
1

5/16/2009 1ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Lecture 10 Chapter 10

Simulation

5/16/2009 2ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

[Merriam-Webster, www.m-w.com]

2

5/16/2009 3ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation: Definition, Motivation

Simulation: to construct and test a computer model of the circuit

to be built.

Costs of simulation are far less than the costs of fabricating
the circuit directly.

Simulation only models those aspects of the circuit relevant to
the level of abstraction concerned.

Avoids problems of physical observation (measuring) to
influence the DUT (device under test)

For VLSI circuits simulation is not a guaranteed way of
verification

Impossible to enumerate all combinations of input
patterns and internal states.

However, simulation can increase the belief in the
correctness of the design.

More simulation (hopefully) promotes more belief: huge
dedicated simulation compute capacity

5/16/2009 4ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

24ET 4255 - Electronic Design Automation 2005 © Nick van der Meijs

NVIDIA Example (A.D. 2000)

∼ 850 employees (worldwide total incl. sales, mgmt, …)

∼ $85M of CAD tools

∼ $20M emulation

Engineering Compute Resources

Desktops: 200 Sun / 2150 pc’s

Servers:

278 Sun / 634 Linux / 496 Gbytes RAM

14 Terabytes of storage

Most compute
capacity
used for
simulation!

Lecture 1

3

5/16/2009 5ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation

Goal

Predicting/checking of correct behavior
(electrical/functional)

Checking/determination of performance

Debugging of circuits

5/16/2009 6ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation (2)

Simulation generally proves incorrect behavior only

Rarely proves correctness of circuit

Repeat

Simulation is a trade-off

Accuracy <=> computation time

Depends on

Phase in design process

Type of circuit

Size of circuit

Preference of designer

4

5/16/2009 7ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation (3)

Section 1 to 4 of:

VLSI Circuit Analysis, Simulation and Optimization

A.E. Ruehli, D.K. Beece

CompEuro 1986 tutorial

Gate-Level Simulation

M.A. d’Abreu

IEEE Design & Test of Integrated Circuits

December 1985, page 63 - 71

RSIM - A Logic-Level Timing Simulation

C.J. Terman

Proceedings ICCD 1983, page 437 - 440

Additional Reading

5/16/2009 8ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation Abstractions (models)

Fundamental characteristics: function, signal, time

Transistor

Nand-gate

Processor

…..

Function Every simulation level has its own primitives
which express the electrical behavior

Signal

Logic

Analog wave form

Current, Voltage

…

Particular representation of signal

5

5/16/2009 9ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signal Strength

MOS Simulation hinges on implementation aspects
outside of the pure Boolean Logic model

Bi-directional elements (pass gates)

Wired logic

Charge sharing

A signal is represented using value and strength

Signal strength is discrete model for signal
impedance

Signal strength models behavior when signals
directly combine.

Usually: strongest signal wins

Instead of voltage division

Handling of strength depends on simulator type

Depends on ‘analog capacity’ of simulator

5/16/2009 10ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation Abstractions (models)

Time

Nanoseconds

Unity step

Delay less

…

Particular representation of time

6

5/16/2009 11ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation Abstraction (models)

V(t), I(t)

ResistorsResponse

CapacitorsFrequency

Exact geometryTransistor Network equationsDevice

Truth Tables

Logic gatesBoolean eq’s

CellsLatchesState transitionsLogic

UnitsSequences

FunctionalOperation

FloorplanRegistersAlgorithmsRegister-Transfer

BusesExceptions

MacrocellsMemoryInstruction Set

Basic PartitionsProcessorsPerformanceArchitecture

GeometryStructureBehaviorLevel

Domain

5/16/2009 12ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Circuit Level

Function Equivalent circuit of transistor, resistors,
capacitors, etc. differential equations

Signal Analog waveform

Time Integration-time step

Eg SPICE

Most detailed

analog;

nodal / tableau equations;

numerical integration;

Related: timing-level simulation:

analog, but with simplifications
(macromodels, look-up tables);

piecewise-linear methods.

7

5/16/2009 13ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Switch Level
Function transistor as controlled switch, R, C

Signal logic, sometimes analog waveform

Time vary

transistors are modeled as bidirectional switches;

mainly digital;

circuits extracted from mask patterns can directly be
simulated.

5/16/2009 14ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

‘‘gate’’ mainly refers to elements to be found in a component library
(e.g. for standard-cell design): NAND,

NOR, MULTIPLEXER, D-FLIPFLOP, LATCH, etc.;

unidirectional signal flow;

closely related to ‘‘fault simulation’’.

Gate Level for Digital Circuits

Function Logic function of small sub-circuits

Signal Discrete, logic values e.g. {0, 1, x}

Time varying

8

5/16/2009 15ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Gate Level (ctd)
Disadvantages

May be incompatible with
design style
e.g: pass transistors are bi-
directional and gates are
uni-directional

011

001

010

100

b a r

011

101

110

100

b a r

x = 1
y = 1

Advantages
Higher simulation rate
Independent of technology
Connected with standard cell lib.
Automatic test vector generation
possible

5/16/2009 16ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Register Transfer level

Function Registers and transfer functions

Signal Arithmetic values, bit-vectors

Time clock-cycles

Sequential circuits, early in design

circuit is seen as composed of registers to
store the state and combinational logic to
compute the next state (FSM model).

Registers in circuit <=> memory-places in
RTL model

Signals in circuit <≠> values in RTL model

Further reduction of simulation time

Fully independent of technology

combinational logic

registers

9

5/16/2009 17ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Behavioral Level
Function procedures in high-level language describes

complex components like alu’s, multiplexers,
counters

Signal Arithmetic values, bit-vectors

Time Clock-cycle, nominal time

description in high-level
language, e.g. Verilog
Need not model all registers
Faster simulation again
Useful in the first stages of
design
In later stages to model
‘surroundings’ of module
under detailed analysis

module mux (out, p0, p1, select);
input p0, p1;
input select;
output mux_out;
always @ (select or p0 or p1)

case (select)
1’b0 : out = p0 ;
1’b1 : out = p1 ;

endcase
endmodule

5/16/2009 18ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Mixed Level and Mixed-Mode.

Simulation of a circuit with each part at the most effective
level

descriptions at different levels of abstractions coexist within
the same simulation environment;

critical parts of the design are described at a lower level
than non-critical parts, while it is inefficient or infeasible to
model the whole circuit at the level of the most critical part;

it might be easier to test a subsystem with stimuli from the
system itself, rather than describing the stimuli explicitly;

Test-bench concept

Hardware-software co-simulation:

useful in hardware-software
codesign;

becomes more and more
important

10

5/16/2009 19ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Components of a Simulator (1)

Simulator Kernel

the routines for doing the ‘‘real’’ simulation.

detailed description for event-driven simulation follows.

Routines for Processing of Circuit Description

input format: either written by the designer or obtained through
an interface with a schematic entry tool.

internal format: machine code or graph-based description.

input format has to be compiled into internal format.

5/16/2009 20ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Components of a Simulator (2)

Routines for Stimuli Processing

stimuli: the input patterns for all time instants during the
simulation.

they have to provide the kernel with the correct input patterns.

Routines for Output Processing

the simulator results are numbers; they have to be presented
in a user-friendly form, e.g. as tables or waveforms.

11

5/16/2009 21ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Zoom-in on Some Simulation Types

Gate-Level (§ 10.2)

Switch-Level (§ 10.3)

Mainly discuss simulator kernel issues

5/16/2009 22ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Gate Level Simulation

Function Logic function of small sub-circuits (nand,
nor, invert)

Signal Discrete, logic values, strength of signal

Time varying

12

5/16/2009 23ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signal Modeling

Discrete Signal values

Many different models

IEEE std_logic

don’t care-

weak 1H

weak 0L

weak unknownW

high impedanceZ

forcing 11

forcing 00

forcing unknownX

Un-initializedU

Note the mixture of
value and strength

Minimum set for
any simulator

5/16/2009 24ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signal Modeling (2)

Similar tables for:

More inputs
More logic values
Other gates

xX1X

X011

1110

X10

0 - Logic zero
1 - logic one
X - unknown

Three-value NAND gate

Gate models should deal
with multiple-valued logic.

Gate behavior can be
represented by truth tables
or compiled code.

13

5/16/2009 25ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Delay Models for Gate-Level

Simulation

inertial delay: a change to an input signal has to last at least
a certain time before it can trigger any reaction.

propagation delay: some time passes between the start of a
signal change at the gate input and the start of a signal
change at its output.

rise / fall delay: allow for high to low and low to high
assymetry.

5/16/2009 26ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Propagation Delay

AKA transport delay

Associated with output of gate

Unit Delay Equal delay for all gates

Nominal Delay Specific for type of gate

Rise/fall Delay Specific for type of gate, different for
rising/falling edge

Ambiguity Delay Minimum and maximum values for both
edges

Zero Delay Specific for type of gate

14

5/16/2009 27ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Delay Model Example

propagation delay model

in_1

in_2
out

time

'0'

'1'

in_2
'0'

'1'

in_1

0 1 2 3 4 5 6 7 8 9

out

time

'0'

'1'

0 1 2 3 4 5 6 7 8 9

out

time

'0'

'1'

0 1 2 3 4 5 6 7 8 9

rise / fall delay model

5/16/2009 28ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Inertial Delay.

Associated with input of gate

Can also include effects of (RC) wiring

Filter for short pulses

15

5/16/2009 29ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Gate-Level Simulation Kernel

Compiler-Driven Simulation

Execute all instructions in pre-determined sequence

Event-Driven Simulation

Simulator reacts to signals produced

5/16/2009 30ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Compiler-Driven Simulation

Based on making an executable-code
model of circuit;

Efficient simulation mechanism

(few machine instructions per gate);

Applicable to few delay models in
synchronous circuits

(e.g. zero-delay model).

combinational logic

registers

16

5/16/2009 31ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Compiler-Driven Simulation (2)

Leveling to specify evaluation order

Topological sort ~ longest path algorithm

5/16/2009 32ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Zero-Delay Example

A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6

n1 ← A;

n2 ← B;

n3 ← C;

n4 ← D;

n5 ← E;

n6 ← OR(n1, n2);

n7 ← AND(n4, n5);

n8 ← AND(n6, n3);

n9 ← OR(n7, n8);

F ← n9;

17

5/16/2009 33ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Compiled Code for Unit-Delay

Simulation

for (t tstart ; t tend ; t t 1)

new[1] A;

new[2] B;

new[3] C;

new[4] D;

new[5] E;

new[6] OR(old[1], old[2]);

new[7] AND(old[4], old[5]);

new[8] AND(old[6], old[3]);

new[9] OR(old[7], old[8]);

F new[9];

old new;

A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6

5/16/2009 34ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Unit-Delay Simulation

Assumes that all gate delays
equal 1.

Provides some information on
signal evolution in time,
especially to detect glitches.

time

'0'
'1'
'0'
'1'

0 1 2 3 4

n1

n2

n3

n4

n5

n6

n7

n8

n9

'0'
'1'
'0'
'1'

'0'
'1'
'0'
'1'

'0'
'1'
'0'
'1'

'0'
'1'

A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6A

B
C

D

E

F

n1

n2

n3

n4

n5

n8

n9

n7

n6

2

1

18

5/16/2009 35ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Event-Driven Simulation

Only a small part of the circuit is active at any time

Compiler-driven simulation becomes inefficient

Latency

Event-Driven Simulation Principles

Simulation predicting a sequence of state-changes
based on a sequence of input states

Event A gate need only to be evaluated when
there is a change in the input

State-transition ⇔ event = (time, net, new value)

Sequence of state-transitions ⇔ event queue

event queue aka event list, time queue
net aka node

5/16/2009 36ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Event-Driven Simulation (2)

Event-Driven Simulation Algorithm

Insert stimulus events into queue

While event queue not empty:

fetch event e of queue

t:= e.time

for all gates g with input connected to e.net:

evaluate g with new input e.value

if output of g changes:

schedule new event for output of g at t + ∆t where

∆t is the delay associated with the transition

Event = (time, net, new value)

19

5/16/2009 37ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Data Structures and Functions

for Event-Driven Simulation

Main functions:

new_queue: to create a new
event queue;

first_event: to remove and
return the earliest event in
the queue.

insert_event: to add an
event to the queue.

(reschedule): if the time of
an event changes

struct event {

struct time;

struct net *node;

struct signal_value value;

…

};

struct event_queue {

…

};

ADT: Priority Queue

5/16/2009 38ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Implementation of Event Queue

An assumption that is often valid: all gate delays are small
integer multiples of minimum-resolution delay ∆t .

The event queue can then be implemented by an array
containing linked lists of simultaneous events (events at k∆t

are stored at array index position k).

20

5/16/2009 39ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Array-Based Event Queue

time

current
time

(n 1) t

n t

(n 1) t

(n 2) t

(n 3) t

Often: all gate delays are small integer multiples of minimum-
resolution delay ∆t .

The event queue array containing linked lists of
simultaneous events (events at k∆t are stored at array index
position k).

Time complexity?

Insertion: O(1)

Deletion: O(1)

5/16/2009 40ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

The Time Wheel

current
time

(n L) t n t

(n 1) t

(n 2) t

(n 3) t

time
...

...

An indexing modulo L leads to the time wheel data structure.

Useful if most events occur within time window L << (tend – tstart)

21

5/16/2009 41ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

More on Implementation

Events that take place more than later than L∆t after the
current time should be stored in an overflow list.

If necessary, the overflow list itself can be implemented as a
time wheel with a coarser resolution, e.g. L∆t instead of ∆t .

If the variance in delays in the system is larger than can be
handled by time wheels, a priority queue should be used:
adding and removing events will require O(log n) time instead
of O(1) time (with n the number of events).

5/16/2009 42ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Gate-Level Simulation: Discussion.

Compiler-driven simulation evaluates many more circuit nets,
but does not have the overhead of event-queue manipulation
(the overhead can reach a factor of 100).

Event-driven simulation can handle sophisticated delay models.

Some simulators use a combination of both methods.

Yet another method is demand-driven simulation: it processes
the circuit backwards from the outputs that the user wants to
observe back to the inputs (but it can’t deal with circularities).

Simulation is always too slow hardware accelerated
simulation

22

5/16/2009 43ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Home Brew Simulator

See http://www.maxmon.com

free stuff Homebrew
[EDN, July ‘94]

d q
q4

R5

d q

R0

d q
q1

R2

w1

G1

d q
q2

R3

w2

G2

d q
q3

R4

w3

G3

d q
q0

R1

d q
q5

R6

d q
q6

R7

q7

clock

clear

xnor2 ("G1","q7","q1","w1");
xnor2 ("G2","q7","q2","w2");
xnor2 ("G3","q7","q3","w3");
dff ("R0","clear","clock","q7","q0");
dff ("R1","clear","clock","q0","q1");
dff ("R2","clear","clock","w1","q2");
dff ("R3","clear","clock","w2","q3");
dff ("R4","clear","clock","w3","q4");
dff ("R5","clear","clock","q4","q5");
dff ("R6","clear","clock","q5","q6");
dff ("R7","clear","clock","q6","q7");

Homebrew.zip

5/16/2009 44ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

/* Usage: sim stimulus_file response_file */

#include "models.c" /* Include the models */
#include "sim.c" /* Include the simulator */
Main (int argc, char *argv[])
{

char *stimulus = argv[1], /* stimulus file */
char *response = argv[2]; /* response file */

initialize(); /* initialize */

xnor2 ("G1","q7","q1","w1"); /* begin circuit description */
xnor2 ("G2","q7","q2","w2");
xnor2 ("G3","q7","q3","w3");
dff ("R0","clear","clock","q7","q0");
dff ("R1","clear","clock","q0","q1");
dff ("R2","clear","clock","w1","q2");
dff ("R3","clear","clock","w2","q3");
dff ("R4","clear","clock","w3","q4");
dff ("R5","clear","clock","q4","q5");
dff ("R6","clear","clock","q5","q6");
dff ("R7","clear","clock","q6","q7");

simulate (stimulus, response); /* go simulate it */
}

Slightly edited homebrew
simulator example

Normally use ‘linker’

23

5/16/2009 45ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

AND Model Code

void and2(char *name, char *net_in1, char *net_in2, char *net_out)
/*
* To add an and2 component into the circuit description. Add the
* component then hookup each net to each pin.
*/

{
Cmp *cmp;
cmp = cmp_add(cct, name, 3, and2_simulate);/* add component */
if(cmp) {

net_connect(cct, net_in1, cmp, 1); /* hook pin to net */
net_connect(cct, net_in2, cmp, 2);
net_connect(cct, net_out, cmp, 3);
/* set the driver pin on this component */
pin_set_driver(cmp, 3);

}
}

Function pointer

5/16/2009 46ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

AND Simulation Code.

void and2_simulate(Cmp *cmp, int not_used, Event *ev)
{

int val;
Pin *pin = PIN_ADDR(cmp, 1); /* first input pin */
Net *net;

/*
* ‘AND’ each of the input pins to determine output.
*/
val = pin->net->value; /* first input pin */
pin++; /* second input pin */
val &= pin->net->value; /* and2 */
pin++; /* output pin */
net = pin->net; /* net on output pin */

/*
* Schedule an event to appear on output pin. Event will happen at
* current time plus one unit.
*/
event_schedule(net, ev->time+1, val);

}

24

5/16/2009 47ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Backup

5/16/2009 48ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Cycle Based Simulation

For synchronous networks

Convert to Boolean equations
Not a gate level network

No timing data! Faster Simulation

Use static timing analysis instead

25

5/16/2009 49ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Levels of Simulation (1)

From the lowest level to higher levels:

Device-level simulation:

used to test the effect of fabrication parameters;

used by technologists, not by circuit or system designers.

Circuit-level simulation (e.g. SPICE):

analog;

nodal / tableau equations;

numerical integration;

Timing-level simulation:

analog, but with simplifications (macromodels, look-up tables);

piecewise-linear methods.

5/16/2009 50ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Levels of Simulation (2)

Switch-level simulation:

transistors are modeled as bidirectional switches;

mainly digital;

circuits extracted from mask patterns can directly be

simulated.

Gate-level (or logic) simulation:

‘‘gate’’ mainly refers to elements to be found in a

component library (e.g. for standard-cell design): NAND,

NOR, MULTIPLEXER, D-FLIPFLOP, LATCH, etc.;

unidirectional signal flow;

closely related to ‘‘fault simulation’’.

26

5/16/2009 51ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Levels of Simulation (3)

Register-transfer-level (RTL)

simulation:

circuit is seen as composed

of registers to store the

state and combinational

logic to compute the next

state (finite state machine

model).

Behavioral-level simulation:

description in high-level language, e.g. VHDL

(VHSIC Hardware Description Language).

combinational logic

registers

5/16/2009 52ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Levels of Simulation (4)

Mixed-level and mixed-mode simulation:

descriptions at different levels of abstractions coexist

within the same simulation environment;

critical parts of the design are described at a lower level

than noncritical parts, while it is inefficient or infeasible to

model the whole circuit at the level of the most critical part;

it might be easier to test a subsystem with stimuli from the

system itself, rather than describing the stimuli explicitly;

Hardware-software cosimulation:

useful in hardware-software codesign;

becomes more and more important.

27

5/16/2009 53ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Gate Modeling

3-valued NAND truth table

in_1 in_2 out

’0’ ’0’ ’1’

’0’ ’1’ ’1’

’0’ ’X’ ’1’

’1’ ’0’ ’1’

’1’ ’1’ ’0’

’1’ ’X’ ’X’

’X’ ’0’ ’1’

’X’ ’1’ ’X’

’X’ ’X’ ’X’

5/16/2009 54ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signal Values

Depending on Delay Model

0,1 ,U, D, EAmbiguity delay

0, 1, xRise/fall delay

0, 1Unit Delay

0, 1Zero delay

Signal ModelDelay model

Ambiguity E

FallingD

RisingU

Logic unknownX

Logic high1

Logic zero0

28

5/16/2009 55ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Propagation Delay Model (1)

Nominal/Unit Delay

5/16/2009 56ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Propagation Delay Model (2)

Rise/Fall Delay

units65OR gate

Units21Inverter

Units65AND gates

FallRise

29

5/16/2009 57ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Propagation Delay Model (3)

Ambiguity Delay

Fall32

Rise21Inverter

Fall74

Rise74OR

Fall74

Rise65AND

MaxMin

DelayGate

5/16/2009 58ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Compiler-Driven Simulation (2)

Evaluate first

30

5/16/2009 59ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Event-Driven Simulation

Event-driven simulation is a widely-used mechanism in gate-
level simulators.

An event is a change of a signal value that may trigger new
changes.

There is a queue of events ordered by the time the event is
going to happen.

Basic steps:

the output of a gate G changes at time ti.

the fanout of the gate is inspected; it consists of the inputs

of the gates Gk that are connected to the output of gate G.

if the outputs of the gates Gk change, they are scheduled to

change at time ti + ∆k , where ∆k is the delay associated

with the transition.

5/16/2009 60ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Event-Driven Simulation Algorithm

event driven simulation ()

struct event queue *Q;

Q new queue();

"insert stimuli in Q";

"initialize: all network nodes connected to a memory to 'U' and

all other nodes to 'X'";

for (t tstart ; t tend ;)

current event first event(Q);

t current event- time;

"process current event and add new events to Q at

time t appropriate delay";

31

5/16/2009 61ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signal Strength

MOS Simulation hinges on implementation aspects outside of
the pure Boolean Logic model

Bi-directional elements

Wired logic

Charge sharing

Signal Impedance: also discrete

For example

Forcing see (a)

Non-forcing see (b)

High-Impedance see (c)

(a) (b) (c)

5/16/2009 62ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signal Strength (2)

Strongest signal wins

32

5/16/2009 63ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signal Strength (3)

Heuristic for bi-directional elements

Signal direction A → B if …

A → B if Strength (I1) > Strength (I4)

B → A if Strength (I1) < Strength (I4)

5/16/2009 64ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signal Strength (4).

Sometimes several value-strength pairs

33

5/16/2009 65ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Switch-Level Simulation Model (1)

Circuit model: nets interconnected by transistors.

A signal is a pair (s, v):

strength(s): associated with (possibly discrete) impedance.

level(v): associated with voltage.

Possible values include: ’0’, ’1’ and ’X’.

5/16/2009 66ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Switch-Level Simulation Model (2)

There are two types of nets:

storage nets: they have a capacitance value; often the set of

values is discrete.

input nets: they act as sources of fixed value and can supply

unlimited current.

The transistors:

act as bidirectional switches;

have a strength value (signals passing through a transistor

have their strength reduced to this value).

34

5/16/2009 67ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Bryant's Model of Strength Values

There are w distinct strength values: 1, 2, ... , k, ... , w.

s = w ⇒ s is the strength of an input signal.

k < s < w ⇒ s is the strength of a transistor.

1 ≤ s ≤ k ⇒ s is the strength of a storage net.

5/16/2009 68ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Strength Model Examples

V

n0(5)

(3)

Vdd

(3)

(4)

(4)

A

B

A

B

Vdd

A

B

(3)

(3)

(3)

A

B

(3)

(3)

dd

(3)

(3)

VssVss Vss

n1(1)

n2(1)

Out Out

Out

n1(1)

n1(2)

n2(1)

n2(1)

n3(1)

n0(5)

n0(5)

n3(5) n3(5) n4(5) 1987 IEEE

V

n0(5)

(3)

Vdd

(3)

(4)

(4)

A

B

A

B

Vdd

A

B

(3)

(3)

(3)

A

B

(3)

(3)

dd

(3)

(3)

VssVss Vss

n1(1)

n2(1)

Out Out

Out

n1(1)

n1(2)

n2(1)

n2(1)

n3(1)

n0(5)

n0(5)

n3(5) n3(5) n4(5) 1987 IEEE1987 IEEE

Key point is
choosing strength
values consistent
with electrical
characteristics of
circuit

Transistor limits the
strength of its
output signal

Strongest signal
wins

35

5/16/2009 69ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Switch-Level Simulation

Techniques

Main principles:

Partition the circuit into unidirectional subcircuits

Channel-connected components are bi-directional

Gates bound uni-directional elements

Off-state transistors (and input nets) can also bound uni-
directional elements

Interaction between these subcircuits can be handled
similar to gate-level simulation.

Two types of partitioning exist: static and dynamic (=
accounting for signal values).

Apply special methods to compute the ‘‘steady-state’’ of the
channel-connected components.

5/16/2009 70ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Circuit Partitioning Example

Vdd

Vss

Vss

Vdd

Vdd

Vss

Vss

Vdd

'0'
T

Static partitioning Dynamic partitioning

36

5/16/2009 71ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Circuit Representation

n0(5)

(3)
BA
(3)

n1(1)

n2(1)

n3(5)

(3)
A

B
(3)

A convenient representation for
switch-level circuits is a
multigraph G(V, E) rather than
the more general cell-port-net
model.

Vertices represent nets and are
labeled with the net name and
strength.

Edges represent transistors and
are labeled with a transistor ID
and strength.

Vdd

Vss

5/16/2009 72ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signals and Signal Propagation (1)

A signal on a vertex u ∈ V is denoted by (σu , λu).

The strength of a transistor (u, v) ∈ E is given by εu,v .

εu,v = 0 when the transistor is off.

σu→v denotes the strength of the signal flowing from u ∈ V to v ∈ V.

σu→v = min(σu , εu,v)

The level of the signal flowing remains λu .

There are two types of nets:

driven nets: nets having a conducting path to an input net.

charged nets: nets electrically isolated from input nets.

37

5/16/2009 73ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Signals and Signal Propagation (2)

Suppose that a driven net v ∈ V has edges (u1,v), … ,(um,v) ∈ V,
then:

For a charged net, the net’s own signal should be taken into
account:

When combining signals from different directions, the level of

the new signal equals the level of the strongest signals. In case

of multiple signals with equal strength and different levels, the
new level becomes ’X’.

1 ≤ i ≤ m i
σv = max σu → v

1 ≤ i ≤ m i
σv = max (σv, max σu → v)

Strength of signal on net v

5/16/2009 74ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation Algorithm Principles

The algorithm is based on
a repeated application of:

σv = max (σv, σu → v)

This should be done
carefully: propagate the
strongest signals first.

Implement with an array of
queues, one array position
for each strength value.

n0(5)

(3)

Vdd

(4)

Vss

n1(5)

n2(1) n3(1)
(3)

1987 IEEE

38

5/16/2009 75ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation Algorithm: Discussion

The algorithm operates in linear time with respect to the
number of nets and transistors.

The algorithm is static: changes to input signals require
repeating the complete propagation. It can, however, be
modified for dynamic simulation.

This algorithm does not incorporate any type of delays related
to the physical implementation. Switch-level timing simulation
can deal with actual R and C values derived from the layout.

5/16/2009 76ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

RSIM Linear Switch Level Model

Interval Arithmetic
for X-states

X

1

0

PNVgate

Rds

∞
Reff

[Reff - ∞] [Reff - ∞]

Reff

∞

39

5/16/2009 77ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Linear Switch Level Model

Transistor dimension

Transistor type

Transistor context

pull-down, pass, …

Reff depends on:

width

length
)context,type(fReff ×=

5/16/2009 78ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Logic Level

[]+−= V,VV

otherwiseX

V- ≥ Vhi1

V+
≤ Vlo0

Logic States

otherwiseX

V- ≥ Vhi1

V+
≤ Vlo0

Logic States

40

5/16/2009 79ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Determining Node Potentials

0

1 volt

1

R
eff

 = 8

R
eff

 = 2

0 volt

x

1 volt

1

Reff = 8

R
eff

 = 2

0 volt

1 volt

8 Ω

2 Ω

0 volt

V = 0.2
Logic 0

Vlo = 0.25

Vhi = 0.75

8 Ω

2 [2, ∞]

V = [0.11, 0.2]

Logic 0

5/16/2009 80ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Determining Node Potentials

x

1 volt

x

R
eff

 = 8

Reff = 2

0 volt

[2, ∞] [2, ∞]

8

V = [0.11, 1]

Logic x

Vlo = 0.25

Vhi = 0.75

41

5/16/2009 81ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Determining Transition Time

Calibration

staticR Final node potential

dynlowR Used for RC time high → low

dynhighR Used for RC time low → high

5/16/2009 82ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

RSIM Simulation Algorithm

Event = (net, new logic value, time)

Event Driven

Algorithm: While event list ≠ ∅
1. take event from list
2. set node on new value
3. determine effect on other nodes

Limited number of nodes (stage, vicinity)
Determine charge-sharing (immediately)
Determine final value (RC time)

42

5/16/2009 83ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

RSIM Simulation Algorithm

(*) = nodes which are influenced

5/16/2009 84ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Charge Sharing

ecapacitanc total

1 levellogic one capacitanc total
V =−

ecapacitanc total

xor1levellogic one capacitanc total
V =+

[10/11, 1]X

10/110

11

After switched
on

Before
switched on

Voltage on V

[10/11, 1]X

10/110

11

After switched
on

Before
switched on

Voltage on V

otherwiseX

V- ≥ Vhi1

V+ ≤ Vlo0

Logic States

otherwiseX

V- ≥ Vhi1

V+ ≤ Vlo0

Logic States

43

5/16/2009 85ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

RC Time

R: Rdynhi or Rdynlo

C: total cap. on logic level 0 or x if final state 1

total cap. on logic level 1 or x if final state 0

RC time inaccurate

Better:

R1C1 + (R1 + R2)C2 (Elmore Delay)

OUTIN

5/16/2009 86ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Switch Level Simulation

Conclusion

RSIM

Linear switch level (switch level
timing)

Interval arithmetic

Conversion to logic states

Lumped (concentrated) capacitances

SLS

Linear switch level

Interval arithmetic (consistent)

Conversion to logic states only for
transistor state

Elmore delay

44

5/16/2009 87ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

SPICE: 39 min 41 sec SLS: 2.4 sec (HP9000840, ~anno 1990)

Switch Level Timing (SLS) vs SPICE

Spice

SLS

5/16/2009 88ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs

Simulation Conclusion

Gate level huge circuits, not appropriate for MOS

Discrete switch level appropriate for MOS, no timing
information

Linear switch level appropriate for MOS, timing estimation

Timing simulation accurate timing, circuit size limited

Circuit simulation most accurate, “small” circuits

Cycle based simulation fast, no timing, synchronic circuits

