->value; /* first input pin */
pin++; /* second input pin */
val &= pin->net->value; /* and2 */
pin++; /* output pin */
net = pin->net; /* net on output pin */

/*
* Schedule an event to appear on output pin. Event will happen at
* current time plus one unit.
*/
event_schedule(net, ev->time+1, val);

}
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Backup
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Cycle Based Simulation

For synchronous networks

Convert to Boolean equations
Not a gate level network

No timing data! Faster Simulation 

Use static timing analysis instead
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Levels of Simulation (1)

From the lowest level to higher levels:

Device-level simulation:

used to test the effect of fabrication parameters;

used by technologists, not by circuit or system designers.

Circuit-level simulation (e.g. SPICE):

analog;

nodal / tableau equations;

numerical integration;

Timing-level simulation:

analog, but with simplifications (macromodels, look-up tables);

piecewise-linear methods. 
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Levels of Simulation (2)

Switch-level simulation: 

transistors are modeled as bidirectional switches; 

mainly digital; 

circuits extracted from mask patterns can directly be

simulated.

Gate-level (or logic) simulation:

‘‘gate’’ mainly refers to elements to be found in a

component library (e.g. for standard-cell design): NAND,

NOR, MULTIPLEXER, D-FLIPFLOP, LATCH, etc.;

unidirectional signal flow; 

closely related to ‘‘fault simulation’’.
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Levels of Simulation (3)

Register-transfer-level (RTL)

simulation:

circuit is seen as composed

of registers to store the

state and combinational

logic to compute the next

state (finite state machine

model).

Behavioral-level simulation:

description in high-level language, e.g. VHDL

(VHSIC Hardware Description Language). 

combinational logic

registers
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Levels of Simulation (4)

Mixed-level and mixed-mode simulation:

descriptions at different levels of abstractions coexist

within the same simulation environment;

critical parts of the design are described at a lower level

than noncritical parts, while it is inefficient or infeasible to

model the whole circuit at the level of the most critical part;

it might be easier to test a subsystem with stimuli from the

system itself, rather than describing the stimuli explicitly; 

Hardware-software cosimulation: 

useful in hardware-software codesign;

becomes more and more important.
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Gate Modeling

3-valued NAND truth table

in_1   in_2    out

’0’ ’0’ ’1’

’0’ ’1’ ’1’

’0’ ’X’ ’1’

’1’ ’0’ ’1’

’1’ ’1’ ’0’

’1’ ’X’ ’X’

’X’ ’0’ ’1’

’X’ ’1’ ’X’

’X’ ’X’ ’X’
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Signal Values

Depending on Delay Model

0,1 ,U, D, EAmbiguity delay

0, 1, xRise/fall delay

0, 1Unit Delay

0, 1Zero delay 

Signal ModelDelay model

Ambiguity E

FallingD

RisingU

Logic unknownX

Logic high1

Logic zero0
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Propagation Delay Model (1)

Nominal/Unit Delay
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Propagation Delay Model (2)

Rise/Fall Delay

units65OR gate

Units21Inverter

Units65AND gates

FallRise
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Propagation Delay Model (3)

Ambiguity Delay

Fall32

Rise21Inverter

Fall74

Rise74OR

Fall74

Rise65AND

MaxMin

DelayGate
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Compiler-Driven Simulation (2)

Evaluate first
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Event-Driven Simulation

Event-driven simulation is a widely-used mechanism in gate-
level simulators.

An event is a change of a signal value that may trigger new 
changes.

There is a queue of events ordered by the time the event is 
going to happen.

Basic steps:

the output of a gate G changes at time ti.

the fanout of the gate is inspected; it consists of the inputs

of the gates Gk that are connected to the output of gate G.

if the outputs of the gates Gk change, they are scheduled to

change at time ti + ∆k , where ∆k is the delay associated

with the transition. 
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Event-Driven Simulation Algorithm

event driven simulation ()

struct event queue *Q;

Q new queue();

"insert stimuli in Q";

"initialize: all network nodes connected to a memory to 'U' and

all other nodes to 'X'";

for (t tstart ; t tend ;)

current event first event(Q);

t current event- time;

"process current event and add new events to Q at

time t appropriate delay";
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Signal Strength

MOS Simulation hinges on implementation aspects outside of 
the pure Boolean Logic model

Bi-directional elements

Wired logic

Charge sharing

Signal Impedance: also discrete

For example

Forcing see (a)

Non-forcing see (b)

High-Impedance see (c)

(a) (b) (c)
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Signal Strength (2)

Strongest signal wins
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Signal Strength (3)

Heuristic for bi-directional elements

Signal direction A → B if …

A → B if Strength (I1) > Strength (I4)

B → A if Strength (I1) < Strength (I4)
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Signal Strength (4).

Sometimes several value-strength pairs
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Switch-Level Simulation Model (1)

Circuit model: nets interconnected by transistors.

A signal is a pair (s, v):

strength(s): associated with (possibly discrete) impedance.

level(v): associated with voltage.

Possible values include: ’0’, ’1’ and ’X’. 
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Switch-Level Simulation Model (2)

There are two types of nets: 

storage nets: they have a capacitance value; often the set of

values is discrete. 

input nets: they act as sources of fixed value and can supply

unlimited current. 

The transistors: 

act as bidirectional switches;

have a strength value (signals passing through a transistor

have their strength reduced to this value).
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Bryant's Model of Strength Values

There are w distinct strength values: 1, 2, ... , k, ... , w.

s = w ⇒ s is the strength of an input signal. 

k < s < w ⇒ s is the strength of a transistor. 

1 ≤ s ≤ k ⇒ s is the strength of a storage net. 
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Strength Model Examples

V
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(3)
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n1(2)

n2(1)

n2(1)

n3(1)

n0(5)

n0(5)

n3(5) n3(5) n4(5) 1987 IEEE1987 IEEE

Key point is 
choosing strength 
values consistent 
with electrical 
characteristics of 
circuit 

Transistor limits the 
strength of its 
output signal

Strongest signal 
wins
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Switch-Level Simulation 

Techniques

Main principles:

Partition the circuit into unidirectional subcircuits

Channel-connected components are bi-directional

Gates bound uni-directional elements

Off-state transistors (and input nets) can also bound uni-
directional elements

Interaction between these subcircuits can be handled 
similar to gate-level simulation. 

Two types of partitioning exist: static and dynamic (= 
accounting for signal values).

Apply special methods to compute the ‘‘steady-state’’ of the 
channel-connected components. 
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Circuit Partitioning Example

Vdd

Vss

Vss

Vdd

Vdd

Vss

Vss

Vdd

'0'
T

Static partitioning Dynamic partitioning
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Circuit Representation

n0(5)

(3)
BA
(3)

n1(1)

n2(1)

n3(5)

(3)
A

B
(3)

A convenient representation for 
switch-level circuits is a 
multigraph G(V, E) rather than 
the more general cell-port-net 
model. 

Vertices represent nets and are 
labeled with the net name and 
strength. 

Edges represent transistors and 
are labeled with a transistor ID 
and strength. 

Vdd

Vss
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Signals and Signal Propagation (1)

A signal on a vertex u ∈ V is denoted by (σu , λu ). 

The strength of a transistor (u, v) ∈ E is given by εu,v .

εu,v = 0 when the transistor is off. 

σu→v denotes the strength of the signal flowing from u ∈ V to v ∈ V.

σu→v = min(σu , εu,v ) 

The level of the signal flowing remains λu . 

There are two types of nets: 

driven nets: nets having a conducting path to an input net.

charged nets: nets electrically isolated from input nets.
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Signals and Signal Propagation (2)

Suppose that a driven net v ∈ V has edges (u1,v), … ,(um,v) ∈ V, 
then:

For a charged net, the net’s own signal should be taken into 
account:

When combining signals from different directions, the level of

the new signal equals the level of the strongest signals. In case

of multiple signals with equal strength and different levels, the 
new level becomes ’X’. 

1 ≤ i ≤ m i
σv = max σu → v

1 ≤ i ≤ m i
σv = max (σv, max σu → v)

Strength of signal on net v
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Simulation Algorithm Principles

The algorithm is based on 
a repeated application of:

σv = max (σv, σu → v)

This should be done 
carefully: propagate the 
strongest signals first. 

Implement with an array of 
queues, one array position 
for each strength value. 

n0(5)

(3)

Vdd

(4)

Vss

n1(5)

n2(1) n3(1)
(3)

1987 IEEE
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Simulation Algorithm: Discussion

The algorithm operates in linear time with respect to the 
number of nets and transistors. 

The algorithm is static: changes to input signals require 
repeating the complete propagation. It can, however, be 
modified for dynamic simulation. 

This algorithm does not incorporate any type of delays related 
to the physical implementation. Switch-level timing simulation
can deal with actual R and C values derived from the layout. 
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RSIM Linear Switch Level Model

Interval Arithmetic 
for X-states

X

1

0

PNVgate

Rds

∞
Reff

[Reff - ∞] [Reff - ∞]

Reff

∞
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Linear Switch Level Model

Transistor dimension

Transistor type 

Transistor context 

pull-down, pass, …

Reff depends on:

width

length
)context,type(fReff ×=
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Logic Level

[ ]+−= V,VV

otherwiseX

V- ≥ Vhi1

V+ 
≤ Vlo0

Logic States

otherwiseX

V- ≥ Vhi1

V+ 
≤ Vlo0

Logic States



40

5/16/2009 79ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Determining Node Potentials

0

1 volt

1

R
eff

 = 8

R
eff

 = 2

0 volt

x

1 volt

1

Reff = 8

R
eff

 = 2

0 volt

1 volt

8 Ω

2 Ω

0 volt

V = 0.2
Logic 0

Vlo = 0.25

Vhi = 0.75

8 Ω

2 [2, ∞]

V = [0.11, 0.2]

Logic 0
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Determining Node Potentials

x

1 volt

x

R
eff

 = 8

Reff = 2

0 volt

[2, ∞] [2, ∞]

8 

V = [0.11, 1]

Logic x

Vlo = 0.25

Vhi = 0.75
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Determining Transition Time

Calibration

staticR Final node potential

dynlowR Used for RC time high → low

dynhighR Used for RC time low → high 
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RSIM Simulation Algorithm

Event = (net, new logic value, time)

Event Driven

Algorithm: While event list ≠ ∅
1. take event from list
2. set node on new value
3. determine effect on other nodes

Limited number of nodes (stage, vicinity)
Determine charge-sharing (immediately)
Determine final value (RC time)
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RSIM Simulation Algorithm

(*) = nodes which are influenced
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Charge Sharing

ecapacitanc total

1 levellogic  one capacitanc total
V =−

ecapacitanc total

xor1levellogic  one capacitanc total
V =+

[10/11, 1]X

10/110

11

After switched 
on

Before 
switched on

Voltage on V

[10/11, 1]X

10/110

11

After switched 
on

Before 
switched on

Voltage on V

otherwiseX

V- ≥ Vhi1

V+ ≤ Vlo0

Logic States

otherwiseX

V- ≥ Vhi1

V+ ≤ Vlo0

Logic States
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RC Time

R: Rdynhi or Rdynlo

C: total cap. on logic level 0 or x if final state 1

total cap. on logic level 1 or x if final state 0

RC time inaccurate

Better:

R1C1 + (R1 + R2)C2 (Elmore Delay)

OUTIN
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Switch Level Simulation 

Conclusion

RSIM

Linear switch level (switch level 
timing)

Interval arithmetic

Conversion to logic states

Lumped (concentrated) capacitances

SLS

Linear switch level

Interval arithmetic (consistent) 

Conversion to logic states only for 
transistor state

Elmore delay
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SPICE: 39 min 41 sec     SLS: 2.4 sec      (HP9000840, ~anno 1990)

Switch Level Timing (SLS) vs SPICE

Spice

SLS
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Simulation Conclusion

Gate level huge circuits, not appropriate for MOS

Discrete switch level appropriate for MOS, no timing 
information

Linear switch level appropriate for MOS, timing estimation

Timing simulation accurate timing, circuit size limited

Circuit simulation most accurate, “small” circuits

Cycle based simulation fast, no timing, synchronic circuits 


