
Extra Credit 1: Quadratic forms

Definition. A quadratic form in the variables x1, . . . , xn is a polynomial of the
form

Q(x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj.

For example, a quadratic form in two variables has the form ax2 + bxy + cy2

for some constants a, b, c; in 3 variables,

ax2 + by2 + cz2 + dxy + exz + fyz.

Note that something like 2x2 − xy + y2 + x − 2 is not a quadratic form, because
terms of degree other than 2 appear.

These objects arise naturally, and there are (at least) two ways they’re relevant
for us.

1. They describe common geometric objects. For example, in 2 variables, the
graph of ax2 + by2 is an elliptic paraboloid, and its level curves are ellipses (if
a, b > 0); the graph of ax2 − by2 is a hyperbolic paraboloid, and its level curves
are hyperbolas.

2. Consider the problem of classifying critical points of multivariable functions,
points p such that ∇f(p) = 0; how can we tell if p is a local minimum, a
maximum, or neither? Take a real-valued function f(x, y) whose third partial
derivatives are continuous, defined in a neighborhood of a critical point p =
(a, b). Taylor’s theorem lets us write

f(a+ h, b+ k) = f(a, b) + df(a, b;h, k)

+
1

2!
(h2fxx(a, b) + 2hkfxy(a, b) + k2fyy(a, b)) + ǫ(h, k)

with some control over the error ǫ(h, k). Since p = (a, b) is a critical point,
df(a, b;h, k) = 0, and so we get

f(a+ h, b+ k) = f(a, b) +
1

2!
(h2fxx(a, b) + 2hkfxy(a, b) + k2fyy(a, b)) + ǫ(h, k).

Notice that, except for the error ǫ(h, k), this is a quadratic form in variables h, k,
shifted by f(a, b). In most cases we expect the error ǫ(h, k) to be dominated
by the preceding terms, so it’s reasonable to expect that the type of critical
point for f is the same as the type of the critical point for the quadratic form.
For the most part this turns out to work, and so it’s important to understand
the critical points of quadratic forms. See 7.6 of the text for the details of this
argument, and below for a precise statement of when this works.
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Problem 1. (1 pt). Show that a quadratic form (in any number of variables) has
a critical point at the origin. Can there be any more?

In some cases, it’s easy to see exactly what type the critical point of a quadratic
form is. For example, Q(x, y) = x2 + y2 has a minimum at (0, 0) and no other
critical points. How about Q(x, y) = 3x2+2xy+3y2? Here’s a contour plot, where
darker values are smaller:

The picture makes it clear that Q has a minimum at (0, 0), and that the graph
of Q is an elliptic paraboloid. In fact, if we change variables by x = u+v√

2
, y = u−v√

2
,

we get 4u2 + 2v2, whose graph is an elliptic paraboloid opening upwards. This
transformation is clockwise rotation by 45 degrees.

1 Matrices and quadratic forms

Definition 1. A quadratic form Q is in normal form if Q(x1, . . . , xn) = a1x
2
1 +

· · ·+ anx
2
n for some real numbers a1, . . . , an.

Problem 2. (1 pt). Let Q(x1, . . . , xn) = a1x
2
1+· · ·+anx

2
n be in normal form. Show

that if a1, . . . , an ≥ 0, then Q has a local minimum at the origin; if a1, . . . , an ≤ 0,
then Q has a local maximum at the origin; and if some ai’s are positive and some
negative, then Q has neither a local maximum nor a local minimum at the origin.

This problem plus the last example demonstrates that if we can rotate a
quadratic form Q about the origin to obtain one in normal form, then we’ll imme-
diately be able to see what sort of critical point Q has (certainly rotation won’t
change the type of critical point).

The key step in finding such a rotation is to connect quadratic forms to linear
algebra. Observe:
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ax2 + bxy + cy2 =

(

ax2 +
1

2
bxy

)

+

(

1

2
bxy + cy2

)

= x

(

ax+
1

2
by

)

+ y

(

1

2
bx+ cy

)

= 〈x, y〉 · 〈ax+
1

2
by,

1

2
bx+ cy〉

= 〈x, y〉 ·
(

a 1

2
b

1

2
b c

)(

x
y

)

=

(

x
y

)T (

a 1

2
b

1

2
b c

)(

x
y

)

.

Here we’ve used the fact that v · w = vTw for (column) vectors v, w, where T is
transpose.

Let x =

(

x
y

)

, and let A =

(

a 1

2
b

1

2
b c

)

, given Q(x, y) = ax2+bxy+cy2. We’ve

shown that Q(x, y) = xTAx. More generally, given a quadratic form Q(x, y) =
∑

1≤i≤j≤n aijxixj, if we set x = (x1 x2 · · · xn)
T , and let A be the matrix whose

(i, j) entry is

Aij =

{

aij if i = j
1

2
aij if i < j

,

then the same kind of calculation shows that Q(x1, . . . , xn) = xTAx. Thus, every
quadratic form has an associated matrix. Notice that this matrix is symmetric,
meaning AT = A. Conversely, any symmetric matrix leads to a quadratic form.

2 Putting a quadratic form into normal form

What happens to the matrix A of a quadratic form Q when we apply a change
of variables? Suppose R : Rn → R

n is a linear transformation represented as a
matrix, such as a rotation about the origin. We’d like to know what the matrix
of Q ◦ R = Q(R(x1, . . . , xn)) is, in terms of A and R. In the example above with
Q(x, y) = 3x2 + 2xy + 3y2, R was the transformation

R(u, v) = ((u+ v)/
√
2, (u− v)/

√
2).

Given that Q(x) = xTAx, we have

Q(Rx) = (Rx)TA(Rx) = xRTARx,

using the fact that (AB)T = BTAT for any matrices A,B. That is:
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Proposition. If a quadratic formQ has matrixA, andR is a linear transformation,
then the quadratic form Q ◦R has matrix RTAR.

Notice that a quadratic form is in normal form exactly when its matrix is

diagonal ; for example, ax2 + by2 has matrix

(

a 0
0 b

)

. Therefore we can restate

the problem of putting a quadratic form into normal form as: given a symmetric
matrix A, find a linear transformation R with the property that RTAR is diagonal.
This problem is dealt with by the following useful theorem:

Theorem (Spectral theorem). Any real symmetric matrix A is diagonalizable:
there is a matrix R such that R−1AR is diagonal. Moreover, we can take R to be
an orthogonal matrix, meaning that R−1 = RT .

Corollary. For any quadratic form Q, there’s an orthogonal linear transformation
R such that Q ◦R is in normal form.

As Q ◦ R is simply Q in different coordinates, and R is invertible, the critical
point at 0 for Q is of the same type as for Q ◦ R. The geometric meaning of a
linear transformation R being orthogonal is that it’s a rigid motion of space, i.e.
it doesn’t distort distances: |Rv−Rw| = |v−w|. In 2 dimensions, the orthogonal
matrices are all either rotations or reflections.

Example 1. Put the quadratic form Q(x, y) = 3x2 + 2xy + 3y2 in normal form.

Solution. We need to diagonalize the matrix A =

(

3 1
1 3

)

. So, compute its

eigenvalues: the characteristic polynomial is

det

(

3− λ 1
1 3− λ

)

= (3− λ)2 − 1 = λ2 − 6λ+ 8 = (λ− 2)(λ− 4),

and the eigenvalues of A are its roots λ = 2, 4. This means there’s some orthogonal
matrix R such that

RTAR =

(

2 0
0 4

)

,

so 3x2 + 2xy + 3y2 is a rotation/reflection of 2x2 + 4y2. Finding the matrix R
amounts to finding eigenvectors of A, but I won’t do that here.

Notice that the normal form isn’t unique: 3x2 + 2xy + 3y2 is also a rotation of
4x2 + 2y2.

Problem 3. (1 pt). Find a normal form for Q(x, y) = −2x2 + 4xy − 5y2.
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3 Critical points of functions

We’ve said that most of the time, a critical point p for a function f(x, y) has
the same type as the critical point 0 for the quadratic form Q(x, y) = fxx(p)h

2 +
2fxy(p)hk + fyy(p)k

2. Notice that the associated matrix is
(

fxx(p) fxy(p)
fyx(p) fyy(p)

)

.

This is called the Hessian of f at p, and we’ll write it Hpf . Notice that by equality
of mixed partials, the Hessian is symmetric (we’re assuming f has continuous
second partials).

More generally, for a function f(x1, . . . , xn), the second-order terms in the
Taylor polynomials for f(x1 + h1 + · · ·+ xn + hn), if p = (x1, . . . , xn), are

(

h1

∂

∂x1

+ · · ·+ hn

∂

∂xn

)2 ∣

∣

∣

p
f =

n
∑

i=1

fxixi
(p)h2

i + 2
∑

1≤i<j≤n

fxixj
(p)hihj.

The matrix of this quadratic form, i.e. the Hessian of f at p, is simply the matrix
of all second partials:











fx1x1
(p) fx2x1

(p) · · · fxnx1
(p)

fx1x2
(p) fx2x2

(p) · · · fxnx2
(p)

...
...

. . .
...

fx1xn
(p) fx2xn

(p) · · · fxnxn
(p)











Here’s a precise statement classifying critical points, using the Hessian.

Theorem. Let U ⊆ R
n be an open set and f : U → R have continuous partials

of order 3. If p is a critical point of f and detHpf 6= 0, then the critical point p
for f is of the same type as the critical point 0 for the quadratic form associated
to Hpf .

Problem 2, and the section on normal forms of quadratic forms, tells us that if
Q is a quadratic form with matrix A, then 0 is a local maximum if all eigenvalues
of A are negative; a local minimum if all eigenvalues of A are positive; and neither
(a saddle point) if some eigenvalues are negative and some are positive. So we can
rephrase the theorem above in terms of eigenvalues:

Theorem. (Second derivative test). Let U ⊆ R
n be an open set and f : U → R

have continuous partials of order 3. If p is a critical point of f and detHpf 6= 0, then
the critical point p is: a local maximum if the Hessian Hp(f) has all nonpositive
eigenvalues; a local minimum if it has all nonnegative eigenvalues; and neither if
some eigenvalues are negative and some are positive.
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Problem 4. (1 pt). The function f(x, y) = x3y+xy3−xy+x2− y2 has a critical
point at (0, 0). Use the second derivative test to decide if it’s a local minimum, a
local maximum, or neither (or both??).

Problem 5. (2 pt). Show that when detHpf = 0, the second derivative test
gives you no information, by finding two functions f, g of 2 variables such that
detHpf = detHqg = 0, with p, q critical points of f, g respectively, but where p is
a local maximum of f whereas q is neither a local maximum nor minimum of g.

Problem 6. (2 pt). Suppose p is a critical point of f(x, y), and

Hpf =

(

a b
b c

)

.

Show that if ac−b2 > 0 and a+c < 0, then p is a local maximum of f ; if ac−b2 > 0
and a + c > 0, then p is a local minimum of f ; if ac − b2 < 0, then p is neither a
local maximum nor minimum.

Problem 7. (3 pt). A function T : Rn → R
n with the property that |T (v) −

T (w)| = |v − w| for all v, w in R
n is called an isometry ; these are transforma-

tions which don’t distort distances. Rotations and reflections are examples, as we
mentioned earlier (calling them “rigid motions”); another example is translation:
T (x, y) = (x+ a, y + b) for some fixed a, b.

Note that any nontrivial translation isn’t a linear transformation in the sense
of linear algebra, since T (0) = 0 fails. However, show that if T is any isometry of
R

n with the property that T (0) = 0, then T is a linear transformation, meaning
T (v+w) = T (v)+T (w) for any v, w in R

n and T (cv) = cT (v) if c is a scalar. This
is a large step in saying exactly what the isometries of Rn are.

[This is a little harder than the previous problems. But it’s entirely elementary
and can be done just by thinking about basic geometry and drawing pictures,
although I’d be happy to see a slick proof that uses fancier machinery too.]
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