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Abstract. In this paper, a novel k -nearest neighbors (kNN) weighting
strategy is proposed for handling the problem of class imbalance. When
dealing with highly imbalanced data, a salient drawback of existing kNN
algorithms is that the class with more frequent samples tends to dominate
the neighborhood of a test instance in spite of distance measurements,
which leads to suboptimal classification performance on the minority
class. To solve this problem, we propose CCW (class confidence weights)
that uses the probability of attribute values given class labels to weight
prototypes in kNN. The main advantage of CCW is that it is able to
correct the inherent bias to majority class in existing kNN algorithms
on any distance measurement. Theoretical analysis and comprehensive
experiments confirm our claims.

1 Introduction

A data set is “imbalanced” if its dependent variable is categorical and the number
of instances in one class is different from those in the other class. Learning
from imbalanced data sets has been identified as one of the 10 most challenging
problems in data mining research [1].

In the literature of solving class imbalance problems, data-oriented methods
use sampling techniques to over-sample instances in the minor class or under-
sample those in the major class, so that the resulting data is balanced. A typ-
ical example is the SMOTE method [2] which increases the number of minor
class instances by creating synthetic samples. It has been recently proposed
that using different weight degrees on the synthetic samples (so-called safe-level-
SMOTE [3]) produces better accuracy than SMOTE. The focus of algorithm-
oriented methods has been on extensions and modifications of existing classifi-
cation algorithms so that they can be more effective in dealing with imbalanced
data. For example, modifications of decision tree algorithms have been proposed
to improve the standard C4.5, such as HDDT [4] and CCPDT [5].

KNN algorithms have been identified as one of the top ten most influential
data mining algorithms [6] for their ability of producing simple but powerful
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classifiers. The k neighbors that are the closest to a test instances are conven-
tionally called prototypes. In this paper we use the concepts of “prototypes” and
“instances” interchangeably.

There are several advanced kNN methods proposed in the recent literature.
Weinberger et al. [7] learned Mahanalobis distance matrices for kNN classifica-
tion by using semidefinite programming, a method which they call large margin
nearest neighbor (LMNN) classification. Experimental results of LMNN show
large improvements over conventional kNN and SVM. Min et al. [8] have pro-
posed DNet which uses a non-linear feature mapping method pre-trained with
Restricted Boltzmann Machines to achieve the goal of large-margin kNN classi-
fication. Recently, a new method WDkNN was introduced in [9] which discovers
optimal weights for each instance in training phase which are taken into ac-
count during test phases. This method is demonstrated superior to other kNN
algorithm including LPD [10], PW [11], A-NN [12] and WDNN [13].

In this paper, the model we propose is an algorithm-oriented method and
we preserve all original information/distribution of the training data sets. More
specifically, the contributions of this paper are as follows:

1. We express the mechanism of traditional kNN algorithms as equivalent to
using only local prior probabilities to predict instances’ labels, from which
perspective we illustrate why many existing kNN algorithms have undesir-
able performance on imbalanced data sets;

2. We propose CCW (class confidence weights), the confidence (likelihood) of a
prototype’s attributes values given its class label, which transforms prior

probabilities of to posterior probabilities. We demonstrate that this trans-
formation makes the kNN classification rule analogous to using a likelihood

ratio test in the neighborhood;
3. We propose two methods, mixture modeling and Bayesian networks, to effi-

ciently estimate the value of CCW;

The rest of the paper is structured as follows. In Section 2 we review existing
kNN algorithms and explain why they are flawed in learning from imbalanced
data. We define CCW weighting strategy and justify its effectiveness in Section
3. CCW is estimated in Section 4. Section 5 reports experiments and Section 6
concludes the paper.

2 Existing kNN Classifiers

Given labeled training data (xi, yi) (i = 1,...,n), where xi ∈ R
d are feature

vectors, d is the number of features and yi ∈ {c1, c2} are binary class labels,
kNN algorithm finds a group of k prototypes from the training set that are
the closest to a test instance xt by a certain distance measure (e.g. Euclidean
distances), and estimates the test instance’s label according to the predominance
of a class in this neighborhood. When there is no weighting (NW) strategy, this
majority voting mechanism can be expressed as:

NW: y
′
t = argmax

c∈{c1,c2}

∑

xi∈ϕ(xt)

I(yi = c) (1)
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where y′t is a predicted label, I(·) is an indicator function that returns 1 if
its condition is true and 0 otherwise, and ϕ(xt) denotes the set of k training
instances (prototypes) closest to xt. When the k neighbors vary widely in their
distances and closer neighbors are more reliable, the neighbors are weighted by
the multiplicative-inverse (MI) or the additive-inverse (AI) of their distances:

MI: y
′
t = argmax

c∈{c1,c2}

∑

xi∈ϕ(xt)

I(yi = c) ·
1

dist(xt,xi)
(2)

AI: y
′
t = argmax

c∈{c1,c2}

∑

xi∈ϕ(xt)

I(yi = c) · (1−
dist(xt,xi)

distmax

) (3)

where dist(xt,xi) represents the distance between the test point xt and a pro-
totype xi, and distmax is the maximum possible distance between two training

instances in the feature space which normalizes dist(xt,xi)
distmax

to the range of [0,1].
While MI and AI solve the problem of large distance variance among k neigh-

bors, their effects become insignificant if the neighborhood of a test point is con-
siderably dense, and one of the class (or both classes) is over-represented by its
samples – since in this scenario all of the k neighbors are close to the test point
and the difference among their distances is not discriminative [9].

2.1 Handling imbalanced data

Given the definition of the conventional kNN algorithm, we now explain its
drawback in dealing with imbalanced data sets. The majority voting in Eq. 1
can be rewritten as the following equivalent maximization problem:

y
′
t = argmax

c∈{c1,c2}

∑

xi∈ϕ(xt)

I(yi = c)

⇒ max {
∑

xi∈ϕ(xt)

I(yi = c1),
∑

xi∈ϕ(xt)

I(yi = c2) }

= max {

∑
xi∈ϕ(xt)

I(yi = c1)

k
,

∑
xi∈ϕ(xt)

I(yi = c2)

k
}

= max { pt(c1), pt(c2) }

(4)

where pt(c1) and pt(c2) represent the proportion of class c1 and c2 appearing
in ϕ(xt) – the k -neighborhood of xt. If we integrate this kNN classification rule
into Bayes’s theorem, treat ϕ(xt) as the sample space and treat pt(c1) and pt(c2)
as priors1 of two classes in this sample space, Eq. 4 intuitively illustrates that
the classification mechanism of kNN is based on finding the class label that has
a higher prior value.

This suggests that traditional kNN uses only the prior information to esti-
mate class labels, which has suboptimal classification performance on the minor-
ity class when the data set is highly imbalanced. Suppose c1 is the dominating

1 We note that pt(c1) and pt(c2) are conditioned (on xt) in the sample space of the
overall training data, but unconditioned in the sample space of φ(xt).
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(a) Balanced data full view
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(b) Balanced data regional
view
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(c) Imbalanced data full view
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Fig. 1: Performance of conventional kNN (k = 5) on synthetic data. When data
is balanced, all misclassifications of circular points are made on the upper left
side of an optimal linear classification boundary; but when data is imbalanced,
misclassifications of circular points appear on both sides of the boundary.

class label, it is expected that the inequality pt(c1) ≫ pt(c2) holds true in most
regions of the feature space. Especially in the overlap regions of two class labels,
kNN always tends to be biased towards c1. Moreover, because the dominating
class is likely to be over-represented in the overlap regions, “distance weighting”
strategies such as WI and AI are ineffective in correcting this bias.

Figure 1 shows an example where kNN is performed by using Euclidean dis-
tance measure for k = 5. Samples of positive and negative classes are generated
from Gaussian distributions with mean [µpos

1 , µ
pos
2 ] = [6, 3] and [µneg

1 , µ
neg
2 ] =

[3, 6] respectively and a common standard deviation I (the identity matrix).
The (blue) triangles are samples of the negative/majority class, the (red) un-
filled circles are those of the positive/minority class, and the (green) filled circles
indicate the positive samples incorrectly classified by the conventional kNN al-
gorithm. The straight line in the middle of two clusters suggests a classification
boundary built by an ideal linear classifier. Figure 1(a) and 1(c) give global



Class Confidence Weighted kNN Algorithms for Imbalanced Data Sets 5

overall views of kNN classifications, while Figure 1(b) and 1(d) are their corre-
sponding “zoom-in” subspaces that focus on a particular misclassified positive
sample. Imbalanced data is sampled under the class ratio of Pos:Neg = 1:10.

As we can see from Figure 1(a) and 1(b), when data is balanced all of the
misclassified positive samples are on the upper left side of the classification
boundary, and are always surrounded by only negative samples. But when data is
imbalanced (Figure 1(c) and 1(d)), misclassifications of positives appear on both
sides of the boundary. This is because the negative class is over-represented and
dominates much larger regions than the positive class. The incorrectly classified
positive point in Figure 1(d) is surrounded by 4 negative and 1 positive neighbors,
with a negative neighbor being the closest prototype to the test point. In this
scenario, distances weighting strategies (e.g. MI and AI) cannot be helpful to
correct the bias to negative class. In the next section, we introduce CCW and
explain how it can solve such problems and correct the bias.

3 CCW weighted kNN

To improve the existing kNN rule, we introduce CCW to capture the probability
(confidence) of attributes values given a class label. We define CCW on a training
instance i as follows:

w
CCW

i = p(xi|yi), (5)

where xi and yi represent the attribute vector and the class label of instances i.
Then the resulting classification rule integrated with CCW is:

CCW: y
′
t = argmax

c∈{c1,c2}

∑

xi∈ϕ(xt)

I(yi = c) · wCCW

i , (6)

and by applying it into distance weighting schemes MI and AI we obtain:

CCW
MI
: y

′
t = argmax

c∈{c1,c2}

∑

xi∈ϕ(xt)

I(yi = c)
1

dist(xt,xi)
· p(xi|yi) (7)

CCW
AI
: y

′
t = argmax

c∈{c1,c2}

∑

xi∈ϕ(xt)

I(yi = c)(1−
dist(xt,xi)

distmax

) · p(xi|yi) (8)

With the integration of CCW, the maximization problem in Eq. 4 becomes:

y
′
t = argmax

c∈{c1,c2}

∑

xi∈ϕ(xt)

I(yi = c) · p(xi|yi)

⇒ max {
∑

xi∈ϕ(xt)

I(yi = c1)

k
p(xi|yi = c1),

∑

xi∈ϕ(xt)

I(yi = c2)

k
p(xi|yi = c2) }

= max { pt(c1)p(xi|yi = c1)xi∈ϕ(xt), pt(c2)p(xi|yi = c2)xi∈ϕ(xt) }

= max { pt(xi, c1)xi∈ϕ(xt), pt(xi, c2)xi∈ϕ(xt)}

= max { pt(c1|xi)xi∈ϕ(xt), pt(c2|xi)xi∈ϕ(xt) }

(9)

where pt(c|xi)xi∈ϕ(xt) represents the probability of xt belonging to class c given
the attribute values of all prototypes in ϕ(xt). Comparisons between Eq. 4 and
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Eq. 9 demonstrate that the use of CCW changes the bases of kNN rule from using
priors to posteriors: while conventional kNN directly uses the probabili-
ties (proportions) of class labels among the k prototypes, we use con-
ditional probabilities of classes given the values of the k prototypes’
feature vectors. The change from priors to posteriors is easy to understand
since CCW behaves just like the notion of likelihood in Bayes’ theorem.

3.1 Justification of CCW

Since CCW is equivalent to the notion of likelihood in Bayes’ theorem, in this
subsection we demonstrate how the rationale of using CCW-based kNN rule can
be interpreted by likelihood ratio tests.

We assume c1 is the majority class and define the null hypothesis (H0) as
“xt belonging to c1”, and the alternative hypothesis (H1) as “xt belonging to
c2”. Assume among ϕ(xt), the first j neighbors are from c1 and the other k − j

ones are from c2. We obtain the likelihood of H0 (L0) and H1 (L1) from:

L0 =

j∑

i=1

p(xi|yi = c1)xi∈ϕ(xt), L1 =

k∑

i=j+1

p(xi|yi = c2)xi∈ϕ(xt)

Then the likelihood ratio test statistic can be written as:

Λ =
L0

L1
=

∑j

i=1 p(xi|yi = c1)xi∈ϕ(xt)∑k

i=j+1 p(xi|yi = c2)xi∈ϕ(xt)

(10)

Note that the numerator and the denominator in the fraction of Eq. 10 corre-
spond to the two terms of the maximization problem in Eq. 9. It is essential
to ensure the majority class does not have higher priority than the minority in
imbalanced data, so we choose “Λ = 1” as the rejection threshold. Then the
mechanism of using Eq. 9 as the kNN classification rule is equivalent to “predict
xt to be c2 when Λ ≤ 1” (reject H0), and “predict xt to be c1 when Λ > 1” (do
not reject H0).

Example 1. We reuse the example in Figure 1. The size of triangles/circles is
proportional to their CCW weights: the larger the size of a triangle/cirle, the
greater the weight of that instance; and the smaller the lower the weight. In
Figure 1(d), the misclassified positive instance has four negative-class neighbors
with CCW weights 0.0245, 0.0173, 0.0171 and 0.0139, and has one positive-class
neighbor of weight 0.1691. Then the total negative-class weight is 0.0728 and the
total positive-class weight is 0.1691, and the CCW ratio is 0.0728

0.1691 < 1 which gives
a label prediction to the positive (minority) class. So even though the closest
prototype to the test instance comes from the wrong class which also dominates
the test instance’s neighborhood, a CCW weighted kNN can still correctly classify
this actual positive test instances.

4 Estimations of CCW weights

In this section we briefly introduce how we employ mixture modeling and Bayesian
networks to estimate CCW weights.
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4.1 Mixture models

In the formulation of mixture models, the training data is assumed follow a
q-component finite mixture distribution with probability density function (pdf ):

p(x|θ) =

q∑

m=1

αmp(x|θm) (11)

where x is a sample of training data whose pdf is demanded, αm represents mix-
ing probabilities, θm defines the mth component, and θ̂ ≡ {θ1,...,θq, α1,...,αq}
is the complete set of parameters specifying the mixture model. Given training
data Ω, the log-likelihood of a q-component mixture distribution is: log p(Ω|θ̂) =

log
∏n

i=1 p(xi|θ̂) =
∑n

i=1 log
∑q

m=1 p(xi|θm). Then the maximum likelihood (ML)

estimate θ̂ML = argmaxθ log p(Ω|θ) can be found analytically. We use the
expectation-maximization (EM) algorithm to solve ML and then apply the esti-

mated θ̂ into Eq. 11 to find the pdf of all instances in training data set as their
corresponding CCW weights.

Example 2. We reuse the example in Figure 1, but now we assume the underlying
distribution parameters (i.e. the mean and variance matrixes) that generate the
two classes of data are unknown. We apply training samples into ML estimation,
solve for θ̂ by EM algorithm, and then use Eq. 11 to estimate the pdf of training
instances which are used as their CCW weights. The estimated weights (and their
effects) of the neighbors of the originally misclassified positive sample in Figure
1(d) are shown in Example 1.

4.2 Bayesian networks

While mixture modeling deals with numerical features, Bayesian networks can
be used to estimate CCW when feature values are categorical. The task of learning
a Bayesian network is to (i) build a directed acyclic graph (DAG) over Ω, and
(ii) learn a set of (conditional) probability tables {p(ω|pa(ω)), ω ∈ Ω} where
pa(ω) represents the set of parents of ω in the DAG. From these conditional
distributions one can recover the joint probability distribution over Ω by using
p(Ω) =

∏d+1
i=1 p(ωi|pa(ωi)).

In brief, we learn and build the structure of the DAG by employing K2
algorithm [14] which in the worst case has an overall time complexity of O(n2),
one “n” for the number of features and another “n” for the number of training
instances. Then we estimate the conditional probability tables directly from
training data. After obtaining the joint distributions p(Ω), the CCW weight of a

training instance i can be easily obtained from wCCW

i = p(xi|yi) ∝ p(Ω)
p(yi)

where

p(yi) is the proportion of class yi among the entire training data.

5 Experiments and Analysis

In this section, we analyze and compare the performance of CCW-based kNN
against existing kNN algorithms, other algorithm-oriented state of the art ap-
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Table 1: Details of imbalanced data sets and comparisons of kNN algorithms on
weighting strategies for k = 1.

Name #Inst #Att MinClass CovVar
Area Under Precision-Recall Curve

NW MI CCW
MI AI CCW

AI WDkNN

KDDCup’097:
Appetency 50000 278 1.76% 4653.2 .022(4) .021(5) .028(2) .021(5) .035(1) .023(3)
Churn 50000 278 7.16% 3669.5 .077(3) .069(5) .077(2) .069(5) .093(1) .074(4)
Upselling 50000 278 8.12% 3506.9 .116(6) .124(4) .169(2) .124(4) .169(1) .166(3)
Agnostic-vs-Prior8:
Ada.agnostic 4562 48 24.81% 1157.5 .441(6) .442(4) .520(2) .442(4) .609(1) .518(3)
Ada.prior 4562 15 24.81% 1157.5 .443(4) .433(5) .518(3) .433(5) .606(1) .552(2)
Sylva.agnostic 14395 213 6.15% 11069.1 .672(6) .745(4) .790(2) .745(4) .797(1) .774(3)
Sylva.prior 14395 108 6.15% 11069.1 .853(6) .906(4) .941(2) .906(4) .945(1) .907(3)
StatLib9:
BrazilTourism 412 9 3.88% 350.4 .064(6) .111(4) .132(2) .111(4) .187(1) .123(3)
Marketing 364 33 8.52% 250.5 .106(6) .118(4) .152(1) .118(4) .152(2) .128(3)
Backache 180 33 13.89% 93.8 .196(6) .254(4) .318(2) .254(4) .319(1) .307(3)
BioMed 209 9 35.89% 16.6 .776(6) .831(4) .874(2) .831(4) .887(1) .872(3)
Schizo 340 15 47.94% 0.5 .562(4) .534(5) .578(3) .534(5) .599(1) .586(2)
Text Mining [15]:
Fbis 2463 2001 1.54% 2313.3 .082(6) .107(4) .119(2) .107(4) .117(3) .124(1)
Re0 1504 2887 0.73% 1460.3 .423(6) .503(5) .561(2) .503(4) .563(1) .559(3)
Re1 1657 3759 0.78% 1605.4 .360(1) .315(5) .346(2) .315(5) .346(2) .335(4)
Tr12 313 5805 9.27% 207.7 .450(6) .491(4) .498(1) .491(3) .490(5) .497(2)
Tr23 204 5833 5.39% 162.3 .098(6) .122(4) .136(1) .122(4) .128(3) .134(2)
UCI [16]:
Arrhythmia 452 263 2.88% 401.5 .083(6) .114(4) .145(2) .114(4) .136(3) .159(1)
Balance 625 5 7.84% 444.3 .064(1) .063(4) .063(4) .064(2) .064(3) .061(6)
Cleveland 303 14 45.54% 2.4 .714(6) .754(4) .831(2) .754(4) .846(1) .760(3)
Cmc 1473 10 22.61% 442.1 .299(6) .303(5) .318(2) .305(4) .357(1) .315(3)
Credit 690 16 44.49% 8.3 .746(6) .751(4) .846(2) .751(4) .867(1) .791(3)
Ecoli 336 8 5.95% 260.7 .681(4) .669(5) .743(2) .669(5) .78(1) .707(3)
German 1000 21 30.0% 160.0 .407(6) .427(4) .503(2) .427(4) .509(1) .492(3)
Heart 270 14 44.44% 3.3 .696(6) .758(4) .818(2) .758(4) .826(1) .790(3)
Hepatitis 155 20 20.65% 53.4 .397(6) .430(4) .555(2) .430(4) .569(1) .531(3)
Hungarian 294 13 36.05% 22.8 .640(6) .659(4) .781(2) .659(4) .815(1) .681(3)
Ionosphere 351 34 35.9% 27.9 .785(6) .874(5) .903(2) .884(3) .911(1) .882(4)
Ipums 7019 60 0.81% 6792.8 .056(6) .062(4) .087(1) .062(5) .087(2) .078(3)
Pima 768 9 34.9% 70.1 .505(6) .508(4) .587(2) .508(4) .618(1) .533(3)
Primary 339 18 4.13% 285.3 .168(6) .222(4) .265(1) .217(5) .224(3) .246(2)

Average Rank 5.18 4.18 1.93 4.03 1.53 2.84
Friedman Tests X 7E-7 X 8E-6 Base X 2E-5 – X 4E-5
Friedman Tests X 3E-6 X 2E-6 – X 9E-6 Base X 2E-4

proaches (i.e. WDkNN2, LMNN3, DNet4, CCPDT5 and HDDT6) and data-

oriented methods (i.e. safe-level-SMOTE). We note that since WDkNN has been
demonstrated (in [9]) better than LPD, PW, A-NN and WDNN, in our exper-
iments we include only the more superior WDkNN among them. CCPDT and
HDDT are pruned by Fisher’s exact test (as recommended in [5]). All experi-
ments are carried out using 5×2 folds cross-validations, and the final results are
the average of the repeated runs.

2 We implement CCW-based kNNs and WDkNN inside Weka environment [17].
3 The code is obtained from www.cse.wustl.edu/~kilian/Downloads/LMNN.html.
4 The code is obtained from www.cs.toronto.edu/~cuty/DNetkNN_code.zip.
5 The code is obtained from www.cs.usyd.edu.au/~weiliu/CCPDT_src.zip.
6 The code is obtained from www.nd.edu/~dial/software/hddt.tar.gz.
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Table 2: Performance of kNN weighting strategies when k = 11.

Datasets
Area Under Precision-Recall Curve

MI CCW
MI AI CCW

AI SMOTE WDkNN LMNN DNet CCPDT HDDT
Appetency .033(8) .037(4) .036(6) .043(1) .040(3) .036(5) .035(7) .042(2) .024(10) .025(9)
Churn .101(7) .113(2) .101(6) .115(1) .108(4) .100(8) .107(5) .111(3) .092(10) .099(9)
Upselling .219(8) .243(5) .218(9) .241(6) .288(3) .212(10) .231(7) .264(4) .443(1) .437(2)
Ada.agnostic .641(9) .654(5) .646(8) .652(6) .689(3) .636(10) .648(7) .670(4) .723(1) .691(2)
Ada.prior .645(8) .669(2) .654(7) .668(3) .661(5) .639(9) .657(6) .664(4) .682(1) .605(10)
Sylva.agnostic .930(2) .926(8) .930(3) .925(9) .928(6) .922(10) .928(4) .926(7) .934(1) .928(5)
Sylva.prior .965(4) .965(2) .965(6) .965(4) .904(10) .974(1) .965(3) .935(9) .946(8) .954(7)
BrazilTourism .176(9) .242(1) .232(5) .241(2) .233(4) .184(8) .209(6) .237(3) .152(10) .199(7)
Marketing .112(10) .157(2) .113(9) .161(1) .124(8) .150(3) .134(5) .142(4) .130(6) .125(7)
Backache .311(7) .325(3) .307(8) .328(2) .317(6) .330(1) .318(5) .322(4) .227(9) .154(10)
BioMed .884(5) .885(3) .858(7) .844(8) .910(2) .911(1) .884(4) .877(6) .780(10) .812(9)
Schizo .632(6) .632(4) .626(7) .617(8) .561(10) .663(3) .632(5) .589(9) .807(2) .846(1)
Fbis .134(10) .145(5) .135(9) .141(6) .341(3) .136(8) .140(7) .241(4) .363(2) .384(1)
Re0 .715(3) .717(1) .705(5) .709(4) .695(7) .683(8) .716(2) .702(6) .573(9) .540(10)
Re1 .423(7) .484(1) .434(6) .475(4) .479(2) .343(8) .454(5) .477(3) .274(9) .274(9)
Tr12 .628(6) .631(4) .624(7) .601(8) .585(10) .735(3) .629(5) .593(9) .946(1) .946(1)
Tr23 .127(8) .156(3) .123(10) .156(3) .124(9) .128(7) .141(5) .140(6) .619(2) .699(1)
Arrhythmia .160(7) .214(4) .167(6) .229(3) .083(10) .134(9) .187(5) .156(8) .346(2) .385(1)
Balance .127(7) .130(5) .145(2) .149(1) .135(4) .091(9) .129(6) .142(3) .092(8) .089(10)
Cleveland .889(8) .897(2) .890(6) .897(1) .889(7) .895(3) .893(5) .893(4) .806(10) .846(9)
Cmc .346(9) .383(2) .357(7) .384(1) .358(6) .341(10) .365(5) .371(4) .356(8) .380(3)
Credit .888(7) .895(2) .887(8) .894(3) .891(5) .903(1) .891(6) .893(4) .871(9) .868(10)
Ecoli .943(3) .948(1) .938(5) .941(4) .926(7) .920(8) .945(2) .933(6) .566(10) .584(9)
German .535(7) .541(2) .533(8) .537(4) .536(6) .561(1) .538(3) .537(5) .493(9) .464(10)
Heart .873(7) .876(4) .873(8) .876(5) .878(2) .883(1) .875(6) .877(3) .828(9) .784(10)
Hepatitis .628(6) .646(1) .630(5) .645(2) .625(8) .626(7) .637(3) .635(4) .458(9) .413(10)
Hungarian .825(5) .832(1) .823(7) .831(2) .819(8) .826(4) .829(3) .825(6) .815(9) .767(10)
Ionosphere .919(4) .919(2) .916(7) .918(5) .916(7) .956(1) .919(3) .917(6) .894(9) .891(10)
Ipums .123(8) .138(4) .123(7) .140(2) .136(5) .170(1) .130(6) .138(3) .037(9) .020(10)
Pima .645(7) .667(1) .644(8) .665(2) .657(4) .655(6) .656(5) .661(3) .587(10) .613(9)
Primary .308(5) .314(2) .271(8) .279(7) .310(4) .347(1) .311(3) .294(6) .170(10) .183(9)
Average Rank 6.5 2.78 6.59 3.71 5.59 5.18 4.68 4.78 6.68 6.9
Friedman X2E-7 Base X1E-6 – 0.1060 X0.002 X2E-7 X0.007 X0.019 X0.007
Friedman X0.011 – X4E-5 Base 0.1060 X0.007 X0.007 X0.048 X0.019 X0.007

We select 31 data sets from KDDCup’097, agnostic vs. prior competition8,
StatLib9, text mining [15], and UCI repository [16]. For multiple-label data sets,
we keep the smallest label as the positive class, and combine all the other labels
as the negative class. Details of the data sets are shown in Table 1. Besides the
proportion of the minor class in a data set, we also present the coefficient of
variation (CovVar) [18] to measure imbalance. CovVar is defined as the ratio of
the standard deviation and the mean of the class counts in data sets.

The metric of AUC-PR (area under precision-recall curve) has been reported
in [19] better than AUC-ROC (area under ROC curve) on imbalanced data. A
curve dominates in ROC space if and only if it dominates in PR space, and clas-
sifiers that are more superior in terms of AUC-PR are definitely more superior in
terms of AUC-ROC, but not vice versa [19]. Hence we use the more informative
metric of AUC-PR for classifier comparisons.

7 http://www.kddcup-orange.com/data.php
8 http://www.agnostic.inf.ethz.ch
9 http://lib.stat.cmu.edu/
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(a) Manhattan (k=1)
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(b) Euclidean (k=1)
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(c) Chebyshev (k=1)
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(d) Manhattan (k=11)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Data sets indexes

A
re

a 
un

de
r 

P
R

 c
ur

ve

 

 

Weighted by MI

Weighted by CCWMI

(e) Euclidean (k=11)
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(f) Chebyshev (k=11)

Fig. 2: Classification improvements from CCW on Manhattan distance (ℓ1 norm),
Euclidean distance (ℓ2 norm) and Chebyshev distance (ℓ∞ norm).

5.1 Comparisons among NN algorithms

In this experiment we compare CCW with existing kNN algorithm using Euclidean
distance on k = 1. When k = 1, apparently all kNNs that use the same distance
measure have exactly the same prediction on a test instances. However the effects
of CCW weights generate different probabilities of being positive/negative for each
test instance, and hence produce different AUC-PR values.

While there are various ways to compare classifiers across multiple data sets,
we adopt the strategy proposed by [20] that evaluates classifiers by ranks. In
Table 1 the kNN classifiers in comparison are ranked on each data set by the
value of their AUC-PR, with ranking of 1 being the best. We perform Friedman
tests on the sequences of ranks between different classifiers. In Friedman tests,
p–values that are lower than 0.05 reject the hypothesis with 95% confidence that
the ranks of classifiers in comparison are not statistically different. Numbers in
parentheses of Table 1 are the ranks of classifiers on each data set, and a X sign
in Friedman tests suggests classifiers in comparison are significantly different.
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As we can see, both CCW
MI and CCW

AI (the “Base” classifiers) are significantly
better than existing methods of NW, MI, AI and WDkNN.

5.2 Comparisons among kNN algorithms

In this experiment, we compare kNN algorithms on k > 1. Without losing gen-
erality, we set a common number k = 11 for all kNN classifiers. As shown in Ta-
ble 2, both CCW

MI and CCW
AI significantly outperforms MI, AI, WDkNN, LMNN,

DNet, CCPDT and HDDT.
In the comparison with over-sampling techniques, we focus on MI equipped

with safe-level-SMOTE [3] method, shown as “SMOTE” in Table 2. The results
we obtained from CCW classifiers are comparable to (better but not significant
than) the over-sampling technique under 95% confidence. This observation sug-
gests that if one uses CCW he can obtain results comparable to the cutting-edge
sampling technique, so the extra computational cost of data sampling before
training can be saved.

5.3 Effects of distance metrics

While in all previous experiments kNN classifiers are performed under Euclidean
distance (ℓ2 norm), in this subsection we provide empirical results that demon-
strate the superiority of CCW methods on other distance metrics such as Manhat-
tan distance (ℓ1 norm) and Chebyshev distance (ℓ∞ norm). Due to page limits,
here we only present the comparisons of “CCWMI vs. MI”. As we can see from
Figure 2, CCWMI can improve MI on all three distance metrics.

6 Conclusions and Future Work

The main focus of this paper is on improving existing kNN algorithms and make
them robust to imbalanced data sets. We have shown that conventional kNN
algorithms are akin in using only prior probabilities of the neighborhood of a
test instance to estimate its class labels, which leads to suboptimal performance
when dealing with imbalanced data sets.

We have proposed CCW, the likelihood of attribute values given a class label, to
weight prototypes before taking them into effect. The use of CCW transforms the
original kNN rule of using prior probabilities to their corresponding posteriors.
We have shown that this transformation has the ability of correcting the inherent
bias towards majority class in existing kNN algorithms.

We have applied two methods (mixture modeling and Bayesian networks)
to estimate training instances’ CCW weights, and their effectiveness is confirmed
by synthetic examples and comprehensive experiments. When learning Bayesian
networks, we construct network structures by applying the K2 algorithm which
has an overall time complexity of O(n2).

In future our plan is to extend the idea of CCW to multiple-label classification
problems. We also plan to explore the use of CCW on other supervised learning
algorithms such as support vector machines etc.
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