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a b s t r a c t

‘‘File carving’’ reconstructs files based on their content, rather than using metadata that

points to the content. Carving is widely used for forensics and data recovery, but no file

carvers can automatically reassemble fragmented files. We survey files from more than

300 hard drives acquired on the secondary market and show that the ability to reassemble

fragmented files is an important requirement for forensic work. Next we analyze the file

carving problem, arguing that rapid, accurate carving is best performed by a multi-tier de-

cision problem that seeks to quickly validate or discard candidate byte strings – ‘‘objects’’ –

from the media to be carved. Validators for the JPEG, Microsoft OLE (MSOLE) and ZIP file for-

mats are discussed. Finally, we show how high speed validators can be used to reassemble

fragmented files.

ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.

1. Introduction

‘‘File carving’’ reconstructs files based on their content, rather

than using metadata that points to the content. File carving is

useful for both data recovery and computer forensics. For data

recovery, carving can recover files from a device that has been

damaged – for example, a hard diskwhere the sectors contain-

ing the disk’s directory or Master File Table are no longer read-

able. In forensic practice, file carving can recover files that

have been deleted and have had their directory entries reallo-

cated to other files, but for which the data sectors themselves

have not yet been overwritten.

Because it has application in both data recovery and

computer forensics, file carving is an important problem.

File carving is also challenging. First, the files to be carved

must be recognized in the disk image. Next, some process

must establish if the files are intact or not. Finally, the files

must be copied out of the disk image and presented to the

examiner or analyst in a manner that makes sense. The

first two of these activities require specific, in-depth

knowledge for each file type. The third requires a good

user interface.

Most of today’s file carving programs share two important

limitations. First and most important, these programs can

only carve data files that are contiguous – that is, they can

only create new carved files by extracting sequential ranges

of bytes from the original image file. Second, carvers do not

perform extensive validation on the files that they carve

and, as a result, present the examinerwithmany false positives

– files that the carver presents as intact data files, but which in

fact contain invalid data and cannot be displayed.

Carrier et al. (2006) created the 2006 DFRWS Carving Chal-

lenge to spur innovation in carving algorithms. The Challenge

consisted of a 49,999,872 byte ‘‘Challenge file’’ containing data

blocks from text files, Microsoft Office files, JPEG files, and ZIP

archives, but having no file systemmetadata such as inodes or

directory entries. Some of the files in the Challenge were con-

tiguous, while others were split into two or three fragments.

The goal was to reconstruct the original files that had been

used to create the Challenge.
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1.1. This paper’s contribution

This paper significantly advances our understanding of the

carving problem in three ways.

First, we present a detailed survey of file system fragmen-

tation statistics from more than 300 active file systems from

drives that were acquired on the secondary market between

1998 and 2006. These results are important for understanding

the various kinds of file fragmentation scenarios that appear

on computer systems that have sustained actual use, as op-

posed to simulated use in the laboratory. With this under-

standing we can more productively guide research efforts

into the carving problem.

Second, this paper considers the ranges of options avail-

able for carving tools to validate carved data – that is, to distin-

guish files that are actually valid carved objects from

a haphazard collection of data blocks that is a combination

of different files. These options are used to develop several

proposed carving algorithms.

Third, this paper discusses the results of applying these al-

gorithms to the DFRWS 2006 Carving Challenge. Even though

the Challenge was artificially constructed, we feel that any al-

gorithm that can reassemble the fragmented files in the

DFRWS 2006 Challenge will also be able to reassemble frag-

mented files in an FAT or NTFS-formatted file system. The

converse is not true: any algorithm that is tuned specifically

for those file systems is unlikely to work on the Challenge

data set or other carving problems, such as carving memory

dumps, because those other media will not have the FAT

and NTFS-specific features.

1.2. Outline of paper

Section 2 reports related work. Section 3 presents the results

of our file fragmentation survey. Section 4 discusses the

need for object validation to improve carving, and discusses

algorithms that object validation can make possible. Section

5 presents carving algorithms that use object validation and

presents our experience in applying them to the 2006

Challenge.

2. Related work

The Defense Computer Forensics Lab developed a carving pro-

gram called CarvThis in 1999. That program inspired Special

Agent Kris Kendall to develop a proof-of-concept carving pro-

graminMarch2001called snarfit. SpecialAgent JesseKornblum

joinedKendallwhilebothwereat theUSAirForceOfficeofSpe-

cial Investigations and the resulting program, Foremost, was

released as an open source carving tool. After several years

without development, Foremost was extended by Mikus

(2005) while working on his master’s thesis at the Naval Post-

graduate School. Most notable was his implementation of

amodulewithspecificknowledgeof theMicrosoftOLE (MSOLE)

file format and the integration of file system-specific tech-

niques. Version 1.4 of Foremost was released in February 2007.

While Foremost was temporarily abandoned by its original

authors, Richard and Roussev (2005) reimplemented the pro-

gram with the goal of enhancing performance and decreasing

memory usage. The resulting tool was called Scalpel. Scalpel

version 1.60 was released in December 2006.

Garfinkel (2006a) introduced several techniques for carving

fragmented files in his submission to the 2006 Challenge. This

paper improves upon that work with a detailed analysis of his

approach and a justification of the approach using Garfinkel’s

corpus of used drive images.

CarvFS and LibCarvPath are virtual file system implemen-

tations that provide for ‘‘zero-storage carving’’ – that is, the

ability to refer to carved data inside the original disk image

without the need to copy it into a second file for validation

(Sourceforge).

Douceur and Bolosky (1999) conducted a study of 10,568 file

systems from 4801 personal computers running Microsoft

Windows atMicrosoft, but did not consider file fragmentation.

The carving terminology in this paper was developed

jointly with Joachim Metz.

3. Fragmentation in the wild

In this section we present statistics about the incidence of file

fragmentation on actual file systems recovered from used

hard drives purchased on the secondary market. The source

material for this analysis was Garfinkel’s (2006b) used hard

drive corpus, a copy of which was obtained for this paper.

Garfinkel’s corpus contains drive images collected over an

eight year period (1998–2006) from the US, Canada, England,

France, Germany, Greece, Bosnia, and New Zealand. Many of

the drives were purchased on eBay. Although approximately

one-third of the drives in the corpus were sanitized before

they were sold, a significant number contain the data that

were on the drive at the time of their decomissioning. The

kinds of fragmentation patterns observed on those drives

are representative of fragmentation patterns found in drives

of forensic interest.

3.1. Experimental methodology

Garfinkel’s corpus was delivered as a series of AFF (Garfinkel

et al., 2006) files ranging between 100 K and 20 G bytes in

length. Analysis was performed using Carrier’s Sleuth Kit

(Carrier, 2005a) and a file walking program that was specially

written for this project. Results were stored in text files (one

for each drive) which were imported into an SQL database,

where further analysis was performed.

Sleuth Kit was able to identify active file systems on 449 of

the disk images in the Garfinkel corpus. Butmany drives in the

Garfinkel corpus were either completely blank or else had

been completely wiped and then formatted with an FAT or

NTFS file system. Only 324 drives contained more than five

files. On these drives Sleuth Kit was able to identify

2,204,139 files with filenames, of which 2,143,553 files had as-

sociated data. This subset of files accounted 892 GB recover-

able data.

3.2. Fragmentation distribution

Overall 125,659 (6%) of the files we recovered from the corpus

were fragmented.
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Drives were not equally fragmented: roughly half of the

drives had not a single fragmented file! And 30 drives had

more than 10% of their files fragmented into two or more

pieces (Table 1).

Despite the fact that fragmentation appears to be relatively

rare on today’s file systems, we nevertheless feel that the abil-

ity to carve fragmented files is an important capability that

has not been addressed by today’s carving tools. This is be-

cause files of interest in forensic investigations are more likely to

be fragmented than other kinds of files, for reasons explained below:

Modern operating systems try to write files without frag-

mentation because these files are faster to write and to read.

But there are three conditions under which an operating sys-

tem must write a file with two or more fragments:

1. There may be no contiguous region of sectors on the media

large enough to hold the file without fragmentation. This is

likely if a drive has been in use a long time, is filled near ca-

pacity, and has had many files added and deleted in more-

or-less random order over time.

2. If data are appended to an existing file, there may not be

sufficient unallocated sectors at the end of the file to ac-

commodate the new data. In this case some file systems

may relocate the original file, but most will simply write

the appended data to another location.

3. The file system itself may not support writing files of a cer-

tain size in a contiguousmanner. For example, the Unix File

Systemwill fragment files that are long or have bytes at the

end of the file that will not fit into an even number of sec-

tors (Carrier, 2005b). Not surprisingly, we found that files

on UFS volumes were far more likely to be fragmented

than those on FAT or NTFS volumes (Table 2).

3.3. Fragmentation by file extension

We hypothesized that different kinds of files would exhibit

different kinds of fragmentation patterns. In particular, we

thought that files that were installed as part of the operating

systemwould have low fragmentation rates. Conversely, large

files created by the user, log files, and files written to as data-

bases (such as DOC, XLS and PST files), would likely have high

fragmentation rates.

Table 3 shows a cross-tabulation of fragmentation rate by

file extension for the files in the corpus. As suspected, high

fragmentation rates were seen for log files and PST files, but

we were surprised to find that the most highly fragmented

files were TMP files. We suspect that this is because many

TMP files were quite large (note the high standard deviation

for file size) and that temporary files are created throughout

a system’s lifetime – so some were created after small files

scattered throughout the drive made it impossible to write

the TMP file without fragmentation.

For this purpose of this paper, it is highly significant that

the file types likely to be of interest by forensic examiners

(e.g. AVI, DOC, JPEG and PST) had significantly higher frag-

mentation rates than those files that are of little interest

(BMP, HLP, INF, and INI). Thus is behooves the research com-

munity to develop algorithms that work with fragmented

files?

3.4. Files split into two fragments

We use the term bifragmented to describe a file that is split into

two fragments. Bifragmented files represent an attractive tar-

get for automated carving because these files can be carved

using relatively straightforward algorithms discussed in Sec-

tion 5. Table 7 shows the number of bifragmented files, the av-

erage file size, and the maximum file size observed in the

corpus for the 20 most popular file extension.

We performed a histogram analysis of the most common

gap sizes between the first and the second fragment and pres-

ent the overall findings in Table 4. Tables 5 and 6 show com-

mon gap sizes for JPEG and HTML files, respectively. The

gaps tended to represent 1, 2, 4 or 8 512-byte sectors. We hy-

pothesize that this gap corresponds to a single FAT or NTFS

clusters that had been already allocated to another file when

the operating system was writing the file that was frag-

mented. This hypothesis appears partially confirmed by Table

8: with more files with a gap of eight blocks in Table 8 than

a gap of eight sectors in Table 4, it appears that some of the

files with gaps of 16 or 32 sectors in Table 4 were actually on

file systems with a cluster size of two or four sectors.

Table 1 – Distribution of file fragmentation for files on
drives with more than five files

Fraction of files on drive
that are fragmented

Total
drives

Total
named files

f¼ 0.00% 145 17,267

0< f" 0.01 42 459,229

0.01< f" 0.10 107 1,115,390

0.1< f" 1.0 30 412,297

324 2,004,183

Table 2 – Fragmentation of files that could be recovered by
Sleuth Kit, by file system type, for file systems containing
more than five files

FATa NTFS UFS

# File systems 219 51 5

# Fragments Number of files

(Contiguous) 1,286,459 521,663 70,222

2 25,154 22,984 10,932

3 4932 6474 1047

4 2473 3653 408

5–10 4340 13,139 658

11–20 1593 7880 94

21–100 1246 11,901 13

101–1000 186 5953 0

1001– 2 590 0

Total files 1,326,385 594,237 83,374

Note: this table omits the eight files found on the single UFS2 file

system in the corpus (drive 620) and the 16 files found on the single

EXT3 file system (drive 1041). The table also omits empty files

0 bytes in length, since they have zero fragments.
a Includes FAT12, FAT16 and FAT32.
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3.5. Highly fragmented files

A small number of drives in the corpus had files that were

highly fragmented. A total of 6731 files on 63 drives had

more than 100 fragments, while 592 files on 12 drives had

more than 1000. Surprisingly, most of these files were large

system DLLs and CAB files. It appears that these files resulted

from system patches and upgrades being applied to drives

that were already highly fragmented. Although we lack algo-

rithms to reassemble highly fragmented files, the sectors

Table 3 – Per-file fragmentation seen in the disk corpus for selected file extensions

Ext. File size in bytes # Drives in
corpus

# Files in
corpus

Number of files with Percent
frag. (%)

Avg. Std. dev. Maximum Two frag. Three frag. >Three frags.

art 2483 4285 171,534 18 10,631 74 8 101 1

avi 10,218,679 51,355,670 734,117,888 94 998 17 6 185 20

bmp 66,053 393,456 12,032,066 160 26,018 367 129 1630 8

chm 120,804 408,393 15,867,327 113 12,033 306 66 933 10

cnt 23,425 1,968,647 201,326,592 141 10,458 13 9 426 4

cur 1714 59,251 5,429,170 89 12,265 0 1 100 0

dat 408,286 31,151,890 4,737,728,512 220 23,193 784 252 3,205 18

dll 165,799 375,338 18,200,064 183 227,415 7507 2211 27,490 16

dl_ 65,905 249,511 8,422,595 71 19,537 79 21 161 1

doc 85,358 1,597,635 135,477,136 158 7673 209 65 1100 17

exe 299,249 6,190,411 1,166,868,544 236 78,646 2352 827 8648 15

gif 5328 251,095 145,752,064 139 357,713 2990 795 27,581 8

hlp 95,480 288,297 8,121,820 180 26,374 476 99 1467 7

html 12,761 135,179 18,911,232 146 125,222 4085 929 10,330 12

inf 23,849 65,214 4,044,538 175 73,988 683 217 3185 5

ini 271,512 41,025,655 6,440,357,888 193 24,643 228 57 2221 10

jpeg 31,137 159,456 24,265,736 129 108,539 2999 400 13,973 16

js 12,870 249,835 16,289,792 108 18,508 535 247 1712 13

lnk 1561 52,971 5,373,952 139 29,229 227 112 3962 14

log 109,571 731,137 39,808,746 235 7058 394 98 1725 31

mdb 915,714 2,821,426 32,440,320 93 402 30 14 68 27

mpeg 2,639,141 5,714,052 60,958,724 14 168 4 3 22 17

pnf 37,040 95,387 7,254,942 107 21,385 7583 108 1183 41

png 13,813 56,818 3,436,437 85 9995 175 93 300 5

ppt 137,167 861,927 16,913,920 123 1120 20 6 73 8

pst 8,839,321 50,856,271 421,249,024 31 70 6 6 29 58

sys 687,401 18,313,906 1,610,612,736 286 22,348 513 134 2168 12

tmp 91,460 759,610 52,428,800 157 57,007 452 154 37,376 66

ttf 134,393 651,666 24,131,012 145 16,943 540 122 906 9

txt 6141 98,558 10,499,104 252 64,315 496 125 6726 11

vxd 63,594 140,152 1,464,566 133 11,910 174 57 1547 14

wav 145,406 1,479,044 65,658,924 157 24,550 584 143 1721 9

wmf 15,649 28,085 1,884,160 106 77,694 418 86 1430 2

xls 149,851 368,855 3,787,776 136 2159 67 28 148 11

xml 30,366 353,767 6,966,403 81 13,404 241 86 1219 11

Table 4 – Gap size distribution for all bifragmented files

# Files Fragments gap

Bytes Sectors

4272 4096 8

1535 8192 16

1344 16,384 32

921 2 0

817 32,768 64

441 12,288 24

354 40,960 80

328 24,576 48

305 49,152 96

284 20,480 40

Table 5 – Gap distribution for JPEG bifragmented files

# Files Fragments gap

Bytes Sectors

99 2 0

88 4096 8

40 16,384 32

38 8192 16

38 651,264 1272

23 59 0

16 32,768 64

14 24,576 48

14 20,480 40

11 12,288 24

11 122,880 240

11 131,072 256

11 28,672 56
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belonging to well-known DLLs and CAB files could be elimi-

nated from a file being carved if one had a database of hash

codes for every sector of well-known files.

3.6. Fragmentation and volume size

An anonymous reviewer of an earlier version of this paper

suggested that large hard drives are less likely to have frag-

mented files than the smaller hard drives that are typically

sold on eBay, which was the source of drives in the Garfinkel

corpus. In this sample, 303 drives were smaller than 20 GB,

while only 21 were larger.

To test this hypothesis, we computed the percentage of

JPEGs that had two or more fragments on all of our drives.

Overall we found that smaller drives did tend to have more

fragmentation, but that some of the most highly fragmented

drives were drives in 10–20 GB range. For example, the drive

with the highest percentage of fragmented JPEGs was #1028,

a 14 GB drive; 43% of this drive’s 2517 JPEGs were fragmented.

A 4.3 GB drive had 34% fragmentation, followed by 33% of

a 9 GB drive. Our conclusion is that fragmentation does appear

to go down as drive size increases, but that many large drives

have significant amounts of fragmentation, and this fragmen-

tation may affect files of critical interest to forensic

investigators.

4. Object validation

In order to carve bytes from a disk image into a new disk file, it

is necessary to have some sort of process for selecting and val-

idating the carved bytes. Foremost and Scalpel use sequences

of bytes at the beginning and end of certain file formats (file

headers and footers); Mikus enhanced Foremostwith a validator

for the Microsoft Office internal file structure. When the carv-

ing program finds a sequence of bytes that matches the de-

sired requirements, the bytes are stored in a file which is

then manually opened and examined.

In this paper we use the term object validation to describe

the process of determining which sequences of bytes repre-

sent valid Microsoft Office files, JPEGs, or other kinds of data

object sought by the forensic investigator. Object validation

is a superset of file validation, because in many cases it is pos-

sible to extract, validate and ultimately use meaningful com-

ponents from within a file – for example, extracting a JPEG

image embedded within a Word file, or even extracting

a JPEG icon from within a larger JPEG file.

4.1. Fast object validation

Object validation is a decision problem in which the validator at-

tempts to determine if a sequence of bytes is a valid file, by

which we mean that a target program (e.g. Microsoft Word)

can open the file and display sensible information without

generating an error.

Table 6 – Gap distribution for HTML bifragmented files

# Files Fragments gap

Bytes Sectors

165 4096 8

126 77,824 152

90 79,872 156

77 8192 16

74 16,384 32

52 75,776 148

48 32,768 64

39 81,920 160

31 12,288 24

25 28,672 56

Table 7 – Most common files in corpus consisting of two
fragments, by file extension

Ext. File count Size of files
with two fragments

Avg. Std. dev. Max.

pnf 7583 41,583 81,108 1,317,368

dll 7507 220,640 384,246 9,857,608

html 4085 25,961 61,267 2,505,490

jpeg 2999 29,477 177,511 6,601,153

gif 2990 19,826 92,231 3,973,951

exe 2352 398,867 4,350,378 206,199,144

1 1125 57,475 130,630 1,998,576

dat 784 290,892 672,600 7,793,936

z 716 74,353 340,808 6,248,869

h 693 16,454 12,206 110,592

inf 683 79,578 101,448 522,916

swf 591 59,967 117,133 1,155,989

wav 584 1,921,482 6,300,175 39,203,180

ttf 540 163,854 649,919 10,499,104

js 535 18,595 28,393 466,944

sys 513 1,276,323 12,446,966 150,994,944

txt 496 32,724 271,185 5,978,896

hlp 476 184,897 375,150 3,580,078

tmp 452 206,037 770,690 8,388,608

so 440 103,939 205,617 1,501,148

. . . . .

Table 8 – The most common gap sizes for all
bifragmented files, expressed in terms of file system
allocation block size

# Files Gap blocks

4327 8

1519 32

1431 16

697 0

649 64

470 24

398 40

328 48

296 96

277 80

Block sizes ranged from 512 to 4096 bytes.
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If one had a fast computer and a fast object validation algo-

rithm, a simpleway to find all contiguous objects that could be

carved from a disk image would be to pass all possible sub-

strings of bytes from the disk image through the validator

and keep the sequences that validate. A disk with n bytes

has ðnÞðnþ 1Þ=2 possible strings; thus, a 200 GB hard drive

would require 2.0& 1022 different validations.

A carefully designed carver can eliminate the vast majority

of byte sequences without even trying them. For example, if it

is known that sequences can only start on sector boundaries,

then 511=512 ¼ 99:8% of the strings need never be tried. If the

validator does not generate an error if additional data are

appended to the end of a valid data object, then the carver

can simply try the set of all byte sequences that start on a sec-

tor boundary and extend to the end of the disk image; for each

valid sequence found, the carver can perform a binary search

to rapidly find the minimum number of bytes necessary for

validation. These two assumptions hold when carving contig-

uous JPEG images from FAT and NTFS file systems, since both

will only allocate JPEG at the start of sectors (512-byte bound-

aries) and the JPEG decompressor can recognize the end of

a file. Together these two shortcuts would reduce the number

of validation operations for a 200 GB drive from 1.9& 1022 to

4& 108, plus roughly 40 validations for each object that is iden-

tified. As discussed in the following section, all JPEG files begin

with a distinctive 4-byte sequence. Checking for these se-

quences is extremely fast. Only the object candidates with

these headers need be subjected to more time consuming val-

idations. As a result, all of the contiguous JPEGs in a disk image

file can frequently be found as quickly as the file can be loaded

into the memory system of a modern computer – typically an

hour for every 50 GB or so.

4.1.1. Validating headers and footers

Byte-for-byte comparisons are among the fastest operations

that modern computers can perform. Thus, verifying static

headers and footers (if they are present) is an excellent first

pass of any validation algorithm.

For example, all JPEG files begin with the hexadecimal se-

quence FF DE FF followed by an E0 or E1; all JPEG files end

with the hexadecimal sequence FF D9. The chance of these

patterns occurring randomly in an arbitrary object is 2 in 248.

A JPEG object validator that checks for these static sequences

can quickly discard most candidate objects.

Header/footer validation is not sufficient, however, since

by definition it ignores the most of the file’s contents.

Header/footer validation would not discover sectors that are

inserted, deleted or modified between the header and the

footer because these sectors are never examined. Thus,

header/footer validation should only be used to reject a data

object. Objects that pass must be processed with slower,

more exhaustive algorithms.

4.1.2. Validating container structures

Many files of forensic interest are in fact container files that can

have several internal sections. For example, JPEG files contain

metadata, color tables, and finally the Huffman-encoded im-

age (Hamilton, 1992). ZIP files contain a directory andmultiple

compressed files (Katz, 2006). Microsoft Word files contain

a Master Sector Allocation Table (MSAT), a Sector Allocation

Table (SAT), a Short SectorAllocationTable (SSAT), a directory,

and one or more data streams (Rentz, 2006).

Aswithvalidatingheadersand footers, validating container

structures can be exceedingly fast. Many container structures

have integers and pointers; validating these requires little

more than checking to see if an integer is within a predefined

range or if a pointer points to another valid structure.

For example the first sector of an Office file contains a CDH

header. The CDH must contain a hex FE as the 29th character

and a FF as the 30th character; these bytes are ideal candidates

for header validation. Once a candidate CDH is found, the

pointers can be interpreted. If any of these numbers are nega-

tive or larger than the length of the object divided by 512, the

CDH is not valid, and aMicrosoft Office file validator can reject

theobject.Checking theseandotherstructures insideanobject

can be very fast if the entire object is resident in memory.

Information in the container structures can also provide

guidance to the carver. For example, when a candidate CDH

is found in the drive image, the values of the MSAT and

SSAT pointers can be used to place a lower bound on the

size of the file – if the MSAT points to sector 1000, then the

filemust be at least 512,000 bytes long. Being able to set a lower

bound is not important when performing header/maximum

file size carving (Section 5.1.2), but it is important when per-

forming Fragment Recovery Carving (Section 5.2).

Container structure validation is more likely than header/

footer validation to detect incorrect byte sequences or sectors

inside theobject being validatedbecausemorebytes are exam-

ined. But we have seen many examples of carving candidates

that have valid container structures but which nevertheless

cannot be opened byMicrosoftWord – orwhich open inMicro-

soft Word but then display text that is obviously wrong.

4.1.3. Validating with decompression

Once the container structures are validated, the next step is to

validate the actual data that are contained. This is more com-

putationally intensive, but inmany cases it will discover inter-

nal inconsistencies that allow the validator to reject the

candidate object.

For example, the last section of a JPEG-formatted file con-

sists of a Huffman-coded representation of the picture. If

this section cannot be decompressed, the picture cannot be

displayed and the object can be deemed invalid. A computa-

tionally intensive way to do this is by decompressing the pic-

ture; a faster way is by examining all of the Huffman symbols

and checking to see if they are valid or not.

The text sections of a Microsoft Office file can likewise be

extracted and used for validation. If the text is not valid – for

example, if it contains invalid characters – then the object val-

idator rejects.

Our original plan for carving fragmented JPEGs was to de-

compress a run of sectors until we encountered an error.

This, we thought, would tell us that the previous sector was

the last valid sector in the run. We could then search the

disk image for a sector that, appended to the current run,

allowed the decompressor to continue. But we were wrong.

We discovered that the JPEG decompressor will frequently de-

compress corrupt data for many sectors before detecting an

error. For example, the 2006 Challenge included a photo

from Mars that was present in two fragments, from sectors
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31,533–31,752 and 31,888–32,773. The JPEG decompressor sup-

plied with the contiguous stream of sectors starting at sector

31,533 does not generate an error until it reaches sector

31,761. The 9 sectors in the range 31,733–31,760 decompress

as valid data, even though they are obviously wrong, a fact

readily apparent by examining the left hand image of Fig. 1.

Despite the fact that the JPEG decompressor will decom-

press many invalid sectors before realizing the problem, we

have never seen a case of corrupted data for which the decom-

pressor concluded that the entire JPEG had been properly

decompressed and returned without error. Thus, we have

beenquite successful in using thedecompressor as a validator.

Using this JPEG validator, we were able to build a carving

tool that can automatically carve both the contiguous and

the fragmented JPEG files on the DFRWS 2006 with no false

positives. The six contiguous JPEGs starting at sectors of

8285, 12,222, 27,607, 36,292, 43,434 and 46,910 are identified

and carved in 6 s on our reference hardwarewith no false pos-

itives. Solving the split files takes longer, but the time required

is minutes, not hours, using the Bifragment Gap Carving algo-

rithm presented in Section 5.2.1.

4.1.4. Semantic validation

We believe that it should be possible to use aspects of English

and other human languages to automatically validate data ob-

jects. For example, if the letters hospi appear as the last five

characters in a sector and the letters tals appear as the first

three characters of the next sector, then it is reasonable to as-

sume that what has happened is that theword hospitalshas

been split across a sector boundary. This assumption is espe-

cially likely if the document being recovered is about health

care policy. The two sectors are likely to be consecutive in

the final carved file even if they are separated by 16 sectors

containing French poetry; in that case, the French is probably

from another file.

Garfinkel solved part of the 2006 Challenge using a manu-

ally tuned corpus recognizer that based its decisions on vocab-

ulary unique to each text in question. Although this is an

interesting approach, automating it is currently beyond our

abilities.

4.1.5. Manual validation

Onemight think that themost accurate way to validate an ob-

ject is to attempt opening the file using the target program

itself. This is still not definitive, however, as Word and Excel

will open files that contain substituted sectors (although in

our experience they will not open files with omitted or

inserted sectors). Not only must the file be opened, it must

be examined with human eyes. Since this is not possible in

an automated framework, even our best object validators

will have the occasional false positive.

4.2. A pluggable validator framework

We have developed a pluggable object validator framework

that implements each object validator as a Cþþ class. The

framework allows the validators to perform fast operations

first, and slow operations only if the fast ones succeed, and

provides for feedback from the validator to the carvers.

4.2.1. Validator return values

Classic decision problems return either an ACCEPT or a RE-

JECT; our validator framework supports a richer set of returns

to allow for more efficient carvers.

Every validator must implement a method that returns on

the following two values:

V_OK The supplied string validates.

V_ERR The supplied string does not validate.

Fig. 1 – These figures show two attempts to carve an image from Mars that was included in the DFRWS 2006 Challenge. The

image on the left was formed by supplying a stream of sectors starting at sector 31,533 to a standard JPEG decompressor; the

decompressor generated an error when it attempted to decompress sector 31,761. The image on the right was generated by

concatenating sectors 31,533–31,752 and 31,888–32,773 into a single file. This example shows that the JPEG decompressor

can be used as an object validator, but that it does not necessarily generate an error when it first encounters invalid

information. It is thus necessary to augment decompression errors with additional error conditions – for example, the

premature end of a file.
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Validators may optionally return:

V_EOF The validator reached the end of the input

string without encountering an error, but no

end-of-object flag or other kind of termina-

tion symbol was reached. This might be the

case with a JPEG image for which the object

ends while the JPEG decoder is still decoding

the Huffman-coded region.

object_length A 64-bit integer which is the number of bytes

that object’s internal structure implies the

file must be. For example, the bytes in

a Microsoft Office file can be precisely deter-

mined by examining the file’s Sector Alloca-

tion Table.

4.2.2. Validator methods

Validators must implement one method:

' validation_function()which takes as an argument a se-

quence of bytes and returns V_OK if the sequence validates,

V_ERR if it does not, and optionally V_EOF if the validator

runs out of data before a determination can be made.

Validators may implement additional methods for:

' Sequence(s) of bytes in the file header.

' Sequence(s) of bytes in the file footer.

' Avariable that indicates theallocation incrementusedbyfile

creators. (JPEG files can be allocated in 1-byte increments,

while Office files are only allocated in 512-byte increments.)

' An err_is_prefix flag that indicates there is no way to

turn an invalid object into a valid object by appending ad-

ditional data. This property is generally true for validators

that read an object sequentially from the beginning to the

end: these validators can differentiate between the object

suddenly containing invalid data (the V_ERR condition)

and the end of the data stream (the V_EOF condition). The

JPEG file format has this property, while the MSOLE file

format does not.

' An appended_data_ignored flag that indicates if data

appended to the end of a valid object are ignored. If this

flag is not present, then programs that implement the file

format ignore additional data that are appended to the

end of a file. Most file formats have this property, but for-

mats which place directories or other data at a fixed location

from the end of the file do not.

' A no_zblocks flag that indicates files in this format do not

contain sectors filled with ASCII NULs (zblocks). JPEG files

do not have zblocks, whereas Microsoft Office files fre-

quently do.

' A plaintext_container flag that indicates if the file can

contain verbatim copies of other files. Microsoft Office files

can contain embedded image files, while JPEG files can con-

tain embedded JPEG files as icons.

' A length_function which takes as an argument a se-

quence of bytes and returns a file length if the length of

the file can be determined by the byte sequence, or V_ERR

if the length cannot. Some file formats, such as Office and

ZIP, contain characteristic internal structures that can be

easily recognized and contain the length of the file.

' An offset_function which takes as an argument a se-

quence of bytes and returns distance that those bytes ap-

pear from the beginning of the file, or V_ERR if the offset

cannot be determined. Some file formats, such as Microsoft

Office and ZIP, contain characteristic internal structures

that include self-referential structures. From these struc-

tures the offset in the file that the structure appears can

be readily determined.

We largely implemented three validators with this

architecture:

' v_jpeg, which checks JPEG segments, then attempts to de-

compress the JPEG image using a modified libjpeg version

6b.

' v_msole, which checks the CDH, MSAT, SAT, and SSAT re-

gions of the Microsoft Object Linking and Embedding format

used by Microsoft Office, then attempts to extract the text of

the file using the wvWare (Lachowicz and McNamara, 2006)

library.

' v_zip, which validates the ZIP ECDR and CDR structures,

then uses the unzip -t command to validate the com-

pressed data.

5. Carving with validation

As discussed in Section 1, carving is the general term that we

employ for extracting data (files) out of undifferentiated

blocks (raw data), like carving a sculpture out of stone.

We have developed a carving framework that allows us to

create carvers that implement different algorithms using

a common set of primitives. The framework starts with

a byte in a given sector and attempts to grow the byte into

a contiguous run of bytes, periodically validating the resulting

string. Several optimizations are provided:

' The carver maintains a map of sectors that are available for

carving and sectors that have been successfully carved or

that are allocated to files. As soon as a candidate run ex-

tends into a sector that is not available, the run is aban-

doned and the carver can proceed to the next run.

' If the validator has the zblock flag set, the run is abandoned

if the carver encounters a block filled with NULs.

' If the validator has the err_is_prefix flag set, the run is

abandoned when the validator stops returning V_EOF and

starts returning V_ERR.

' If the validator has the appended_data_ignored flag set,

the run’s length can be found by performing a binary search

on run lengths, rather than starting with a run that is one

block long and gradually extending it.

In this section we present a number of carving algorithms

that are enabled by our object validator architecture. The algo-

rithms are divided into two categories: algorithms which will

carve a contiguous file froman image, and algorithms thatwill

carve files that are fragmented.

d i g i t a l i n v e s t i g a t i o n 4 S ( 2 0 0 7 ) S 2 – S 1 2 S9



5.1. Contiguous carving algorithms

Our contiguous carver supports block-based carving, which only

looks for files beginning and ending at sector boundaries, as

well as character-based carving, which attempts carving on

character boundaries. Block-based carving is fast, but charac-

ter-based carving will find objects that are embedded in vari-

ous kinds of container files. Character-based carving is also

necessary when carving objects that are stored on file system

such as ReiserFS (Mason, 2001) that do not restrict new objects

to sector boundaries.

In Section 4.1 we described a general strategy for carving

contiguous objects from a disk image using object validation.

The carver we have implemented can perform a variety of

optimizations, depending on the individual properties of the

object validators.

5.1.1. Header/footer carving

Header/footer carving is a method for carving files out of raw

data using a distinct header (start of file marker) and footer

(end of filemarker). This algorithmworks by finding all strings

contained within the disk image with a set of headers and

footers and submitting them to the validator.

5.1.2. Header/maximum size carving

This approach submits strings to the validator that begin with

each discernible header and continue to the end of the disk

image. A binary search is then performed on the strings that

validate to find the longest string sequence that still validates.

This approach works because many file formats (e.g. JPEG,

MP3) do not care if additional data are appended to the end

of a valid file.

5.1.3. Header/embedded length carving

Some file formats (MSOLE, ZIP) have distinctive headers that

indicate the start of the file, but have no such distinctive flag

for the end.

This carver starts by scanning the image file for sectors

that can be identified as the start of the file. These sectors

are taken as the seeds of objects. The seeds are then grown

one sector at a time, with each object being passed to the

validator, until the validator returns the length of the object

or a V_ERR, indicating that a complete file does not exist. If

an embedded length is found, this information is used to

create a test object for validation. Once an object is found

with a given start sector, the carver moves to the next

sector.

5.1.4. File trimming

‘‘Trimming’’ is the process of removing content from the end

of an object that was not part of the original file. We have

found two ways for automating trimming. If there is

a well-defined file footer, as is the case with JPEG and ZIP

files, the file can be trimmed to the footer. For byte-at-a-

time formats that do not have obvious footers, the files

can simply be trimmed a character at time until the file no

longer validates; the last trimmed byte is the re-appended

to the file.

5.2. Fragment Recovery Carving

We use the phrase Fragment Recovery Carving to describe any

carving method in which two or more fragments are reas-

sembled to form the original file or object. Garfinkel called

this approach ‘‘split carving’’ (Garfinkel, 2006a).

5.2.1. Bifragment Gap Carving

If a region of sectors in a disk image begins with a valid header

and ends with a valid footer but does not validate, one possi-

bility is that the file was in fact fragmented into two or more

pieces and that the header and footer reside in different frag-

ments. In the Garfinkel corpus there are many cases of bifrag-

mented files where the gap between the first fragment and the

second is a relatively small number of disk sectors.

The 2006 Challenge contained several instances of JPEG files

that were in two fragments, with one or more sectors of junk

inserted in the middle. Aside from the large number of frag-

mented files in the Challenge and the fact that the gap size was

rarely an integral power of two, the scenario was quite realistic.

To carve this kind of scenario Garfinkel developed an

approach which involves assembling repeated trial objects

from two or more sector runs to form candidate objects which

are then validated. Herewe present an improved algorithm for

split carving, which was called Bifragment Gap Carving (Fig. 2):

' Let f1 be the first fragment that extends from sectors s1 to e1
and f2 be the second fragment that extends from sectors s2
to e2.

' Let g be the size of the gap between the two fragments, that

is, g¼ s2( (e1þ 1).

' Starting with g¼ 1, try all gap sizes until g¼ e2( s1.

' For every g, try all consistent values of e1 and s2.

Essentially, this algorithm places a gap between the start

and the end flags, concatenating the sector runs on either

side of the gap, and growing the gap until a validating se-

quence is found. This algorithm is O(n2) for carving a single ob-

ject for file formats that have recognizable header and footer;

it is O(n4) for finding all bifragmented objects of a particular

type in a target, since every sector must be examined to deter-

mine if it is a header or not, and since any header might be

paired with any footer.

5.3. Bifragment Carving with constant size and known

offset

Bifragmented MSOLE documents cannot be carved with gap

carving because there is no recognizable footer. However,

f1sectors
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s1 e2

f2sectors

e1 s2

Fig. 2 – In Bifragment Gap Carving the sectors s1 and e2 are

known; the carver must find e1 and s2.
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the CDH can be recognized. Recall that the CDH has a pointer

that points to the MSAT and the SAT. Because the CDH is the

first sector of the file it always appears in the first fragment. If

the MSAT occurs in the second fragment (and it frequently

does, because the MSAT tends to be written near the end of

the MSOLE file), then it is actually possible to find this self-ref-

erential sector by examining every sector in the disk image.

(There is a small probability that a sector will match by

chance, but the probability is quite small.)

We have developed a carver that makes use of this infor-

mation to find and recover MSOLE files that are fragmented

in this fashion. The carver starts with s1, the address of

a CDH, and uses the information in the header to find m1,

the first block of the MSAT. Fromm1 the carver can determine

L, the length of the final file, as well as the sector offset within

the file where m1 must necessarily appear (Fig. 3).

The carver now employs an algorithm similar to gap carv-

ing except that the two independent variables are the number

of sectors in the first fragment and the starting sector of the

second fragment. The length of the two fragments must

sum to L and the second fragment must include sector m1.

This carving algorithm is O(n3) if the CDH location is known

and the MSAT appears in the second fragment, and O(n4) if

the forensic analyst desires to find all bifragmented MSOLE

files in the disk image. A variant of this algorithm can be

used if the MSAT is in the first fragment and portions of the

SAT (which is not contiguous) are in the second fragment.

We saw both of these cases in the 2006 Challenge.

If the entire SAT is within the first fragment, the second

fragment must be found by validating individual data objects

within the Microsoft compound document. This case did not

appear in the 2006 Challenge.

Applying this carver to the 2006 Challenge we were able to

recover all of theMicrosoftWord and Excel files that were split

into two pieces. However, in one case we had numerous false

positives – files that would open in Microsoft Word but which

obviously contained incorrect data. The files opened in Word

because our MSOLE validator was able to produce file objects

that contained valid CDH, MSAT, SAT and SSAT, but which

still had substituted internal sectors. Some of the files opened

instantly in Word while others took many tens of seconds to

open. However, the number of file positives was low, and we

were able to manually eliminate the incorrect ones.

One of the Office files in the Challenge was in three pieces.

Using two of these fragments our carver produced a file that

could be opened in Word and that contained most but not

all of the text. Using this text we were able to locate a source

file on the Internet that was similar but not identical to the

file in the Carving Challenge. However, enough of the 512-

byte sectors were the same that we were able to determine

the outlines of the three fragments. We thenmanually carved

these three fragments into a single file, opened it, and verified

that it was correct.

6. Conclusions

Files that are forensically interesting contain significant inter-

nal structure that can be used to improve today’s file carvers

as well as to carve files that are fragmented into more than

one piece. Carvers should attempt to handle the carving of

fragmented files because these files occur with regularity on

file systems recovered from the wild.

6.1. Future work

The Sleuth Kit can extract orphan files from a file system im-

age. In our survey of the Garfinkel corpus, we have seen

many orphans that are separated by number of blocks that

is an integral power of two.We suspect that some of these ‘‘or-

phans’’ might in fact be two fragments of a single bifrag-

mented file. We plan to write modify our carver to take into

account the output of SleuthKit and see how many of these

files can actually be validated.

Elements of the DFRWS 2006 Challenge could only be

solved with software that could distinguish English from

French text, or which could examine two pieces of English

text and determine that they were from different documents.

In the future, we hope to integrate semantic carving into our

carving system.

Finally, we are developing an intelligent carver that can au-

tomatically suppress the sectors that belong to allocated files

as well as sectors that match sectors of known good files from

the National Software Reference Library (2005).
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