

Simulation Abstraction (models)								
	1	Domain						
Level	Behavior	Structure	Geometry					
Architecture	Performance	Processors	Basic Partitions					
	Instruction Set	Memory	Macrocells					
	Exceptions	Buses						
Register-Transfer	Algorithms	Registers	Floorplan					
	Operation	Functional						
	Sequences	Units						
Logic	State transitions	Latches	Cells					
	Boolean eq's	Logic gates						
	Truth Tables							
Device	Network equations	Transistor	Exact geometry					
	Frequency	Capacitors						
	Response	Resistors						
	V(t), I(t)							
ET 4255 - Electronic Design	• Automation 2009 © Nick van der M	eijs 5/16/2009	11					

Pr	opagation D	elay		
AKA transport de	elay			
Associated with	output of gate			
Zero Delay	Specific for type o	of gate		
Unit Delay	Equal delay for all gates			
Nominal Delay	Specific for type of gate			
Rise/fall Delay	Specific for type of rising/falling edge	of gate, different for		
Ambiguity Delay	Minimum and maximum values for both edges			
ET 4255 - Electronic Design Automation	2009 © Nick van der Meijs	5/16/2009	26	


```
/* Usage: sim stimulus_file response_file */ Normally use 'linker'
#include "models.c"
                                       /* Include the models */
#include "sim.c"
                                       /* Include the simulator */
Main (int argc, char *argv[])
  char *stimulus = argv[1],
                                       /* stimulus file */
  char *response = argv[2];
                                       /* response file */
  initialize();
                                       /* initialize */
  xnor2 ("G1","q7","q1","w1");
                                       /* begin circuit description */
  xnor2 ("G2","q7","q2","w2");
  xnor2 ("G3","q7","q3","w3");
  dff ("R0","clear","clock","q7","q0");
  dff ("R1","clear","clock","q0","q1");
  dff ("R2","clear","clock","w1","q2");
  dff ("R3","clear","clock","w2","q3");
                                               Slightly edited homebrew
  dff ("R4","clear","clock","w3","q4");
                                                  simulator example
  dff ("R5","clear","clock","q4","q5");
  dff ("R6","clear","clock","q5","q6");
  dff ("R7","clear","clock","q6","q7");
   simulate (stimulus, response);
                                    /* go simulate it */
}
ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs
                                                 5/16/2009
                                                                       44
```


AND Simulation Code.
<pre>void and2_simulate(Cmp *cmp, int not_used, Event *ev) {</pre>
<pre>int val; Pin *pin = PIN_ADDR(cmp, 1); /* first input pin */ Net *net; /*</pre>
<pre>/* * `AND' each of the input pins to determine output. */</pre>
<pre>val = pin->net->value; /* first input pin */ pin++; /* second input pin */ val &= pin->net->value; /* and2 */</pre>
<pre>pin++;</pre>
<pre>* Schedule an event to appear on output pin. Event will happen at * current time plus one unit. */</pre>
<pre>vent_schedule(net, ev->time+1, val); }</pre>
ET 4255 - Electronic Design Automation 2009 © Nick van der Meijs 5/16/2009 46

Gate Modeling						
3	3-valued NAND truth table					
	in_1	in_2	out			
	'0'	'0'	'1'			
	'0'	'1'	'1'			
	'0'	'X '	'1'			
	'1'	'0'	'1'			
	'1'	'1'	'0'			
	'1'	'X '	'X'			
	'X'	'0'	'1'			
	'X'	'1'	'X'			
	'X'	'X'	'X'			
	L			I		
T 1955 - Flashania Danima Automation 2000 @ Nickupan day Main		5/16/2000				

