MCF3M1

4.1 The Vertex Form of a Quadratic Function $y=a(x-h)^{2}+k$

Learning Goal: To compare the standard and vertex forms of a quadratic function. Success Criteria: standard form: $y=a x^{2}+b x+c$ where a, b and c are constant and c is the y intercept. Vertex form; $y=a(x-h)^{2}+k$

- Which function should the environment club use? Problem on p. 196.

Example 1 Connecting Functions in standard Forms

a) $\quad g(w)=-(w-20)^{2}+400$
b) $f(w)=-w^{2}+40 w$

Example 2 Connecting information about the parabola to the vertex form of the function
a. What is the maximum area of a garden defined by $f(w)=-w^{2}+40 w$?
b. How does this relate to the function $g(w)=-(w-20)^{2}+400$?

Example3 Identifying features of the parabola from a quadratic function in vertex form
a. Determine the direction of opening, the axis of symmetry, the minimum value, and the vertex of the quadratic function $f(x)=3(x-5)^{2}+7$.
b. Without using graphing technology, use the information you determined to sketch a graph of $f(x)$.

Work
P204-205
4abc,
6,8ab, 9bd,
c. State the domain and range of $f(x)$.

Example 4 Selecting a strategy to determine the zeros from a quadratic function in vertex form

- Determine the zeros of the function $f(x)=(x-6)^{2}-36$

Method 1: Expanding and Factoring
Method 2: Using Inverse Operation

Example 5 Using the vertex form to write the equation of a quadratic function from its graph

Determine the equation in vertex form of the quadratic function shown.

