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Abstract

In this work, the library spinney is presented, which provides an implemen-
tation of helicity spinors and related algorithms for the symbolical mani-
pulation program Form. The package is well suited for symbolic amplitude
calculations both in traditional, Feynman diagram based approaches and
unitarity-based techniques.
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LONG WRITE-UP

1. Introduction

The success of current and future collider experiments depends on a pre-
cise prediction of the expected cross-sections for both signal processes and
their corresponding backgrounds. The experimental precision of these col-
liders can only be matched by theoretical calculations beyond leading order
in perturbation theory. Amongst the most pressing problems are the vir-
tual (one-loop) corrections to processes with up to four particles in the final
state. A disection of these one-loop amplitudes into gauge invariant sub-
amplitudes and the use of a compact notation allows for the generation of
numerically stable, fast computer programs for their evaluation. The authors
of [1] introduced the spinor helicity formalism for massless particles in their
cross-section calculations. Together with its extensions for massive particles,
this approach leads to a compact representation of helicity amplitudes.

Although recently a number of promising purely numerical methods for
the calculation of one-loop amplitudes have been presented [2–16], semi-nu-
merical and algebraic methods are still an important tool for matrix element
calculations [17–37]. The interested reader finds a more complete list of
methods for one-loop ampitudes and their applications in [38, 39].

The algebraic manipulations required in matrix element calculations are
very often simple, local operations that have to be applied to millions of
terms, not requiring the knowledge of the whole expressions at any given
moment1. General purpose computer algebra programs easily hit the memory
limits when dealing with expressions of this size as they hold the whole
expression in memory at every point in the program. A different approach
is persued by the symbolic manipulation program Form [40]. The program
provides only local manipulations of expressions, a fact which is reflected
by the memory model, viewing an expression merely as a stream of terms;
only a single term needs to reside in memory at any moment while the rest
of the expression is stored on a storage device. In practise, a system of
buffers is used to reduce the number of disk operations and multiple terms
are processed at once on multi-processor systems.

1An example for a non-local algorithm is the factorization of a polynomial, which needs
to know all its terms at once.
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The spinor helicity formalism has been implemented in the computer
algebra system Mathematica through the package S@M [41]. It provides
routines for the algebraic manipulation and numerical evaluation of spinor
products and Dirac matrices. Mathematica’s numerical and algebraic capa-
bilities paired with a user-friendly interface are a clear advantage for many
calculations. However, the above mentioned memory limitations restrict its
usage to smaller problems. More involved cross-section calculations require
an implementation of spinors in Form, combining the elegance of the spinor
helicity formalism with Form’s ability to process huge expressions. In this ar-
ticle we demonstrate that it is very easy to exploit Form’s existing constructs
to implement helicity spinors. Therefore the implementation is in the guise of
a Form library, spinney, rather than an extension of the core language. The
naming of many of the functions and procedures makes reference to S@M
allowing the user an easier migration between the two libraries.

This article is structured as follows: Section 2 gives an overview over the
underlying theory and establishes the notation used in the rest of this work.
Section 3 provides an interface documentation of the provided procedures
and the defined symbols and functions. A couple of examples are discussed
in Section 4.

2. Theoretical Background

2.1. Conventions

We consider spinors u(p) and v(p) which are solutions of the Dirac equa-
tions

(/̂p−m · I)u(p) = 0 and (/̂p+m · I)v(p) = 0. (1)

Here, we denote I the identity operator in spinor space and /p = gµνγ
µpν .

Dimension splitting is understood in the way that for n ∈ C

gµν = ĝµν + g̃µν (2a)

such that

ĝµµ ≡ ĝµνgµν = 4, (2b)

g̃µµ ≡ g̃µνgµν = n− 4 and (2c)

ĝµρg̃ρν = 0. (2d)
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The projector into the four-dimensional, physical Minkowski space is of the
form

ĝ = diag(1,−1,−1,−1)⊕ 0(n−4), (3)

i.e. it leads to the on-shell condition p̂2 −m2 = 0.
As a short-hand notation we add twiddles and hats to all vector-like ob-

jects to indicate projections into the 4 and (n − 4) dimensional subspaces
(γ̃µ ≡ g̃µν γ

ν , k̂µ ≡ ĝµν k
ν , etc.). We work with anti-commuting γ5 in 4 dimen-

sions, which means

{γµ, γν} = 2gµν and (4a)

{γ5, γ̂
µ} = [γ5, γ̃

µ] = 0. (4b)

The characteristic equation (γ5)
2 − I = 0 allows to introduce the usual pro-

jectors ΠL and ΠR into the left-handed and right-handed subspace,

ΠL = Π− =
1

2
(I− γ5) and ΠR = Π+ =

1

2
(I+ γ5) . (5)

The helicity eigenstates of massless spinors are denoted by a commonly used
bracket notation2

Π+u(ki) = Π+v(ki) = |i〉, Π−u(ki) = Π−v(ki) = |i], (6a)

ū(ki)Π− = v̄(ki)Π− = [i|, ū(ki)Π+ = v̄(ki)Π+ = 〈i|. (6b)

Also in the massive case we use a similar bracket notation to distinguish
the different solutions of the Dirac equation. We notice that using a given
lightlike vector q every massive vector pI can be decomposed into a sum of
two lightlike vectors as in the following equation

pµI = kµi +
(pI)

2

2pI · q
qµ (7)

which defines the lightlike vector ki. The solutions of the Dirac equations
(/pI ±mI)|I

±〉 = 0 and (/pI ± mI)|I
±] = 0 can be expressed in terms of the

2We identify the vectors with their labels where this does not lead to ambiguities, e.g.
pI ≡ I or kj = j. Throughout this paper lower case Latin labels are used for light-like
vectors and upper case Latin labels for massive vectors.
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massless spinors of q and ki,

|I±〉 = |i〉 ±
mI

[iq]
|q], |I±] = |i]±

mI

〈iq〉
|q〉, (8a)

〈I±| = 〈i| ±
mI

[qi]
[q|, [I±| = [i| ±

mI

〈qi〉
〈q|. (8b)

It should be noted that in spite of the similarity in notation the massive
spinors are not constructed as eigenstates of the helicity projectors Π±.

2.2. Dimension Splitting

In this section we want to derive the formulæ required for separating the
dependence on g̃ from the spinor chains and spinor traces. The starting point
for such a separation is the following equation, a proof of which can be found
in [42]:

tr{I} tr{γ̂µ1 · · · γ̂µp γ̃ν1 · · · γ̃νq} = tr{γ̂µ1 · · · γ̂µp} tr{γ̃ν1 · · · γ̃νq} (9)

A chain of Dirac matrices can always be sorted by splitting γµ = γ̂µ + γ̃µ

and shuffling γ̂ and γ̃ to opposite ends of the chain using Equation (4). The
presence of γ5 does not change the above results as in our scheme it can be
written as γ5 = iǫµνρσ γ̂

µγ̂ν γ̂ργ̂σ/4!.
Equation (9) extends to the case of spinor chains by the observation that

for any pair of massless spinors delimiting a product of Dirac matrices one
can introduce light-like auxiliary vectors p and q in order to turn the spinor
chain into a trace.

〈i| · · · |j] =
tr{Π−/ki · · · /kj/p}

〈j|/p|i]
, 〈i| · · · |j〉 =

tr{Π−/ki · · ·/kj/p/q}
[j|/p/q|i]

[i| · · · |j〉 =
tr{Π+/ki · · · /kj/p}

[j|/p|i〉
, [i| · · · |j] =

tr{Π+/ki · · ·/kj/p/q}
〈j|/p/q|i〉

(10)

In all four cases, the insertion can be undone after Equation (9) has been
applied and hence no spurious denominators need to be inserted in an actual
calculation.

The trace of (n − 4) dimensional Dirac matrices γ̃ can be evaluated ac-
cording to the recursion relation

tr{γ̃ν1 · · · γ̃νq} =
∑

i

= 2q(−1)ig̃ν1νi tr{γ̃ν2 · · · γ̃νi−1 γ̃νi+1 · · · γ̃νq} . (11)
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Since only even numbers of γ̃ lead to non-vanishing contributions, a chain
with two Dirac matrices can be expanded according to the above rules into

〈i|γµγν |j〉 = 〈i|γ̂µγ̂ν |j〉+ 〈i|γ̃µγ̃ν |j〉 = 〈i|γ̂µγ̂ν |j〉+ g̃µν〈ij〉 (12)

As a more complicated example, we also give an explicit expression for a
spinor chain with four matrices:

[i|γµγνγργσ|j] = [i|γ̂µγ̂ν γ̂ργ̂σ|j] + g̃ρσ[i|γ̂µγ̂ν |j]− g̃νσ[i|γ̂µγ̂ρ|j]

+ g̃νρ[i|γ̂µγ̂σ|j] + g̃µσ[i|γ̂ν γ̂ρ|j]− g̃µρ[i|γ̂ν γ̂σ|j] + g̃µν [i|γ̂ργ̂σ|j]

+ [ij] (g̃µν g̃ρσ − g̃µρg̃νσ + g̃µσg̃νρ) . (13)

2.3. Chisholm Identities

With the same argument as in the previous section, we can extend the
validity of the Chisholm identity

tr{γ̂µ1 · · · γ̂µ2m−1 γ̂ν} γ̂ν = 2 (γ̂µ1 · · · γ̂µ2m−1 + γ̂µ2m−1 · · · γ̂µ1) (14)

to the case of spinor chains by substituting Equation (10). If we denote
products of Dirac matrices as Γ = γ̂µ1 · · · γ̂µp and Γ′ = γ̂ν1 · · · γ̂νq and their

reversed strings by
←−
Γ = γ̂µp · · · γ̂µ1 , the Chisholm identities for spinor chains

read

〈i|Γγ̂µΓ′|j〉 · γ̂µ = 2Γ′|j〉〈i|Γ− 2
←−
Γ |i〉〈j|

←−
Γ′ (15a)

[i|Γγ̂µΓ′|j] · γ̂µ = 2Γ′|j][i|Γ− 2
←−
Γ |i][j|

←−
Γ′ (15b)

〈i|Γγ̂µΓ′|j] · γ̂µ = 2Γ′|j]〈i|Γ + 2
←−
Γ |i〉[j|

←−
Γ′ (15c)

[i|Γγ̂µΓ′|j〉 · γ̂µ = 2Γ′|j〉[i|Γ + 2
←−
Γ |i]〈j|

←−
Γ′ (15d)

The above identities are valid only if the number of Dirac matrices in Γ and
Γ′ matches the helicities of the spinors i and j, i.e. in equations (15a) and
(15b) the length of Γγ̂µΓ′ must be even3 and in (15c) and (15d) it must be
odd.

The repeated application of Equation (15) together with the identities

γ̂µΓγ̂µ = −2
←−
Γ and γ̂µΓγ̂ν γ̂µ = 2

(
γ̂νΓ +

←−
Γ γ̂ν

)
(16)

3 γ5 counts as an even number of matrices
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for an odd number of matrices in Γ, ensures that, starting from an expression
with no uncontracted Lorentz indices, all spinor chains in four dimensions
and traces can be expressed in terms of spinor products of the form 〈ij〉
and [ij].

2.4. Majorana Spinors

In supersymmetric extensions of the standard model we need to deal
with interactions of Majorana fermions. A Majorana fermion is its own anti-
particle, i.e. it is invariant under charge conjugation:

ψ̃M = Cψ̄T
M = ψM . (17)

The charge-conjugation matrix has the properties:

C† = C−1, CT = −C, CΓT
i C

−1 = ηiΓi (18)

with

ηi =

{
+1 for Γi = 1, γ5, γµγ5
−1 for Γi = γµ.

(19)

We aim to write down a consistent set of Feynman rules to deal with Ma-
jorana fermions. The problem is that vertices involving Majorana fermions
violate fermion number flow; the fermion flow in the Feynman diagram is ill-
defined. A consistent way of dealing with this was proposed in [43]. There are
two drawbacks with this approach; charge conjugation matrices are explic-
itly introduced into the Feynman rules and the relative sign of the Feynman
graphs needs to be determined from the original Wick contractions.

We follow the approach in [44] which has been implemented in [45].
Each vertex containing Dirac fermions has two expressions, one in which the
fermion flow follows the fermion number flow, and the other “flipped” ver-
tex, where the fermion flows in the opposite direction to the fermion number
flow. In our implementation we impose a fermion flow on the vertex through
the procedure RemoveNCContainer and “flip” the vertices and spinors where
neccesary.

We have implemented the following flipping rules, using (19):

(γµ)
′

= −γµ

(Π±)
′

= Π±

(20)
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and for the spinors
|p〉

′

= 〈p|
|p]

′

= [p|.
(21)

This leads to the following rule for the fermionic propagator:

S
′

(p) =
1

−/p −m
= S(−p). (22)

Another appealing feature of this method is that the relative sign be-
tween graphs can be determined directly from the expressions as opposed to
reverting back to the original Wick contractions. This brings it in line with
the usual formulation for Dirac fermions. To compute a consistent relative
sign of Feynman graphs each must be multiplied by (−1)P+L, with,

• P: the parity of the permutation of external spinors with respect to
some reference order,

• L: the number of closed fermion loops.

This sign is determined after the flipping rules are applied.

3. Program Description

3.1. Installation

The library has been written using the literate programming tool nuweb [46].
It can be obtained by downloading the file spinney.tgz from the URL
http://www.nikhef.nl/~thomasr/filetransfer.php=spinney.tgz . The
tarball contains the following files:

spinney.hh the Form file

spinney.pdf annotated source code

spinney.nw the nuweb sources

spinney test.frm unit tests

After unpacking the library the should run the test program spinney test.frm

in order to ensure that the installed Form version is recent enough. If one or
more tests in the program fail the most likely reason is a deprecated version
of Form.

The file spinney.nw is only needed if the user wants to rebuild any of the
other files from scratch.
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3.2. Representation in Form

The spinney library uses four different representations for spinorial ob-
jects, each of which is considered the most convenient form at a given point
in the workflow.

For the description of the definitions and declarations we use the Form

keywords (CFunction, NFunction, CTensor, NTensor, Vector, Sym-

bol, #Procedure) in the text to indicate its type. Where more than one
definition is combined in one box the arguments apply to all of the definitions.

3.2.1. Non-Commuting Objects

The ’t Hooft algebra and the dimension splitting are applied to Form’s
non-commuting object. In order to keep the information about the dimension
in the function names rather than the indices we do not use Form’s Dirac
matrices here (g ) but introduce our own functions.

NTensor Sm(µ)

An n-dimensional Dirac matrix γµ.

Parameters

µ: Lorentz index or vector

NTensor Sm4, SmEps(µ)

The 4-dimensional and (n− 4)-dimensional (resp.) projections
γ̂µ and γ̃µ of the Dirac matrix γµ.

The non-commuting objects corresponding to the four-dimensional ma-
trix γ5 and the derived projectors Π± = (I± γ5)/2 are described below; they
have been implemented as non-commuting functions without parameters.

NFunction Gamma5()

The Dirac matrix γ5.

NFunction ProjPlus, ProjMinus()

The projectors ΠR = Π+ = (I+ γ5)/2 and
ΠL = Π− = (I− γ5)/2 (resp.)

In the case of the spinors we use the same function names for both mas-
sive and massless spinors. Massive spinors are distinguished by their second
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argument ρ, which is ±1, indicating that the spinor lies in the kernel of
the operator (/p − ρm). For massless spinors the second argument must be
omitted.

NFunction USpa, UbarSpb(p [, ρ])

The massless spinor |p〉 and its conjugated [p|, if ρ is omitted;
the massive spinor |pρ〉 and its conjugated [pρ| otherwise.

Parameters

p: momentum of the spinor

ρ: (optional), a value ±1 as described above

NFunction USpb, UbarSpa(p [, ρ])

The massless spinor |p] and its conjugated 〈p|, if ρ is omitted;
the massive spinor |pρ] and its conjugated 〈pρ| otherwise.

Parameters

p: momentum of the spinor

ρ: (optional), a value ±1 as described above

The following two functions mark the beginning and the end of a Dirac
trace.

NFunction trL, trR()

Indicates the begin (resp. end) of a Dirac trace.

For example, the expression tr{Π+γ
µ/pγν/q} would correspond to the fol-

lowing product in Form:
✞ ☎

trL ∗ ProjPlus ∗ Sm (mu) ∗ Sm (p ) ∗ Sm (nu ) ∗ Sm ( q ) ∗ trR
✝ ✆

3.2.2. Indexed Notation

In this form the spinor indices of Dirac matrices and spinors are kept.
For example, the term 〈k1|/p|k2] would be expressed as

(〈k1|)α1
(/p)α1α2

(|k2])α2

and in a Form program as
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✞ ☎

NCContainer ( UbarSpa ( k1 ) , alpha1 ) ∗
NCContainer ( USpb ( k2 ) , alpha2 ) ∗
NCContainer (Sm (p ) , alpha1 , alpha2 )

✝ ✆

This notation is particularly useful when importing expressions from a
diagram generator, which does not necessarily put the factors in the cor-
rect order. All elements of the spinor line are wrapped inside the function
NCContainer which is defined as follows.

CFunction NCContainer(o, i1 [, i2])

Representation of a spinor or a Dirac matrix with explicit
spinor indices.

Parameters

o: a non-commuting object, such as Sm, Gamma5 or
UbarSpa; a complete list is given in
Section 3.2.1.

i1: for spinors: the only spinor index; for Dirac
matrices: the first spinor index

i2: for spinors: not present; for Dirac matrices: the
second spinor index

3.2.3. Collected Form

The collected form is generated from non-commutative objects by the pro-
cedure SpCollect or from the open form by the procedure SpClose. Spinor
strings are represented by the following four functions

CFunction Spaa, Spab, Spba, Spbb(k1, . . . , k2)

A string delimited by two spinors. The four forms correspond
to 〈k1| . . . |k2〉, 〈k1| . . . |k2], [k1| . . . |k2〉 and [k1| . . . |k2]
respectively.

Parameters

k1: a light-like, four-dimensional vector.

. . .: a list of four-dimensional indices or vectors.

k2: a light-like, four-dimensional vector.
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3.2.4. Open Form

The open form can be generated from the collected form by calling the
procedure SpOpen after all Lorentz indices have been contracted using SpContract.
The reverse operation of SpOpen is SpClose, which transforms the open form
back to collected form.

CFunction Spa2, Spb2(k1, k2)

The spinor products 〈k1k2〉 and [k1k2] respectively. These
functions are defined as anti-symmetric in their arguments.

Parameters

k1: a light-like, four-dimensional vector.

k2: a light-like, four-dimensional vector.

3.2.5. Metric Tensors

The dimension splitting of gµν into the sum ĝµν + g̃µν as described in
Equation (2) is reflected in the definition of the metric tensor and its projec-
tions onto subspaces. As in the case of the Dirac matrices we find it more
convenient to define new functions for the metric tensor rather than using
the tensor d , which is predefined in Form.

CTensor d(µ, ν)

The n-dimensional metric tensor gµν . This function is defined
symmetric in its arguments.

CTensor d4, dEps(µ, ν)

d4 is the 4-dimensional projection ĝµν of the metric tensor;
dEps is the orthogonal projection g̃µν into the (n− 4)
dimensional subspace.

These function are defined symmetric in their arguments.

3.2.6. Other Symbols and Objects

The function SpDenominator has been introduced in order to represent
the reciprocal value of its argument. Therefore, the replacement SpDenominator(x?)→
1/x is always safe. However, keeping certain denominators inside function
arguments makes some substitutions easier.
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CFunction SpDenominator(x)

Represents the reciprocal value of the argument, i.e. 1/x.

The function SpERRORTOKEN has been introduced to indicate inconsiten-
cies detected by the procedure SpCheck which signals if the length of a spinor
string trivially nullifies an expression. Although these null-expressions are
not errors, in certain circumstances they can indicate errors in a program.

CFunction SpERRORTOKEN()

Indicates that the procedure SpCheck found an error in the
term where SpERRORTOKEN appears.

3.3. Reserved Symbols

The library spinney defines more objects for internal use. All imple-
mented algorithms require that none of these objects are present in any
active expression at the invocation of the procedure and ensure that these
objects are not present in any active expression after the procedure returns.
These objects are declared exactly as written below.

✞ ☎

CFunctions fDUMMY1, . . . , fDUMMY4;
Symbols sDUMMY1, . . . , sDUMMY4;
Indices iDUMMY1, . . . , iDUMMY4;
Vectors vDUMMY1, . . . , vDUMMY4;
NFunctions nDUMMY1, SpFlip ;

✝ ✆

We also define the three sets SpORIGSet, SpIMAGSet and SpObject which
are used inside RemoveNCContainer.

3.4. Implemented Algorithms

3.4.1. Light-Cone Decomposition

This algorithm uses Equations (7) and (8) in order to express massive
vectors and spinors in terms of massless ones.
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#Procedure LightConeDecomposition(pI , pi, q, mI)

In every active expression all appearances of pI and all spinors
|I±〉, |I±], 〈I±| and [I±| are replaced by a pair of light-like
vectors (resp. spinors).

The parameters are defined according to Equation (7):

Parameters

pI: a massive vector that fulfills (pI)
2 = m2

I

pi: a light-like vector

q: a light-like vector (reference momentum)

mI: the mass of pI

This procedure works on non-commuting objects. If massive
spinors are present this procedure must be called before
SpCollect.

This procedure needs to be called before SpCollect as in the closed form
only massless spinors are allowed.

As an example, we write down the numerator of the color stripped tree
level diagram of uū→ tt̄ in QCD for two different helicities.

✞ ☎

Local d1 = UbarSpa ( k1 ) ∗ Sm4 (mu) ∗ USpb ( k2 ) ∗
UbarSpa (p3 , +1) ∗ Sm4 (mu) ∗ USpa ( p4 , −1);

Local d2 = UbarSpa ( k1 ) ∗ Sm4 (mu) ∗ USpb ( k2 ) ∗
UbarSpb (p3 , +1) ∗ Sm4 (mu) ∗ USpa ( p4 , −1);

#cal l LightConeDecomposition ( p3 , k3 , k1 , mT)
#cal l LightConeDecomposition ( p4 , k4 , k2 , mT)
#cal l SpCollect

#cal l SpContract

Print ;
. end

✝ ✆

We have also added the command SpContract in this example as it simplifies
the output considerably, which is given below.

✞ ☎
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d1 = 2∗Spaa (k1 , k4 )∗Spbb (k1 , k2 )∗
SpDenominator ( Spb2 (k1 , k3 ) )∗mT;

d2 = 2∗Spaa (k1 , k4 )∗Spbb (k3 , k2 ) ;
0 .00 sec out o f 0 .03 sec

✝ ✆

The above calculation can therefore be summarized as:

d1 = 〈k1|γ̂
µ|k2]〈p

+
3 |γ̂µ|p

−
4 〉 = 2 ·

〈k1k4〉[k1k2]

[k1k3]
·mT

d2 = 〈k1|γ̂
µ|k2]〈p

+
3 |γ̂µ|p

−
4 ] = 2 · 〈k1k4〉[k3k2]

3.4.2. n-Dimensional ’t Hooft Algebra

#Procedure tHooftAlgebra()

Carries out the (n− 4)-dimensional part of the algebra such
that only four dimensional Dirac matrices γ̂µ are left; the
dependence on (n− 4) is entirely expressed in terms of g̃µν .

This procedure works on non-commuting objects. If
n-dimensional Dirac matrices, Π± or γ5 are present this
procedure must be called before SpCollect.

As an example, we give a short program that reproduces Equations (12)
and (13).

✞ ☎

Local example1 =
UbarSpa ( k1 ) ∗ Sm (mu) ∗ Sm (nu ) ∗ USpa ( k2 ) ;

Local example2 =
UbarSpa ( k1 ) ∗ Sm (mu) ∗ Sm (nu ) ∗

Sm ( rho ) ∗ Sm ( sigma ) ∗ USpa ( k2 ) ;
#cal l tHooftAlgebra ( )
#cal l SpCollect

Print +s ;
✝ ✆

3.4.3. Change of Representation

As described in Section 3.2, different representations for the expressions
are used at different points in a Form program using spinney. Here, we give
an overview of the functions changing between the representations. While
for most representations only one-directional translation is provided, the user
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can change forth and back between collected form and open form, which is
indicated in the diagram below

NCContainer(UbarSpa(p), i) ∗ NCContainer(USpa(q), i)
RemoveNCContainer

−→

UbarSpa(p) ∗ USpa(b)
SpCollect
−→ Spaa(p, q)

SpOpen
←→
SpClose

Spa2(p, q) (23)

The first in this collection of procedures is RemoveNCContainer. Its effect
amounts to stripping off the function NCContainer and ordering the Dirac
matrices and spinors according to the order of the spinor indices. Where nec-
essary the flipping rules for Majorana fermions are applied (see Section 2.4).

#Procedure RemoveNCContainer()

Translates the indexed notation into non-commuting objects.

At the level of non-commuting objects the dimension splitting and the
’t Hooft algebra take place, which has been implemented in the routine
tHooftAlgebra.

After these steps, typically, one wants to proceed in collected form. This
form is better suited for contractions across different spinor lines, as in
〈p1|γ̂

µ|p2]〈p3|γ̂µ|p4], which can be detected very easily using argument lists
but is very difficult to be carried out using products of non-commuting ob-
jects.

Traces of the form trL · · · trR can be converted to collected form using
the procedure SpTrace4, all remaining products of non-commuting objects
can be transformed by the procedure SpCollect.

#Procedure SpTrace4(k1, k2, . . . )

Operates on non-commutative objects in products representing
a trace (trL * ...* trR).

Parameters

k1, k2, ...: an optional list of vectors. If
specified, these vectors are assumed
lightlike and traces are opened at those
positions. If no such positions are found
the trace is evaluated using Form’s Trace4
command.
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The following example demonstrates the difference in treatment between
light-like vectors and those which have not been specified as light-like.

✞ ☎

Local t e s t 1 = trL∗Sm4 ( k1 )∗Sm4 ( k2 )∗Sm4 ( k3 )∗Sm4 ( k4 )∗trR ;
Local t e s t 2 = trL∗Sm4 ( k1 )∗Sm4 ( k2 )∗Sm4 (q )∗Sm4 ( k4 )∗trR ;
#cal l SpTrace4 (q )
Print ;
. end

∗ t e s t 1 = 4∗k1 . k2∗k3 . k4−4∗k1 . k3∗k2 . k4+4∗k1 . k4∗k2 . k3 ;
∗ t e s t 2 = Spab (q , k4 , k1 , k2 , q)+Spba (q , k4 , k1 , k2 , q ) ;

✝ ✆

Very often specifying the list of light-like vectors leads to more compact
expressions, especially if the number of terms generated by taking the trace
is very big.

#Procedure SpCollect()

Translates non-commuting objects into collected form.

This procedure requires that the n-dimensional algebra has
already been carried out by a call to tHooftAlgebra and that
all massive spinors have been replaced using the routine
LightConeDecomposition.

As a result the all spinorial objects are expressed in terms of
the function Spaa, Spab, Spba and Spab.

Before one can go from collected form to open form one should eliminate
all Lorentz contractions by the use of SpContract and SpContractLeviCivita.
The latter one is only needed if the Levi-Civita symbol ǫµνρσ has been intro-
duced by taking a trace involving γ5.

The conversion from collected to open form is performed by the procedure
SpOpen. The reverse operation, converting from open form back to collected
form is done by the procedure SpClose.
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#Procedure SpOpen(k1, k2, . . . )

Translates an expression in collected form into open form.

In open form, only the functions Spa2 and Spb2 are used to
express spinor products.

This procedure requires that all Lorentz indices inside spinor
lines have been removed using the routine SpContract.

Parameters

k1, k2, ...: an optional list of vectors. If
specified, the spinor lines are only opened
at positions indicated by the given vectors.
In this case a complete translation into
Spa2 and Spb2 functions might not

The parameter list of SpClose allows to close spinor strings at the posi-
tions of certain vectors, indicated by the arguments. In both cases, SpOpen
and SpClose, the parameter lists facilitate the use of this library for unitarity
based methods, as will be shown in the examples of Section 4.3.

#Procedure SpClose(k1, k2, . . . )

The inverse operation of SpOpen. Replaces the functions Spa2
and Spb2 into the functions Spaa, Spab etc.

Parameters

k1, k2, ...: an optional list of vectors. If
specified, only those positions are closed
which are indicated by the given vectors.

In some cases this operation requires that a spinor string is broken up at
another position. Consider the following example:

✞ ☎

Local expre s s i o n = Spab (q , k1 , k2 , k1 , q ) ;

#cal l SpOpen ( )
#cal l SpClose ( q )
Print ;
. end

∗ t e s t = − Spab ( k1 , q , k1 )∗Spa2 ( k1 , k2 )∗Spb2 ( k1 , k2 ) ;
✝ ✆
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However, it is not guaranteed that the operation always succeeds: if we
had written #call SpClose(q,k1) instead of #call SpClose(q) the following
result would have come out, where the vector q still appears in the spinors.

✞ ☎

∗ t e s t = Spab ( k2 , k1 , k2 )∗Spab ( q , k1 , q ) ;
✝ ✆

3.4.4. Contraction of Lorentz Indices

This Section describes three routines which reduce the number of explicit
appearances of contracted Lorentz indices. The first type of contractions,
those involving only spinor lines, as in 〈p1| · · · γ̂

µ · · · |p2]〈p3| · · · γ̂µ · · · |p4] or
in 〈p1| · · · γ̂

µ · · · γ̂µ · · · |p2], are treated by the procedure SpContract.

#Procedure SpContract()

Applies the equations of Section 2.3 in order to eliminate all
Lorentz indices inside spinor lines. This procedure works on
expressions in collected form.

Contractions involving metric tensors are simplified by the procedure
SpContractMetrics. This procedure is implemented such that it can deal
with expressions in collected form but also with non-commuting objects.

#Procedure SpContractMetrics()

Removes spurious appearances of the metric tensors gµν , ĝµν

and g̃µν . Whereas ĝµµ = 4 is substituted immediately, all other
instances of the dimensions g̃µµ and gµµ are not replaced.

The last one in this category of procedures is SpContractLeviCivita.
This routine uses the fact that the Levi-Civita tensor ǫµνρσ can be written as
a trace:

ǫµνρσ = −
i

4
tr{γ5γ̂

µγ̂ν γ̂ργ̂σ} . (24)

The procedure considers two cases. If the Levi-Civita tensor is contracted
with a Dirac matrix inside a spinor string it uses the Chisholm identity to
simplify

ǫµνρσ γ̂σ = −
i

2
(Π+ − Π−) [γ̂

µγ̂ν γ̂ρ − γ̂µγ̂ν γ̂ρ] (25)

The second case is the contraction of the Levi-Civita tensor with a lightlike
momentum. Here one can rewrite the ǫ-tensor as

pµǫ
µνρσ = −

i

4
([p|γ̂ν γ̂ργ̂σ|p〉 − 〈p|γ̂ν γ̂ργ̂σ|p]) (26)
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Products of multiple ǫ-tensors are reduced by applying the determinant
relation

ǫµ1µ2µ3µ4ǫν1ν2ν3ν4 = det (ĝµiνj )4i,j=1 (27)

#Procedure SpContractLeviCivita(k1, k2, . . . )

Eliminates Levi-Civita tensors as far as possible applying
Equations (25), (26) and (27).

Parameters

k1, k2, ...: an optional list of vectors. If
specified, these vectors are assumed
lightlike.

3.4.5. Schouten Identity

In analogy to the package S@M [41] we have implemented three versions
of the Schouten identity

〈ij〉〈kl〉 = 〈il〉〈kj〉+ 〈ik〉〈jl〉 (28)

and its conjugated version.

#Procedure Schouten(p1, p2, q1, q2)

Substitutes according to the Schouten identity

〈p1p2〉〈q1q2〉 → 〈p1q2〉〈q1p2〉+ 〈p1q1〉〈p2q2〉.

#Procedure Schouten(p1, p2, q)

Substitutes according to the Schouten identity

∀q′ : 〈p1p2〉〈qq
′〉 → 〈p1q

′〉〈qp2〉+ 〈p1q〉〈p2q
′〉.

#Procedure Schouten(q)

Substitutes according to the Schouten identity

∀p1, p2, p3 :
〈qp1〉

〈qp2〉〈qp3〉
→

〈p2p1〉

〈qp2〉〈p2p3〉
−

〈p3p1〉

〈qp3〉〈p2p3〉
.
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3.4.6. Miscellanous Routines

In this section we describe some routines which are of less common use.
The procedure SpClear nullifies all expressions which should vanish due to
spinor lines of the wrong length. The procedure SpClear is called inside
SpContract because Equations (15) hold only if the spinor chains have cor-
rect length.

#Procedure SpClear()

Eliminates all terms which contain a spinor line 〈p|Γ|q〉 or
[p|Γ|q], where Γ is a product of an odd number of Dirac
matrices, or a spinor line 〈p|Γ|q] or [p|Γ|q〉, where Γ is a
product of an even number of Dirac matrices.

This procedure acts on expressions in collected form.

The routine SpCheck acts in a similar way as SpClear does. Instead of
removing the terms which should vanish trivially it marks them with the
function SpERRORTOKEN.

#Procedure SpCheck()

Substitutes all terms which contain a spinor line 〈p|Γ|q〉 or
[p|Γ|q], where Γ is a product of an odd number of Dirac
matrices, or a spinor line 〈p|Γ|q] or [p|Γ|q〉, where Γ is a
product of an even number of Dirac matrices inside the
arguments of the function SpERRORTOKEN.

This procedure acts on expressions in collected form.

The last procedure of this section, SpOrder, shuffles Dirac matrices into
a given order using the ’t Hooft-Veltman algebra. The order is specified by
the argument list of SpOrder. This routine is used in the test programs to
bring the results into a canonical form which is necessary in order to check
that all tests hold.
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#Procedure SpOrder(k1,k2,. . . )

Sorts all products of Dirac matrices according to the ordering
specified by the argument list. This routine acts on
non-commuting objects.

Parameters

k1, k2, ...: a list of vectors. If ki is to the left of
kj in the argument list then the procedure
shuffles /ki to the left of /kj in the
expression.

3.5. Working with Majorana Spinors

3.5.1. On the Relative Sign of Feynman Graphs

The flipping rules have been tested in Golem-2.0 where the diagrams are
generated by Qgraf [47]. The relative sign calculated by Qgraf is incorrect
when dealing with Majorana fermions. Here, we present a method to calcu-
late it. Firstly we calculate (−1)P using the following code:

✞ ☎

Function NCOrder ;
Id fDUMMY1?{UbarSpa , UbarSpb}(vDUMMY1?) =

NCOrder (vDUMMY1)∗fDUMMY1(vDUMMY1) ;
Id fDUMMY1?{USpa ,USpb}(vDUMMY1?) =

fDUMMY1(vDUMMY1)∗NCOrder (vDUMMY1) ;
#cal l tHooftAlgebra
#cal l SpCol l ect
ChainIn NCOrder ;
AntiSymmetrize NCOrder ;
Id NCOrder (? a l l ) = 1 ;

✝ ✆

We multiply our diagram by a non-commuting function of the external
momenta which encodes the order of the spinors in the diagram. The argu-
ments of this function are then brought into Form’s natural ordering. The
exchange of any two arguments results in a minus sign.

Secondly we must determine (−1)L with L being the number of closed
fermion loops. This is easily done by counting the number of appearances of
trL, as long as one ensures that the only source of spinor traces in the first
place are closed fermion loops; the easiest way of multiplying the amplitude
by the correct sign could be implemented as Id trL = -trL.
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3.5.2. Fixing Fermion Chain Order

The method we have described relies on being able to fix the fermion
chain order. This is achieved in the procedure NCContainer. In our code an
incoming (outgoing) Majorana fermion will initially be treated as in incoming
(outgoing) Dirac fermion (as opposed to an anti-fermion). When we join an
incoming Majorana spinor with an incoming Dirac fermion or an outgoing
Dirac anti-fermion, one spinor will need to be flipped. The same applies
when an outgoing Majorana fermion is joined to an incoming anti-fermion
or an outgoing fermion. As an example we have an expression:

✞ ☎

NCContainer (UbarSpa ( k1 )∗Sm( i 1 )∗ ProjPlus ∗UbarSpa ( k2 ) )
✝ ✆

which is transformed using RemoveNCContainer to
✞ ☎

NCContainer (UbarSpa ( k1 ) , Sm( i 1 ) , ProjPlus ,
SpFlip (UbarSpa ( k2 ) ) )

✝ ✆

and then using (21) we have the fermion chain:
✞ ☎

UbarSpa ( k1 )∗Sm( i 1 )∗ ProjPlus ∗USpb( k2 ) .
✝ ✆

This is the default behaviour of spinney; one can prevent spinney from
applying the flipping rules by defining the preprocessor variable NOSPFLIP

before calling RemoveNCContainer.

4. Examples and Applications

4.1. Feynman Diagram Based Reduction of One-Loop Amplitudes

In this section we show how the Form library spinney can be used for the
reduction of one-loop diagrams, both with conventional reduction of tensor
integrals and with a reduction at the integrand level as described in [14]. In
the first case we use the conventions of [48]. However, the method is not
restricted to to this particular tensor decomposition.

In our setup, we use the diagram generator QGraf [47]. For the diagram
in Figure 1 we obtain an output similar to the one given below.4

✞ ☎

Local diagram1 =
inp (−1 , iv1r1L1 , k1 , me) ∗

4For the sake of simplicity we skip the discussion of the color algebra.
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e+(k1)

e−(k2) t(k3)

t̄(k4)

γ g

t

t

Figure 1: Three-point diagram (e+e− → tt̄) discussed in the example.

inp (+1 , iv1r2L1 , k2 , me) ∗
out (+1 , iv2r1L1 , k3 , mT) ∗
out (−1 , iv3r2L1 , k4 , mT) ∗
ver tex ( [ f i e l d . ep ] , k1 , iv1r1L1 ,

[ f i e l d . em ] , k2 , iv1r2L1 ,
[ f i e l d .A] , −k1−k2 , iv1r3L2 ) ∗

ver tex ( [ f i e l d . Ubar ] , −k3 , iv2r1L1 ,
[ f i e l d .U] , Q+k3 , iv2r2L1 ,
[ f i e l d . g ] , −Q, iv2r3L2 ) ∗

ver tex ( [ f i e l d . Ubar ] , −Q+k4 , iv3r1L1 ,
[ f i e l d .U] , −k4 , iv3r2L1 ,
[ f i e l d . g ] , Q, iv3r3L2 ) ∗

ver tex ( [ f i e l d . Ubar ] , −Q−k3 , iv4r1L1 ,
[ f i e l d .U] , Q−k4 , iv4r2L1 ,
[ f i e l d .A] , k1+k2 , iv4r3L2 ) ∗

prop (+2 , −k1−k2 , 0 , iv4r3L2 , iv1r3L2 ) ∗
prop (+2 , −Q, 0 , iv3r3L2 , iv2r3L2 ) ∗
prop (+1 , Q+k3 , mT, iv4r1L1 , iv2r2L1 ) ∗
prop (+1 , Q−k4 , mT, iv3r1L1 , iv4r2L1 ) ;

✝ ✆

The first step is the substitution of the Feynman rules. In the replacement
of the wave functions the approximation me = 0 is applied and helicities are
assigned to the particles.

✞ ☎

Id inp (−1 , iv1 ? , k1 ,me)=NCContainer ( UbarSpa ( k1 ) , iv1 ) ;
Id inp (+1 , iv1 ? , k2 ,me)=NCContainer ( USpb ( k2 ) , iv1 ) ;
Id out (+1 , iv1 ? , k3 ,mT)=NCContainer ( UbarSpb ( k3 ,+1) , iv1 ) ;
Id out (−1 , iv1 ? , k4 ,mT)=NCContainer ( USpa ( k4 ,−1) , iv1 ) ;

✝ ✆
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As discussed in Section 3.2.1 the letters ‘a’ and ‘b’ distinguish the helicities,
whereas the parameter ±1 at the right-hand side differentiates between u-
and v-spinors.

In a similar manner the propagators and vertices are substituted. Again,
focussing on the Lorentz algebra we omit color structure, coupling constants
and denominators here.

✞ ☎

Id prop (1 , k1 ? , mT? , iv1 ? , iv2 ?) =
i ∗ ( NCContainer (Sm ( k1 ) , iv2 , iv1 )

+ mT ∗ NCContainer (1 , iv2 , iv1 ) ) ;
Id prop (2 , k1 ? , 0 , iv1 ? , iv2 ?) = − i ∗ d ( iv1 , iv2 ) ;
Id ver tex ( [ f i e l d . ep ] ? , k1 ? , iv1L1 ? ,

[ f i e l d . em ] ? , k2 ? , iv2L1 ? ,
[ f i e l d .A] ? , k3 ? , iv3L2 ?) =

NCContainer (Sm ( iv3L2 ) , iv1L1 , iv2L1 ) ;
✝ ✆

Now, a call to RemoveNCContainer brings the non-commuting object in the
right order and simplifies the representation of the expression. We replace
the massive spinors by projecting onto massless vectors. Hereby we introduce
new vectors l3 and l4 as defined in Equations (7) and (8).

✞ ☎

#cal l RemoveNCContainer

#cal l LightConeDecomposition ( k3 , l3 , k1 ,mT)
#cal l LightConeDecomposition ( k4 , l4 , k2 ,mT)

✝ ✆

At this point the manipulation of the diagram branches depending on
the output one wants to achieve. In a conventional reduction of the tensor
integrals the algorithm contiues after replacing the integration momentum
Q by the corresponding expressions for the tensor integrals. In the case of
a reduction at the integrand level we like to express Q in terms of a four-
dimensional projection Q4 and a scale µ2 such that Q2 = (Q4)

2 − µ2.

4.1.1. Conventional Tensor Reduction

The expression corresponding to the Feynman diagram in Figure 1 has
integrals of rank two at most. Following the notation of [48] the momenta in
the loop are r1 = −k4, r2 = k3 and r3 = 0. The corresponding form factor
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representation of the occurring tensor integrals is

In3 (S) = A3,0(S); (29)

In,µ1

3 (S) = −kµ1

4 A
3,1
1 (S) + kµ1

3 A
3,1
2 (S); (30)

In,µ1µ2

3 (S) = kµ1

4 k
µ2

4 A
3,2
11 (S)− (kµ1

3 k
µ2

4 + kµ1

4 k
µ2

3 )A3,2
12 (S)

+ kµ1

4 k
µ2

4 A
3,2
22 (S) + gµ1µ2B3,2(S). (31)

These formulae are easily implemented for the given example. It should
be noted that the calls to the function LightConeDecomposition must be
repeated after this step since we reintroduce the momenta k3 and k4 here.

✞ ☎

ToTensor , Functions , Q, QTens ;
I f ( count (QTens ,1)==0) Multiply A30 ;
Id QTens( iv1 ?) = −k4 ( iv1 ) ∗ A31 (1 ) + k3 ( iv1 ) ∗ A31 ( 2 ) ;
Id QTens( iv1 ? , iv2 ?) =

+ k3 ( iv1 )∗k3 ( iv2 ) ∗ A32 (1 , 1 )
− k3 ( iv1 )∗k4 ( iv2 ) ∗ A32 (1 , 2 )
− k4 ( iv1 )∗k3 ( iv2 ) ∗ A32 (1 , 2 )
+ k4 ( iv1 )∗k4 ( iv2 ) ∗ A32 (2 , 2 )
+ d ( iv1 , iv2 ) ∗ B32 ( ) ;

✝ ✆

The remaining steps of the program carry out the ’t Hooft algebra and
simplify the expression by taking out all contractions of Lorentz indices.
The replacements of dEps are consistent with the dimension splitting in use
and define the symbol eps such that n = 4 − 2ε. In the four-dimensional
helicity (FDH) scheme [49–53] the symbol eps can be replaced by zero; in
the ’t Hooft-Veltman scheme the products between ε (resp. ε2) and the form
factors, which are formally Laurent series in ε, lead to rational terms. After
these steps the diagram is in a form suitable for numerical evaluation if one
provides routines for the computation of spinor brackets (〈··〉 and [··]) and a
library of integral form factors such as golem95 [54].

✞ ☎

#cal l tHooftAlgebra

#cal l SpCollect

#cal l SpContract

#cal l SpContractMetrics

Id dEps (Q?{k1 , k2 , l3 , l 4 } , i v1 ?) = 0 ;
Id dEps ( iv1 ? , iv1 ?) = −2∗eps ;
#cal l SpOpen

✝ ✆
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4.1.2. Reduction at the Integrand Level

Following the strategy of reducing the Feynman diagrams at the integrand
level, we show in this section how the numerator of the Feynman diagram can
be constructed very easily by the use of spinney. We consider two different
approaches corresponding to two publicly available reduction packages. The
strategy implemented in CutTools [55] uses a numerator function N(Q4)
which only depends on the four-dimensional projection of the (complex) in-
tegration momentum Q. This method allows for the reconstruction of the
cut-constructible terms but only partially recovers the rational parts of an
amplitude. This is due to the fact that terms in µ2, where Q2 = Q2

4−µ
2, lead

to rational terms which are not taken into account and need to be added by
a separate calculation [56, 57]. An improved reduction at the integrand level
has been implemented by the authors of Samurai [15]. This method takes
advantage of a numerator function depending on both Q4 and µ

2, which can
be decomposed into

N(Q4, µ
2) = N0(Q4, µ

2) + εN1(Q4, µ
2) + ε2N2(Q4, µ

2) +O(ε3). (32)

As in the case of the conventional tensor reduction, ε is set to zero (keeping
terms in µ2) in the FDH scheme, whereas in the ’t-Hooft Veltman scheme
the independent reduction of the numerators N0, N1 and N2, multiplication
with the apropriate terms of the Laurent series of the scalar integrals leads
to the full result, including both both the cut-constructible and the rational
part of the amplitude.

Irrespective of the approach chosen the first step to be taken should be
to carry out the ’t Hooft algebra. Then the two methods differ in the way
they deal with terms in dEps. Using CutTools these terms are neglected
and set to zero. In the case of Samurai one substitutes the relations which
are implied by Q2 = Q2

4 − µ
2, where gµνQ2 = QµQν and Qµ

4 = ĝµνQν , and
therefore µ2 = −g̃µνQµQν .

✞ ☎

#cal l tHooftAlgebra

#cal l SpCollect

#cal l SpContractMetrics

Id dEps (Q,Q) = − mu2 ;
Id dEps (Q? , iv1 ?) = 0 ;
Id dEps ( iv1 ? , iv1 ?) = −2∗eps ;
Argument Spaa , Spab , Spba , Spbb , d4 ;

Id Q = Q4;
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EndArgument;
Id Q.Q = Q4 .Q4 − mu2 ;
Id Q = Q4;
Id d4 ( k1 ? , iv1 ?) = k1 ( iv1 ) ;

✝ ✆

Finally, one can contract the remaining Lorentz indices and bring the the
expression into a form where spinor brackets (〈··〉, [··] and [·| /Q4|·〉) are the
only functions to be evaluated numerically.

✞ ☎

#cal l SpContract

#cal l SpOpen ( k1 , k2 , l3 , l 4 )
✝ ✆

4.2. Working with Majorana Spinors

4.2.1. Charge Conjugation of a Vector Current

We illustrate our approach through the following simple example. The
vector current, 〈p+|γµ|q+〉, satisfies the charge conjugation relation

〈p+|γµ|q+〉 = 〈q−|γµ|p−〉, (33)

which we can show explicitly using charge conjugation relations. This charge
conjugation operation is equivalent to us reversing the fermion flow arrow.
Therefore we can use Equations (20) to show this equivalence holds:

〈p+|γµ|q+〉 = [p|µ|q〉 → (−1)P 〈q|γµ
′

|p] = (−1)P (−1)〈q|γµ|p] (34)

= 〈q|γµ|p] = 〈q−|γµ|p−〉 (35)

where we have used (19) and (21) and we have defined our reference order as
(p, q) giving (−1)P = −1. This result is true for both Dirac and Majorana
fermions.

4.2.2. Majorana Exchange

We now consider two Dirac fermions scattering to two vector bosons via a
t-channel Majorana fermion exchange. There are two equivalent orientations
to choose from as shown in Figure 2. We write our amplitude as

A = Aµνǫ∗µ(p3)ǫ
∗
µ(p4). (36)

Our first choice of orientation gives

Aµν
1 = 〈p1|(γ

µ)
′

S(p)γν|p2〉 (37)
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f(p1)

f(p2) V (p4)

V (p3)

χ(p)

Figure 2: The process (ff → V V ) mediated by the exchange of a Majorana fermion (χ)
as discussed in the example. The left hand figure shows the original diagram; the middle
figure shows the first choice of fermion orientation; and the figure on the right shows the
second choice of orientation.

and the second orientation gives

Aµν
2 = (−1)〈p2|(γ

ν)
′

S(−p)γµ|p1〉 (38)

where we have chosen the reference order (p1, p2). Applying our flipping rules
to Equation (37) gives the result:

Aµν′

1 = (−1)P 〈p2|(γ
ν)

′

S(−p)γµ|p1〉 = A
µν
2 . (39)

Therefore the amplitude is independent of the original choice of fermion
orientation.

In our code, part of the output is:
✞ ☎

NCContainer (USpa( k1 )∗ SpFlip (Sm(mu)∗ ProjPlus )∗Sm( k4 )
∗Sm(nu)∗ ProjPlus ∗USpb( k2 ))∗ inv ( es23 ) .

✝ ✆

Upon applying the RemoveNCContainer routine we obtain the result
✞ ☎

− UbarSpb ( k1 )∗ ProjPlus ∗Sm(mu)∗Sm( k4 )∗Sm(nu)
∗ProjMinus∗USpa( k2 )∗ inv ( es23 )

✝ ✆

We have picked up a minus sign from the flipping of the γµ. What remains
is to multiply by (−1)P as explained previously.

4.3. Coefficients of Scalar Integrals by Unitarity Based Methods

In this example we consider Bhaba scattering in QED at the one-loop
level. We use the well known fact that any (leg-ordered) one-loop amplitude
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can be written in terms of a basis of scalar one-loop integrals,

A1-loop =
∑

i1

ai1

∫
dnl

Di1

+
∑

i1<i2

bi1i2

∫
dnl

Di1Di2

+
∑

i1<i2<i3

ci1i2i3

∫
dnl

Di1Di2Di3

+
∑

i1<i2<i3<i4

di1i2i3i4

∫
dnl

Di1Di2Di3Di4

, (40)

where Di = [(l + ri)
2 −m2

i ].
We consider the two diagrams in Fig. 3. The box coefficient is isolated by

performing four cuts, which completely disconnect the loop amplitude into
4 tree-level partial amplitudes with three external legs each. In fact, since
there is only one vertex in QED and the identity of one of the legs is fixed (it
is one of the original external fermions), we have two possible contributions
in each amplitude differing by the exchange of the remaining fermion/photon
legs of the QED vertex. Consistency, i.e. the fact that the lines connecting
neighbouring vertices need obviously be of the same type, reduces this to two
choices, depicted on the left-hand side of Fig. 3. The helicity conservation
on the fermion lines and the restrictions of complex kinematics allow us to
write down the only four possible internal helicity configurations. The four
cuts also provide four independent constraints on the loop momentum, thus
determining all its components (in fact there are two solutions). For details
see [22]. We take all momenta to be outgoing.

We begin the computation by preparing a small procedure that will be
used repeatedly together with SpOpen to simplify denominator structures. It
is an ad-hoc solution based on the knowledge of type and depth of denomi-
nators arising due to loop momenta substitutions.

✞ ☎

#Include− spinney . hh
#Procedure SpSimpl i fy ( )

Repeat ;
FactArg SpDenominator ;
ChainOut SpDenominator ;
Id SpDenominator ( SpDenominator ( Spa2 (vD1? ,vD2?)))=

Spa2 (vD1 , vD2 ) ;
Id SpDenominator ( SpDenominator ( Spb2 (vD1? ,vD2?)))=

Spb2 (vD1 , vD2 ) ;
Id SpDenominator ( SpDenominator ( fD1 ?(?vD1)))=

fD1 (?vD1 ) ;
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Figure 3: Possible helicity configurations of the two box diagrams contributing to the
f f̄ → f f̄ amplitude.

Id SpDenominator (sDUMMY1?number ) = 1/sDUMMY1;
EndRepeat ;

#EndProcedure
✝ ✆

We write down the explicit formula for one of the four internal helicity con-
figurations, split into separate numerator and denominator expressions. The
formulae for the remaining configurations are similar.

✞ ☎

Global FaNUM = −4 ∗Spbb ( l1 , l 0 ) ∗Spaa ( l0 , l 3 ) ∗Spaa ( l1 , l 2 )
∗Spbb ( l3 , l 2 ) ∗Spaa (p1 ,R0) ∗Spbb (R0 , p2 )
∗Spaa (p3 ,R2) ∗Spbb (R2 , p4 ) ;

Global FaDEN = Spaa ( l1 ,R0) ∗Spbb (R0 , l 1 ) ∗Spaa ( l3 ,R2)
∗Spbb (R2 , l 3 ) ;

✝ ✆

The first step is to substitute the solutions for the loop momentum on the
cut, which in our case is:

lµ0 =
1

2

[p2p1]

[p2p4]
〈p1|γµ|p4] (41)
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In order to do so we need to re-express all loop momenta in terms of l0 and
external momenta. We use SpClose to have the spinor products in a form
which is suitable for standard linear substitutions: 〈p| . . . li1 . . . li2 . . . |q〉, with
p and q being external momenta and li the loop momentum. This might not
be immediately possible, as in our example, where SpClose produces an
output of the type 〈li1| . . . |li2〉 instead. However, a call to Schouten solves
the problem at the cost of having more terms in the calculation.

✞ ☎

#Call SpOpen

#Call Schouten ( l0 , l3 , p1 ,R0)
#Call SpClose ( l0 , l1 , l2 , l 3 )
. sort

ToTensor Functions l1 , L1 ;
ToTensor Functions l2 , L2 ;
ToTensor Functions l3 , L3 ;
Id L1( iD1 ?) = l 0 ( iD1 ) − p1 ( iD1 ) ;
Id L2( iD1 ?) = l 0 ( iD1 ) − p1 ( iD1 ) − p2 ( iD1 ) ;
Id L3( iD1 ?) = l 0 ( iD1 ) + p4 ( iD1 ) ;
#Call SpContract

. sort
✝ ✆

Now we substitute the solution for lµ0 and contract all explicit Lorentz indices.
✞ ☎

ToTensor Functions l0 , L0 ;
ChainOut L0 ;
. sort

Id L0( iD1 ?) = Spab (p1 , iD1 , p4 )∗ Spb2 ( p2 , p1 )∗ (1/2)∗
SpDenominator ( Spb2 ( p2 , p4 ) ) ;

#Call SpContractMetrics

#Call SpContract

#Call SpOpen

. sort
✝ ✆

We combine the numerator and denominator expressions obtained before.
Our formulae still involve the reference momenta of the photons, which is
our gauge freedom - we can greatly simplify the computations by making an
explicit choice at this point.

✞ ☎

Global Fa = FaNUM∗SpDenominator (FaDEN) ;
Argument ;
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Id R2 = p1 ;
Argument ;

Id R2 = p1 ;
EndArgument;

EndArgument;
#Call SpOpen

#Call SpSimpl i fy
#Call SpOpen

. sort
✝ ✆

As a finishing touch, we apply the following sequence of transformations to
get rid of any remaining double denominator-type expressions, which appear
upon introducing the explicit form of the l0 loop momentum.

✞ ☎

Argument ;
#Cal l Schouten ( p1 , p2 , p4 ,R0)

EndArgument;
Repeat ;

#Cal l SpOpen ( )
Argument ;

#Cal l SpOpen ( )
EndArgument;
#Cal l SpSimpl i fy

EndRepeat ;
. store

✝ ✆

Finally, we write down the expression for the complete box coefficient.
Note the factor 1/2, which comes from averaging over two solutions to the
loop momentum constraints.

✞ ☎

Local F = (1/2)∗ (Fa + Fb + Fc + Fd ) ;
Print F;
. end

✝ ✆

The FORM output we obtain is:

F = −
2〈p1p2〉

3〈p3p4〉[p2p1]
2

〈p2p4〉2
+

2〈p1p4〉
3〈p2p3〉[p4p1]

2

〈p2p4〉2

+ 2〈p1p2〉〈p1p3〉[p2p1][p4p2]− 2〈p1p3〉〈p1p4〉[p4p1][p4p2]. (42)
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5. Conclusion

In this article we have presented a new Form library for processing expres-
sions containing helicity spinors in four and n = (4 − 2ε) dimensions. For
the n-dimensional algebra we have implemented the ’t-Hooft algebra with
dimension splitting. This gives full flexibility to the user about the choice of
the regularisation scheme, as in many schemes different from the ’t Hooft-
Veltman scheme it is sufficient to neglect terms in ε which stem from the
numerator algebra.

In various examples we have shown that the new package is applicable
to calculations both using traditional and modern, unitarity based methods.
The provided routines implement the typical steps which are necessary for
an algebraic simplification of helicity amplitudes and therefore simplify the
task of implementing such calculations. The implementation of flipping rules
for Majorana spinors allows to extend the domain of applicability to theories
beyond the Standard Model.
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