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Abstract

To compute a function such as a mapping from vertices to col-
ors in the graph coloring problem, current practice in Answer
Set Programming is to represent the function as a relation.
Among other things, this often makes the resulting program
unnecessarily large when instantiated on a large domain. The
extra constraints needed to enforce the relation as a function
also make the logic program less transparent. In this paper,
we consider adding functions directly to normal logic pro-
grams. We show that the answer set semantics can be gen-
eralized to these programs straightforwardly. We also show
that the notions of loops and loop formulas can be extended,
and that through program completion and loop formulas, a
normal logic program with functions can be transformed to a
Constraint Satisfaction problem.

Introduction

Currently in Answer Set Programming (ASP), functions are
represented as special relations. For instance, to encode the
graph coloring problem, instead of a unary function, say
color(x) that maps vertices to colors, one uses a binary rela-
tion, say color(x, c) to mean that the vertex x is assigned the
color c. For this to work, one needs to add some axioms say-
ing that the predicate color(x, c) is in fact functional. More
importantly, it increases the size of the final instantiated pro-
gram both in terms of the number of atoms and the number
of rules. For instance, with color(x, c) we getM×N atoms,
whereM is the number of vertices andN colors. For theN -
queen’s problem, if we use a predicate q(x, y) to say that the
queen at row x is placed in column y, this will generate N2

atoms.

In this paper, we consider adding functions to logic pro-
grams. We shall argue that this allows for more direct and
compact representation of problems like the graph coloring,
the queen’s problem, and the Hamiltonian circuit problem.
We shall extend the answer set semantics to programs with
functions and relate it to Constraint Satisfaction Problem
(CSP) through program completion and loop formulas. Our
preliminary experimental results indicate that the reduction
in size as a result of using functions can pay off when the
problem become large.
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Syntactically, functions are allowed in logic programming
from the very beginning (c.f. (Lloyd 1987)). However, they
are normally interpreted under Herbrand universe. For in-
stance, in Prolog, one cannot declare a fact like “f(a) = b”.
In fact, the query “f(a) = b” will always receive a “no” an-
swer. In other words, functions are pre-defined and their
values cannot be changed by the user. The same holds
for most of the work in ASP that allows function symbols
(e.g. (Bonatti 2004; Baselice, Bonatti, & Criscuolo 2007;
Syrjänen 2001; Simkus & Eiter 2007; Calimeri, Cozza, &
Ianni 2007)). While lparse (Syrjänen 1998) allows function
symbols, terms constructed of these functions are just names
standing for constants.

One noticeable exception is the work of Cabalar and
Lorenzo (2004) and Cabalar (2005) where they proposed a
logic programming language with functions only. The main
differences between their language and ours are that we ex-
tend normal logic programs with functions rather than using
a pure functional language, and that functions must be total
in our language but can be partial in theirs. A more detailed
comparison will be given later in the paper.

In the next section, we introduce our language of normal
logic programs with functions. We then extend the answer
set semantics to this language and show that under this se-
mantics, functions can indeed be replaced by relations in a
systematic way. We then extend the notions of loops and
loop formulas to normal logic programs with functions and
show how they can be used to translate logic programs with
functions to constraint satisfaction problems (CSPs). We de-
scribe an implementation of logic programs with functions
using CSP solvers based on this result, and report some pre-
liminary experimental results.

Normal Logic Programs with Functions

In the following, letL be a many-sorted first-order language.
Recall that in such a language, every predicate has an ar-
ity that specifies the number of arguments the predicate has
and the type (sort) of each argument, and similarly for con-
stants and functions. Variables also have types associated
with them, and when they are used in a formula, their types
are normally clear from the context.

The language L may have pre-interpreted symbols like
the standard arithmetic functions such as “+”, “−”, and the
absolute function “|.|”.



In this paper, by an atom we mean an atomic formula that
does not mention equality, and by an equality atom we mean
a formula of the form t = t′. Unless stated otherwise, in this
paper, by functions we mean proper functions, not constants.

A normal rule with functions, or simply a rule, is an ex-
pression of the form:

A← B1, . . . , Bm, notC1, . . . , notCn (1)

where A is empty or an atom, Bi, 1 ≤ i ≤ m, and Cj ,
1 ≤ j ≤ n) are atoms or equality atoms. If A is an atom,
then the rule is a proper rule; if A is empty, we also call the
rule a constraint.

A normal logic program P is a set of rules together with
a set of type definitions, one for each type τ used in the rules
of P , of the form:

τ : D (2)

where D is a finite and nonempty set of elements. Unless
stated otherwise, all logic programs in this paper are as-
sumed to be normal.

Informally, a type definition defines a domain for a type
(sort). This is like in a first-order structure for a many-sorted
language, there is a domain for each type. Here we require
that if a constant c of type τ occurs in the rules of P , then
the domain D of τ as specified in the type definitions of P
must contain c.

Example 1 The graph coloring problem can be formalized
with the following constraint:

← arc(x, y), clr(x) = clr(y), (3)

where arc is of arity vertex×vertex, and clr a unary func-
tion of type vertex → color. A particular instance of the
graph coloring problem is specified by giving type defini-
tions for vertex and color along with a set of facts about
arc(x, y).

Example 2 The Hamiltonian circuit problem can be for-
malized by the following rules:

← not reached(x),
← not arc(x, hc(x)),

reached(hc(x)) ← initial(x),
reached(hc(x)) ← reached(x).

Here reached(x) and initial(x) are of arity vertex, and
hc(x) is a unary function of the type vertex→ vertex. An
instance of the problem is specified by a domain for vertex,
and a set of facts for arc(x, y) and a fact for initial(x).
This program is more or less a direct “functionalization”
of Niemelä’s encoding of the same problem using a nor-
mal logic program (Niemelä 1999), and is also similar to
Cabalar’s encoding of the problem in his functional action
language1

Example 3 The queens problem can be formalized by the
following rules:

← q(x) = q(y), x 6= y,

← |q(x)− q(y)| = |x− y|, x 6= y.

1http://www.dc.fi.udc.es/∼cabalar/fal/.

Here q is a function of the type pos → pos, and q(i) is
the column where the ith-queen (the one in row i) is to be
placed. The expression x 6= y in a rule stands for not x = y.
There are actually two types here: pos, whose domain is
1..N , and int, whose domain is −N..N , for the N-queen
problem. The pre-interpreted function “−” is of the type
pos × pos → int and “|.|” of int → int. These two func-
tions have their standard meanings. This program is essen-
tially the same as Cabalar’s encoding of 8-queens problem
in his functional action language.

For logic programs without functions, an answer set is a
set of atoms that defines the relations in the program: an
atom is true iff it is in the answer set. For logic programs
with functions, a model needs to define not only relations
but also functions in the program. Given a logic program
P that may contain functions, an interpretation I of P is a
mapping that assigns each relation and function symbol in
P a meaning in the domains given in the type definitions of
P :

• if R is a relation of arity τ1 × · · · × τn and the type
definitions τi : Di, 1 ≤ i ≤ n, are in P , then RI ⊆
D1 × · · · ×Dn.

• if f is a function of type τ1 × · · · × τn → τn+1, n > 1,
and the type definitions τi : Di, 1 ≤ i ≤ n + 1, are in
P , then f I is a function from D1 × · · · × Dn to Dn+1.
Notice here that a pre-interpreted function should follow
its standard interpretation, thus cannot change it meaning
from one interpretation to another.

We now define the conditions for an interpretation to be an
answer set of a logic program with functions. We basically
follow the stable model semantics for logic programs with-
out functions (Gelfond & Lifschitz 1988): we first instanti-
ate all variables in the rules, use the given interpretation to
transform the program into one without negation and func-
tions, and check if the resulting program entails the same set
of atoms true in the given interpretation.

Given a logic program P , the grounding of P consists of
type definitions as in P and the rules that are obtained by re-
placing variables in the rules of P with elements in their re-
spective domains (recall that we are assuming a many-sorted
first-order language, and each variable has a type associated
with it). Thus if variable x is of type τ and the domain of τ
is D according to the type definitions in P , then x is to be
replaced by elements in D. Notice that even after grounding
when all variables have been replaced by elements in their
respective domains, we still need to keep the type definitions
as they are still needed to interpret the functions in the pro-
gram.

For instance, suppose P is

node : {1, 2},

color : {r, b},

arc : node× node,

clr : node→ color,

brighter(clr(x), clr(y))← arc(x, y).

Notice that although the arity of the predicate arc and the
type of the function clr are part of the given language, not



the program P , we write them in P for clarity. The ground-
ing of P is

node : {1, 2},

color : {r, b},

arc : node× node,

clr : node→ color,

brighter(clr(1), clr(1))← arc(1, 1),

brighter(clr(1), clr(2))← arc(1, 2),

brighter(clr(2), clr(1))← arc(2, 1),

brighter(clr(2), clr(2))← arc(2, 2).

In the following, unless otherwise stated, we shall equate
a logic program with its grounding. Thus rules with vari-
ables are considered shorthands that will be replaced by their
instantiations.

Notice that once a variable in a rule is replaced by objects
of a domain, the grounded rules may have symbols not in
the original language L. In the following, we let LP be the
language that extends L by introducing a new constant for
each object that is in the domain of a type, but not a constant
in L. These new constants will have the same type as their
corresponding objects. Now the fully instantiated rules will
be in the language LP .

Notice that an interpretation I of P can be considered as a
first-order structure for LP : the domains are those specified
in the type definitions of P , the relations and functions are
interpreted as given by I , and each constant is mapped to
itself. In the following, we identify an interpretation of P
with its associated first-order structure of LP as described
above, and when we say that, for example, I is a model of a
formula ϕ, it is to be understood under in this sense.

Given an interpretation I for P , we define the reduction
of P under I , written P I , as the set of rules obtained from
P by:

• replace each functional term f(c1, ..., cn) in a rule by c if
f I(c1, ..., cn) = c;

• if a rule contains c 6= c or c = d in its body, where c and
d are distinct constants in LP , then remove the rule;

• if a rule contains notA for some A such that A is true
under I , then remove this rule;

• remove all equality literals from the bodies of the remain-
ing rules;

• remove all notA from the bodies of the remaining rules.

Clearly, P I is a set of rules that do not have negation, equal-
ity, or functions.

Now if P is a program that does not have any constraints,
then an interpretation I is an answer set of P if for every
atom in P , it is true under I iff it is in the least model of P I .
Here an atom p(c1, ..., cn) is said to be in P if p occurs in P
and ci ∈ Di, where Di is the domain of the ith argument of
p as given by the type definitions of P .

Generally, I is an answer set of P if it satisfies the con-
straints in P and is an answer set of the program obtained
from P by removing its constraints.

For instance, let P be

τ : {a, b},

p, q : τ,

f : τ → τ,

p(f(x))← not q(x),

q(f(x))← not p(x).

Consider an interpretation I such that

{f I(a) = b, f I(b) = a}.

Then P is essentially the following program (in P , replace
f(a) by b and f(b) by a):

p(b)← not q(a),

p(a)← not q(b),

q(b)← not p(a),

q(a)← not p(b).

Thus I is an answer set of P iff

{p(x) | x ∈ {a, b}, p(x) is true in I} ∪

{q(x) | x ∈ {a, b}, q(x) is true in I}

is an answer set of the above program. Now if f I(a) =
f I(b) = a, then P is essentially the following program:

p(a)← not q(a),

p(a)← not q(b),

q(a)← not p(a),

q(a)← not p(b).

Thus I is an answer set of P if the set of atoms true in it is
{p(a), q(a)}.

Eliminating Functions

As we mentioned in the introduction, functions are not nec-
essary theoretically speaking. They can be eliminated by
using relations. We now make this precise.

Let P be a logic program that may have functions. For
each function f : τ1× · · · × τn → τ in P , we introduce two
corresponding relations fr and fr. They both have the arity
τ1×· · ·×τn×τ , and informally fr(x1, ..., xn, y) stands for

f(x1, ..., xn) = y and fr(x1, ..., xn, y) for f(x1, ..., xn) 6=
y. Now let F(P ) be the union of the rules obtained by
grounding the following rules for each function f in P using
the domains in the type definitions of P :

← fr(x1, . . . , xn, y1), fr(x1, . . . , xn, y2), y1 6= y2,

fr(x1, . . . , xn, y)← not fr(x1, . . . , xn, y),

fr(x1, . . . , xn, y)← fr(x1, . . . , xn, z), y 6= z.

Let R(P ) be the set of rules obtained from the rules in P by
the following transformation:

• Repeatedly replace each functional term f(u1, . . . , un),
where each ui is a simple term in that it does not men-
tion a function symbol, by a new variable x and add
fr(u1, . . . , un, x) to the body of the rule where the term
appears.



• Ground all the variables introduced in the previous step.

For example, if r is the following rule

p(f(g(a)), b)← q(g(c)),

it will be first transformed into

p(f(x), b)← q(y), gr(a, x), gr(c, y),

then into

p(z, b)← q(y), gr(a, x), gr(c, y), fr(x, z).

The variables x and y will be of the same type as the range
of g, thus will be instantiated using elements from the range
of g, and similarly, the variable z will be instantiated by ele-
ments from the range of f .

Clearly F(P ) ∪ R(P ) is a normal logic program without
functions. This program is equivalent to P :

Theorem 1 Let P be a normal logic program with func-
tions. An interpretation I is an answer set of P iff R(I)
is an answer set of F(P ) ∪ R(P ), where R(I) is the set of
atoms that are true in I:

R(I) = {p(~c) | pI(~c) holds} ∪

{fr(~c, a) | f
I(~c) = a} ∪ {fr(~c, a) | f

I(~c) 6= a}.

Cabalar and Lorenzo’s Functional Logic

Programming

As we mentioned in the introduction, functions in logic pro-
gramming have mostly been used with a fixed interpreta-
tion. Thus if one wants to write a logic program to compute
a function, one needs to represent the function by a rela-
tion. One noticeable exception is the work of (Cabalar &
Lorenzo 2004; Cabalar 2005). Cabalar and Lorenzo (2004)
introduced a pure functional logic programming language.
Relations are considered as functions with only two possible
values, true or false. There is no negation-as-failure opera-
tor in the language. Instead, functions can take on default
values. This language is extended by Cabalar (2005), and
used as an action language.

A major difference between Cabalar and Lorenzo’s for-
malism and ours is that functions can be partial in theirs but
must be total in ours. For instance, consider the following
program

f : {1} → {a, b},

← f(1) = a.

According to our semantics, the unique answer set of this
program is {f(1) = b}. However, the unique model is the
empty set according to theirs.

In a sense, one can see the language proposed here as a
middle ground between traditional logic programming lan-
guages, which encode functions as relations, and the lan-
guages of (Cabalar & Lorenzo 2004; Cabalar 2005), which
encode relations as functions.

From Programs with Functions to CSPs

For logic programs without functions, answer sets can be
computed by SAT solvers using program completions and
loop formulas (Lin & Zhao 2004). For programs with func-
tions, the natural alternatives to SAT solvers are CSP solvers.
The basic idea is that a functional term is like a variable in
a CSP, and can have any value in the range of the function.
The constraints will be program completions and loop for-
mulas.

Before delving into the technical details, let’s first see
some examples. Recall that a CSP is a tuple (X,D,C),
where X is a set of variables, D a set of domains, one for
each variable in X , and C a set of constraints about the
variables in X . A solution to a CSP is an assignment that
maps each variable in X to an element in its domain such
that under the assignment, all constraints in C are satisfied.
Constraints can be given as formulas in a formal language.
Abstractively, a constraint can be thought of as a pair (~x, S),
where ~x is a tuple of variables, and S a set of tuples of val-
ues in the domains of the variables in ~x. Thus an assignment
satisfies a constraint (~x, S) if under the assignment, the tuple
of values taken by the variables in ~x is in S.

Consider first the program for the graph coloring problem
given earlier. For each vertex n, we introduce a variable
corresponding to clr(n) whose domain is the set of given
colors, and the constraints are those corresponding to the
rules obtained from (3) by instantiating variables x and y
with vertices. This corresponds to the standard formulation
of the graph coloring as a CSP.

As another example, consider the following program

τ : {a, b},

p, q : τ,

f : τ → τ,

p(f(x))← not q(x),

q(f(x))← not p(x).

For each x in the domain D = {a, b}, we have two propo-
sitional variables p(x) and q(x), and one functional variable
f(x) whose domain is also D. The constraints for this pro-
gram are the sentences in the program completion, i.e. the
instantiations of the following formulas on the domain D:

p(x) ≡
∨

y∈D

x = f(y) ∧ ¬q(y),

q(x) ≡
∨

y∈D

x = f(y) ∧ ¬p(y).

For this example, the program completion is sufficient to
capture the answer set semantics. In the general case, we
also need loop formulas.

Program Completion

The completion semantics given by Clark (1978) allows
functions in a logic program. It can be adapted here straight-
forwardly.

Recall that here a logic program consists of two parts: a
set of rules that may have variables and functions, and a set



of type definitions that specifies a domain for each type, and
we have identified such a logic program with its grounding.
In the following, we denote by Atoms(P ) the set of atoms
in P : recall that an atom p(c1, ..., cn) is said to be in P if p
is a predicate in P , and ci ∈ Di, where Di is the domain of
the type of the ith argument of p.

Notice that since pre-interpreted functions have their
meanings fixed, and that constants are interpreted by them-
selves, if a ground term mentions only constants and pre-
interpreted functions, then it can be evaluated independent
of interpretations.

In the following, given an atomic formula p(t1, ..., tn) and
an atom p(c1, ..., cn) in Atoms(P ), we say that the atomic
formula p(t1, ..., tn) can cover the atom p(c1, ..., cn) if for
each 1 ≤ i ≤ n,

• if ti mentions only constants and pre-interpreted func-
tions, then ti can be evaluated to ci;

• if ti is f(~s) and cannot be evaluated independent of inter-
pretations, then ci has the same type as the range of f .

Intuitively, this means that under some functional assign-
ments, p(t1, ..., tn) may become p(c1, ..., cn).

Now let P be a program and p(~c) ∈ Atoms(P ). The
completion of p(~c) (w.r.t. P ), written Comp(p(~c), P ), is the
following propositional formula:

p(~c)↔ B̂ody1 ∧ ~t1 = ~c ∨ . . . ∨ B̂odyn ∧ ~tn = ~c (4)

where

• (p(~t1) ← Body1),. . . , (p(~tn) ← Bodyn) are all of the
(grounded) rules in P whose heads can cover p(~c);

• B̂odyi stands for the conjunction of all element in Bodyi

with “not ” replaced by logical negation “¬”;

• in general, ~ξ = ~ψ if the two vectors have the same length
and their corresponding components are all equal.

Now the completion of P is the set of the completions of
all atoms in Atoms(P ) and the formulas corresponding to
the constraints in P .

Loops and loop formulas

We now extend the notions of loops and loop formulas from
(Lin & Zhao 2004) to programs that may have functions.

Let P be a program. The positive dependency graph of
P , written GP , is the directed graph (V,E), where V =

Atoms(P ), and for any p(~c), q(~d) ∈ V , (p(~c), q(~d)) ∈ E if
there is a rule r of the form (1) in P such that

• A = p(~t) for some ~t, and p(~t) can cover p(~c);

• Bi = q(~s) for some 1 ≤ i ≤ m and ~s such that q(~s) can

cover q(~d);

• if the ith element in the above ~t and the kth element in the
above ~s are syntactically identical, then the ith element in

~c and the kth element in ~d are also syntactically identical.

The last condition is to make sure that a rule such as

p(f(a))← q(f(a))

generates only dependency edges such as (p(b), q(b)) and
(p(c), q(c)), but not the ones such as (p(b), q(c)).

A finite non-empty subset L of V is a loop of P if there
is a non-zero length cycle that goes through only and all the
nodes in L. In other words, the induced subgraph of GP on
L is strongly connected. It’s clear that if the given program
does not mention any functions, then the above definitions of
positive dependency graph and loops are the same as those
in (Lin & Zhao 2004).

For instance, if P is the following program

τ : {a},

µ : {c1, . . . , cn},

f : τ → µ,

p(f(a))← p(f(a)).

then the loops of P are {p(c1)}, . . . , {p(cn)}.
Given a loop L of P , and an atom p(~c) in L, the exter-

nal support formula of p(~c) w.r.t. L (Lee 2005), written
ES(p(~c), L, P ), is the following formula:

∨

1≤i≤n






B̂odyi ∧ ~c = ~ti ∧

∧

q(~s)∈Bodyi

q(~d)∈L

~s 6= ~d






, (5)

where (p(~t1) ← Body1),. . . , (p(~tn) ← Bodyn) are all of
the rules in P whose heads can cover p(~c).

The loop formula of L in P , written LF (L,P ), is then
the following formula:

∨

A∈L

A ⊃
∨

A∈L

ES(A,L, P ). (6)

Notice that since an atom covers itself, our notions of
completion, external support and loop formula generalize
the corresponding ones for normal logic programs in (Lin
& Zhao 2004).

Theorem 2 Let P be a program. An interpretation I of P is
an answer set of P iff it satisfies Comp(P )∪LF (P ), where
LF (P ) is the set of loop formulas of P .

From Programs with functions to CSPs

We can now describe our mapping from logic programs with
functions to CSPs.

First, we need to assume a certain “normal form” for func-
tional terms in a logic program. In the following, we say
that a logic program P is free of functions in arguments if
all terms that can be evaluated independently of interpreta-
tions have been evaluated to constants in LP , and none of
the predicates or functions that are not pre-interpreted have
a functional term in their arguments.

Given any logic program P , we can transform it into one
that is free of functions in arguments using the following
procedure:

• evaluate all terms that mention only constants and pre-
interpreted functions to constants;



• for each rule in P , repeatedly replace every occurrence
of a functional term f(u1, . . . , un) in any argument of a
predicate or a function that is not pre-interpreted in the
rule by a new variable v of the same type as the range of
f , and add f(u1, . . . , un) = v to the end of the body of
the rule, where each ui is a simple term in that it does not
mention a function symbol;

• instantiate the rules obtained in the above step.

Example 4 Consider the HC program P in Example 2. The
first two steps in the above procedure turns the rules of P
into the following rules

reached(y) ← initial(x), y = hc(x),
reached(y) ← reached(x), y = hc(x),

← not reached(x),
← not arc(x, y), y = hc(x).

Grounding these rules producesO(n2) number of rules for a
graph with n vertices. In comparison, grounding Niemelä’s
(1999) program on a graph with n vertices may produce
O(n3) number of rules.

It is clear that this transformation does not introduce any
new ground atoms, and the original program and the trans-
formed one are equivalent in the sense that they have the
same answer sets. Thus without loss of generality, in the
following, we assume that the given logic program is free of
functions in arguments.

Given such a logic program P , we translate it to a CSP,
denoted by R(P ) = 〈X,D,C〉, as follows: the set X of
variables and their domains D are as follows:

• for each atom p in Atoms(P ), there is a variable for it
whose domain is {0, 1}, and

• for each functional term f(u1, . . . , un) in P such that f is
not pre-interpreted, there is a variable for it whose domain
is the range of the function f ,

the set C of the constraints is as follows: for each formula φ
in Comp(P ) ∪ LF (P ), there is a constraint c(φ) = 〈S,R〉
in C, whereR is the constraint obtained from φ by replacing
atoms and functional terms in it by their corresponding vari-
ables, and S is the set of variables occurring in R. Notice
that c(φ) leaves pre-interpreted functions as they are in φ.

Under this formulation, the answer sets of a logic pro-
gram P will correspond to the solutions to its corresponding
CSP R(P ) under the following mapping: let I be an inter-
pretation of P , the variable assignment corresponding to I ,
written v(I), is defined as follows:

• if x ∈ X corresponds to the atom p, then v(I) assigns x
1 iff p is true in I .

• if x ∈ X corresponds to the term f(u1, . . . , un), then
v(I) assigns x the value u iff f I(u1, . . . , un) = u.

Similarly, given a variable assignment of R(P ), a corre-
sponding interpretation of P can be easily computed.

Theorem 3 Let P be a logic program that is free of func-
tions in arguments, and I an interpretation of P . Then I is
an answer set of P iff v(I) is a solution toR(P ).

Some Experimental Results
Given our translation above from logic programs to CSPs,
we can compute the answer sets of logic programs with
functions using an algorithm that is similar to the one used
by ASSAT (Lin & Zhao 2004), except that we now use a
CSP solver instead of a SAT solver.

First of all, notice that our translation from logic programs
to CSPs actually has two steps: it first transforms a logic
program to a set of quantifier-free sentences in the form of
completions and loop formulas, and then from these sen-
tences to CSPs. The second part is actually quite general in
that it will work for any quantifier-free sentences that do not
have any functional terms in the arguments of predicates and
functions, provided the domain of each type is given and fi-
nite. We make use of this observation in our Algorithm 1
given below.

Algorithm 1: FASP(X) - X stands for a CSP solver

input : A program P
output: An answer set of P if P has one, and report no

otherwise
begin

1. Σ← Comp(P ).

2. R(Σ)← convert Σ to the format of X (typically in the
language CSP2.0 used at the 2006 CSP competition).

3. Find a solution S ofR(Σ) by X .

4. If no solution, return no answer set.

5. Map S to an interpretation I of P .

6. Compute M− = {p(~c)|pI(~c) holds} \ Γ(P I), where
Γ(P I) is the least model of P I .

7. If M− = ∅, return I as an answer set.

8. Compute all the maximal loops under M−, add their
loop formulas to Σ, and goto step 2.

end

There are a number of available CSP solvers. We tried
abscon2, sugar 0.33 with minisat2.04, and sat4j-2.0-RC35.
They all performed well at the 2006 CSP Competition6. The
benchmarks that we tried are the HC problem, the graph col-
oring problem, and the queen’s problem. Our encodings of
these problems using functions are as given above. We com-
pared FASP(X) with the ASP solvers smodels7, cmodels8

with zChaff 2007.3.12, and clasp9, using the following stan-
dard encodings of these problems that do not use functions:

1. For the HC problem, we use two versions, one originally
by Niemelä (1999):

2http://www.cril.univ-artois.fr/∼lecoutre/research/tools/abscon.html
3http://bach.istc.kobe-u.ac.jp/sugar/
4http://minisat.se/
5http://download.forge.objectweb.org/sat4j/sat4j-2.0-RC3.zip
6http://www.cril.univ-artois.fr/CPAI06/
7http://www.tcs.hut.fi/Software/smodels/
8http://www.cs.utexas.edu/∼tag/cmodels/
9http://www.cs.uni-potsdam.de/clasp/



hc(X,Y) :- arc(X,Y), not otherroute(X,Y).
otherroute(X,Y) :-arc(X,Y), arc(X,Z), hc(X,Z), Y != Z.
otherroute(X,Y) :- arc(X,Y), arc(Z,Y), hc(Z,Y), X != Z.
reached(Y) :- arc(X,Y), hc(X,Y), reached(X),
not initialnode(X).
reached(Y) :- arc(X,Y), hc(X,Y), initialnode(X).
initialnode(0).
:- vertex(V), not reached(V).

and the other uses weight constraints:

{in(X,Y)} :- arc(X,Y).
:- 2 {in(X,Y) : arc(X,Y)}, vertex(X).
:- 2 {in(X,Y) : arc(X,Y)},vertex(Y).
r(X) :- in(0,X), vertex(X).
r(Y) :- r(X), in(X,Y), arc(X,Y).
:- not r(X), vertex(X).

2. For the queen’s problem:

1{queen(R,C):n(R)}1:-n(C).
:-queen(R,C),queen(R,C1),n(R;C;C1),C<C1.
:-queen(R,C),queen(R1,C1),n(R;R1;C;C1),C<C1,abs(R-
R1)==abs(C-C1).

3. For the graph coloring problem:

1 { clrd(V,CL):clr(CL) } 1.
:- edge(V,U), clrd(V,C), clrd(U,C).
edge(X,Y) :- arc(X,Y).
vtx(X) :- vertex(X).

The experimental results are summarized in Tables 1-4,
and were done on an AMD server with 4xAMD Opteron
844 (1.8GHz) CPU, 8GB RAM running Fedora Linux Core
3.0 (x86 64 Edition).

In addition to the run times, we also give the sizes of input
files. For our FASP, these are the sizes of input files given to
our solver, and for the ASP solvers, these are the sizes of the
files output by lparse with the options “-d none -t”.

Table 1 is for the HC problem on complete graphs, and
the running times for the ASP solvers are the ones using the
weight constraint encoding. As can be seen, our FASP sys-
tem was not competitive here. However, notice that the sizes
of programs with Niemelä’s original encoding are much
larger than the ones with the weight constraint or functions.
For the HC problem, the weight constraints are able to make
the programs much smaller like our encoding with functions.

However, weight constraints are of little help for the
queen’s problem, at least in the way they are used in the
encoding given above. As can be seen in Table 2, while the
300-queen’s problem is simply too big in terms of program
size for the ASP solvers to handle, our FASP with abscon
was still able to handle it using our encoding with functions.
Tables 3 and 4 are for the graph coloring problem, one with
3 colors and the other 4 colors. The graphs here are from
ASSAT test suites10. As can be seen, FASP was competitive
here, especially for large graphs. FASP is available at the
following URL:

http://www.cse.ust.hk/fasp/

10http://assat.cs.ust.hk/Assat-2.0/coloring-2.0.html

In summary, our experiments seem to confirm our expec-
tation that as the problems become large, the standard logic
program encodings will produce programs that are much
larger than the encodings that use functions, and as the pro-
grams become large, the performance of ASP solvers will
suffer, giving advantages to solvers like our FASP.

Concluding Remarks

Currently in ASP, to compute a function, one needs to en-
code it as a relation. This makes the resulting program less
direct and leads to large programs when grounded. In this
paper we propose to add functions to logic programs, and to
extend the answer set semantics and loop formulas to these
logic programs. Just as the SAT solvers can be used to com-
pute answer sets of logic programs without functions, we
show that CSP solvers can be used to compute answer sets
of logic programs with functions. Our experiments seem to
show that for problems that require functions, our logic pro-
gram encodings with functions indeed lead to much smaller
ground programs compared to the logic program encodings
without functions.

For future work, it is perhaps worthwhile to consider a
solver that can work on logic programs with functions di-
rectly.
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Appendix: Proofs

Let I be an interpretation. By Ia we denote the set of atoms
are true in I , i.e., {p(~c)|pI(~c) holds}. Let P be a normal
logic program with functions and I an interpretation of P .
The functional reduction of P under I , denoted by Φ(P, I),
is a normal logic program without functions obtained from
P by

(1) replacing every term t in P with tI until there is no func-
tions;

(2) removing the rules whose bodies contain c 6= c or c = d
where c and d are two distinct constants;

(3) removing all equality literals from the bodies of the re-
maining rules.

The following lemma is clear.

Lemma 1 Let P be a normal logic program with functions
and I an interpretation of P . I is an answer set of P iff Ia

is an answer set of Φ(P, I).

We generalize the splitting notion (Lifschitz 1996) to nor-
mal logic programs without functions but possibly contain-
ing constraints. In the following, we alternatively write a
rule of the form (1) as

A← Pos, notNeg

where Pos = {B1, . . . , Bm}, Neg = {C1, . . . , Cn} and
not S = {not a|a ∈ S} for a given set of atoms S. Given a
program without functions P and a set of atoms U where
P possibly contains constraints. U splits P if, for every
rule “A ← Pos, notNeg” in P that is not a constraint,
Pos ∪ Neg ⊆ U whenever A ∈ U . If U splits P then the
base of P (relative to U ), denoted by bU (P ), is the set of
rules whose heads belong to U or Pos(r) ∪ Neg(r) ⊆ U if
r is a constraint. Let P be a program, U a set of atoms and
C ⊆ U , eU (P,C) stands for the program obtained from P
by

• deleting each rule A← Pos, notNeg such that Pos∩ (U \
C) 6= ∅ or Neg ∩ C 6= ∅,

• replacing each remaining rule A← Pos, notNeg by

A← Pos \ U, not (Neg \ U).

Proposition 1 Let P be a program without functions (pos-
sibly with constraints) and U a set of atoms that splits P .
A set of atoms M is an answer set of P iff M = C1 ∪ C2

where C1 is an answer set of bU (P ) and C2 is an answer set
of eU (P \ bU (P ), C1).

Proof: Let P ′ be the nonconstraint rules in P . Note that the
difference between bU (P ) and bU (P ′) is the constraints of
P in which the atoms occur belong to U . Since U splits P
thus U splits P ′ as well.
M is an answer set of P
iff M is an answer set of P ′ and M satisfies the constraints
in P
iff M satisfies the constraints in P and M = C1∪C2 where
C1 is an answer set of bU (P ′), and C2 is an answer set of
eU (P ′ \ bU (P ′), C1) (Proposition 3.10 of (Lifschitz 1996))
iff M = C1 ∪ C2, C1 is an answer set of bU (P ), and C2 is
an answer set of eU (P \ bU (P ), C2).

Theorem 1 Let P be a normal logic program with func-
tions. An interpretation I is an answer set of P iff R(I)
is an answer set of F(P ) ∪ R(P ), where

R(I) = Ia ∪

{fr(~c, a) | f
I(~c) = a} ∪ {fr(~c, a) | f

I(~c) 6= a}.

Proof:(sketch) Let Ξ(P ) = R(P ) ∪ F(P ), If = R(I) \ Ia

and U = Atoms(F(P )). Note that I gives each function
in P a total mapping, thus If is evidently an answer set of
F(P ) and U splits F(P )∪R(P ). In the following, we firstly
show,

Φ(P, I) = eU (R(P ), If ). (7)

Let’s consider the following three simple cases for a rule r
in P :



• r is of the form “p(f(a)) ← Body” and Body mentions
neither functions nor equality. Suppose f I(a) = c, the
range of f is {c1, . . . , ck}(k > 0). It follows that the
rules in R(P ) that are obtained from r include

p(c1) ← {fr(a, c1)} ∪Body,

...

p(ck) ← {fr(a, ck)} ∪Body.

Knowing that fr(a, c) ∈ I
f and there is no other c′ such

that f I(a) = c′ where c′ 6= c, thus there is no fr(a, c
′) ∈

If . Therefore,
p(c)← Body

is the only rule kept in eU (R(P ), If ) from the above
rules. Clearly, this rule belongs to Φ(P, I).

• r is of the form “A ← {p(f(a))} ∪ Body” where A and
Body mention neither functions nor equality. Suppose
f I(a) = c again. As the above discussion,

A← {p(c)} ∪Body

is the only rule in eU (R(P ), If ) that is obtained from r.
This rule is in Φ(P, I) as well.

• r is of the form “A ← {f(a) = c} ∪ Body” where A
and Body mention neither functions nor equality. It is
transformed into:

A← {fr(a, x), x = c} ∪Body.

Thus we have
r′ : A← Body

belong to eU (R(P ), If ) whenever f I(a) = c iff r′ ∈
Φ(P, I) by r.

The other case that function occurring in notA is similar
as above discussion. Note that if “← ∅” is in Φ(P, I) then
“← ∅” must be in bU (Ξ(P )) and vice versa.
I is an answer set of P

iff Ia is an answer set of Φ(P, I) (Lemma 1)
iff Ia is an answer set of eU (Ξ(P ) \ bU (Ξ(P )), If ) ((7))
iff Ia ∪ If is an answer set of Ξ(P ) (Proposition 1)
iff R(I) is an answer set of Ξ(P ).

Since Ξ(P ) mentions no functions and equality, its loops
and loop formulas are defined as usual. Given a loop L of
Ξ(P ) andA ∈ L, we denote its completion, external support
and loop formula by GCOMP(Ξ(P )), GES(A,L,Ξ(P ))
and GLF(L,Ξ(P )) respectively as in (Chen et al. 2006).

Lemma 2 Let P be a program and I an interpretation of P .
R(I) |= GCOMP(Ξ(P )) iff I |= Comp(P ).

Proof:(sketch) Please note that, I is an interpretation of P .
It is obviously that R(I) |= GCOMP(F(P )). And due to
GCOMP(Ξ(P )) = GCOMP(R(P ))∪GCOMP(F(P )), thus
it is sufficient to show that

R(I) |= GCOMP(R(P )) iff I |= Comp(P ).

Note that, Atoms(Ξ(P )) \ Atoms(P ) = Atoms(F(P ))
and Atoms(Ξ(P )) \ Atoms(F(P )) ⊆ Atoms(P ). For any

A ∈ Atoms(P ) \Atoms(Ξ(P )), it is not difficult to see that
I |= Comp(A,P ) iff AI does not hold. Thus, by the infor-
mal discussion in the proof of Theorem 1, it is sufficient to
show that, for each atom p(~c) ∈ Atoms(P )∩Atoms(Ξ(P )),

I |= Comp(p(~c), P ) iff R(I) |= GCOMP(p(~c),Ξ(P )).

For the sake of clarity, let ~c be c and suppose

(p(t1)← Body1), . . . , (p(tk)← Bodyk)

are the rules in P whose heads can cover p(c). Thus the
completion of p(c), Comp(p(c), P ), is the following formula

p(c) ≡
∨

1≤i≤k

ti = c ∧ B̂odyi. (8)

For the sake of clarity and without loss of generality, let’s
consider the following cases for the rule r : p(ti)← Bodyi,

• ti is identical to f(a) and there is no equality and func-
tions in Bodyi. In this case, the only one rule obtained
from r, that is in R(P ) and whose head is p(c), is the
following rule:

p(c)← {fr(a, c)} ∪Bodyi.

Clearly I |= f(a) = c ∧ B̂odyi iff R(I) |= fr(a, c) ∧

B̂odyi. Please note that the equality symbol is regarded
as an identity relation as usual.

• ti is identical to c and Bodyi = {q(f(a))} ∪ Body such
that there is no equality and functions in Body. Suppose
the range of function f is {c1 . . . , cm}. Now the rules in
R(P ) obtained from r are:

p(c) ← {q(c1), fr(a, c1)} ∪Body,

...

p(c) ← {q(cm), fr(a, cm)} ∪Body.

Obviously, I |= q(f(a)) ∧ B̂ody iff R(I) |= q(c1) ∧

fr(a, c1) ∧ B̂ody ∨ . . . ∨ q(cm) ∧ fr(a, cm) ∧ B̂ody.

• ti is identical c and Bodyi = {f(a) = b} ∪ Body where
Body mentions no equality and functions. The rule in
R(P ) obtained from r is:

p(c)← {fr(a, b)} ∪Body.

Evidently, I |= f(a) = b ∧ B̂ody iff R(I) |= fr(a, b) ∧

B̂ody.

The other case that function occurs in notA is similar.
Therefore, I |= Comp(P ) iff R(I) |= GCOMP(Ξ(P )).

Lemma 3 Let P be a normal logic program and L ⊆
Atoms(Ξ(P )). L is a loop of P if L is a loop of Ξ(P ).

Proof: Note that there is no loop of Ξ(P ) that contains an
atom in Atoms(F(P )) and Atoms(R(P )) ⊆ Atoms(P ).
Let the positive dependency graphs of P and R(P ) be
(V1, E1) and (V2, E2) respectively. It suffices to prove, for
any two atoms A,B ∈ Atoms(Ξ(P )), if (A,B) ∈ E2 then
(A,B) ∈ E1. It is trivial.



Lemma 4 Let P be a program, I an interpretation of P ,
I |= Comp(P ) and L a loop of Ξ(P ). I |= LF (L,P ) iff
R(I) |= GLF(L,Ξ(P )).

Proof: For simplicity, let p(c) be an arbitrary atom in
L. It suffices to show I |= ES(p(c), L, P ) iff R(I) |=
GES(p(c), L,Ξ(P )). Suppose

(p(t1)← Body1), . . . , (p(tk)← Bodyk)

are the rules in P whose heads can cover p(c). The external
support ES(p(c), L, P ) is the following formula

∨

1≤i≤k






B̂odyi ∧ c = ti ∧

∧

q(~s)∈Bodyi

q(~d)∈L

~s 6= ~d






. (9)

Let’s consider the cases for rule r : (p(ti)← Bodyi):

• r is (p(f(a))← Body) whereBody mentions no equality
and functions. The only one rule obtained from r in R(P ),
whose head is p(c), is the following rule

p(c)← {fr(a, c)} ∪Body.

Clearly Body ∩ L = ∅ iff
∧

q(~s)∈Body

q(~d)∈L

~s 6= ~d ≡ ⊤. Thus

I |=






B̂ody ∧ f(a) = c ∧

∧

q(~s)∈Body

q(~d)∈L

~s 6= ~d







iff Body ∩ L = ∅ and R(I) |= fr(a, c) ∧ B̂ody.

• r is p(c)← {q(f(a))} ∪Body where Body mentions no
equality and functions. Suppose the domain of the range
of f is {c1, . . . , cm}. Similar to the above discussion, we
have

I |=






B̂ody ∧ q(f(a)) ∧

∧

q(~s)∈Body

q(~d)∈L

~s 6= ~d






iff

R(I) |= [q(c1) ∧ fr(a, c1) ∧ B̂ody ∨ . . . ∨ q(cm) ∧

fr(a, cm) ∧ B̂ody] and Body ∩ L = ∅.

• r is p(c) ← {f(a) = b} ∪ Body where Body mentions
no equality and functions. The only one rule in R(P )
obtained from r is the following rule

p(c)← {fr(a, c)} ∪Body.

Thus we have

I |=






B̂ody ∧ f(a) = c ∧

∧

q(~s)∈Body

q(~d)∈L

~s 6= ~d







iff Body ∩ L = ∅ and R(I) |= fr(a, c) ∧ B̂ody.

The other case that function occurs in notA is similar.
Consequently I |= LF (L,P ) iff R(I) |= GLF(L,Ξ(P )).

Lemma 5 Let P be a program, I an interpretation of P
such that I |= Comp(P ). R(I) |= GLF (Ξ(P )) iff I |=
LF (P ).

Proof: By the above two lemmas, it suffices to show that, for
any loop L of P that is not a loop of Ξ(P ). I |= LF (L,P )
if I |= GLF (Ξ(P )).

Suppose L = {A1, . . . , An}. Since L is not a loop of
Ξ(P ), there must be an edge (Ai, Aj)(1 ≤ i, j ≤ n) of GP

that is not an edge of GΞ(P ). For clarity and without loss of

generality, let Ai = p(c) and Aj = q(d). It follows that, for
any rule r of P :

p(t)← Body

with q(s) ∈ Body from which the edge (p(c), q(d)) can be
derived in GP , there is no such rule:

p(c)← Body′

with q(d) ∈ Body′ belongs to Ξ(P ) that is obtained from r.

Thus B̂ody ∧ t = c must be false under any interpretation.
Thus L is not actually a loop of P . Now it is easy to see that
I |= LF (L,P ) by I |= Comp(P ) and Lemma 4.

Theorem 2 Let P be a program and I an interpretation of
P . I is an answer set of P iff I satisfies Comp(P )∪LF (P )
where LF (P ) is the set of loop formulas of P .

Proof:(sketch)
I is an answer set of P

iff R(I) is an answer set of Ξ(P ) (Theorem 1)
iff R(I) |= GCOMP(Ξ(P )) ∪ GLF(Ξ(P )) (Theorem 1 in
(Lin & Zhao 2004))
iff I |= Comp(P ) ∪ LF (P ) (Lemmas 2,3 and 5).

Lemma 6 Let ψ be a ground formula without function oc-
curring in ψ as an argument and I an interpretation. Then
I |= ψ iff v(I) is a solution of c(ψ).

Proof: It is clear by induction on structures of formulas.

Theorem 3 Let P be a logic program that is free of func-
tions in arguments, and I an interpretation of P . Then I is
an answer set of P iff v(I) is a solution toR(P ).

Proof: I is an answer set of P
iff I |= Comp(P ) ∪ LF (P ) (Theorem 2)
iff v(I) is a solution of c(Comp(P ) ∪ LF (P )) (Lemma 6)
iff v(I) is a solution ofR(P ).


