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1  Foreword 
This manual describes a stochastic (or Monte Carlo) model for dietary risk assessment of chemical 
compounds based on monitoring data concerning the quality of foods and agricultural products. Intake 
(exposure) assessment is an important step in risk assessment of chemical compounds, such as 
agricultural chemicals (pesticides, veterinary drugs), toxins (e.g. mycotoxins) and environmental 
contaminants (e.g. dioxins). Occasionally, we use the term residue when we refer to compound and 
the term individual when we refer to consumer. The use of multiple names is avoided as much as 
possible.  
 
The methods for probabilistic modelling described here are implemented in the program Monte Carlo 
Risk Assessment (MCRA). MCRA is a computational tool for dietary risk assessment. MCRA can 
calculate intake distributions for both short-term (acute) and long-term (chronic) intakes. Basically, it 
simulates daily consumptions by sampling a food consumption database and combines these with a 
random sample from either a compound database (empirical distribution) or a parametric distribution 
of compound concentrations. The result is a full distribution of intakes, rather than traditional 
deterministic methods which only provide a point estimate. Percentiles of the intake distribution can 
be used to assess risks by relating them to e.g. an acute reference dose (ARfD). In a chronic risk 
assessment, MCRA calculates the distribution of the usual intakes over consumers based on the 
average concentration and the empirical distribution of intake between consumers and between 
different intake days of the same consumers. Percentiles of this usual intake distribution can then be 
related to e.g. the acceptable daily intake (ADI). Uncertainty of percentiles can be established by 
resampling methods. MCRA allows including processing factors (e.g. the effect of cooking on the 
concentration) and variability factors (to correct for the fact that monitoring data are obtained from 
composite samples, whereas consumers may eat individual units). Analyses can be done for a total 
population or for a subpopulation (e.g. children, males or females or consumption-days only). The 
effects of concentration below analytical reporting limits (LOR) can be assessed. Large portion 
consumption and the highest compound or median compound in case of bulking or blending in the 
composite sample is used in IESTI (International Estimated Short Term Intake) calculations. 
 
The current release of MCRA is written in Microsoft Visual C# .NET 2005. Release 5 and earlier 
versions were written in the statistical package GenStat (2005). MCRA is internet-based and can be 
used by registered users at http://mcra.rikilt.wur.nl. It consists of a basic program to do the 
computations and of additional database selection possibilities implemented in HTML and Active 
Server Pages (ASP). MCRA runs with Component One Chart (1999) which offers the possibility to 
manipulate graphical output after it has been obtained.  
An earlier version of the MCRA program, as well as an implementation of the Monte Carlo method in 
@Risk (1996), have been described in van der Voet et al. (1999), and further elaboration was given in 
de Boer & van der Voet (2000, 2001) and van der Voet et al. (2001).  
 
This manual gives a complete description and justification of the statistical methods used in the 
program MCRA and offers an introduction to assist with the practical application of MCRA in dietary 
risk assessment. The documentation describes MCRA Release 6. It covers the current release 6.0 
(release 6 version 0) and all future updates starting with the same release number. Major updates of 
the program, encompassing new or improved facilities will be released with an increased release 
number and a new manual. 
 
MCRA is a result of an ongoing co-operation between RIKILT and Biometris since 1998. RIKILT co-
ordinates the Dutch KAP programme (Quality of Agricultural Products) where results of monitoring 
programs for chemical compounds in food are gathered in a national database. RIKILT also has a 
recipe database to link food codes from the Dutch food consumption table to primary agricultural 
products. Biometris contributes statistical models and programs for quantitative risk analysis. 
Since 2005, the program is extended in collaboration with RIVM to include models similar to those 
available in the STEM (Statistical Exposure Modelling) software. 

http://mcra.rikilt.wur.nl/


 8 

2  Getting started with MCRA 

2.1 Introduction 

The MCRA system (Monte Carlo Risk Assessment) can be used for assessment of risks due to the 
intake of compounds on foods. MCRA provides the following options: 
• Acute probabilistic risk assessment: MCRA will calculate the intake distribution (mg or 

microgram compound per kg body weight) from input data on consumption and compound 
concentrations in food.  

• In addition, covariable and/or cofactor dependent percentiles and uncertainty intervals may be 
estimated using simulated acute intakes as input data. 

• Percentiles: the intake distribution can be characterised by percentiles, i.e. compound 
concentration levels exceeded with only a small specified probability (for example the 99th 
percentile p99 is exceeded only in 1% of the cases). 

• Uncertainty due to small samples: resampling of Monte Carlo (MC) variation, of consumers and 
of compound concentrations to assess the uncertainty of the percentiles in the form of an 
approximate confidence interval. 

• Diagnostics on the amount of MC-variation and the amount of variability due to resampling 
consumption and compound concentration data. 

• Calculation of point estimates (IESTI) and comparison with MC-results. 
• Decomposition of foods into ingredients using the composition, e.g. convert pizza consumption to 

consumption of wheat, tomato, cheese, etc. 
• Decomposition of foods into marketshares, e.g. for apple marketshares are specified for Jonagold, 

Granny Smith and Golden Delicious. 
• Parametric or empirical modelling of concentrations: MCRA can resample the compound 

concentration data directly (empirical model), or it can sample from a binomial-lognormal model 
fitted to the concentration data (parametric model). Note: consumption data are always re-
sampled empirically from the consumer data set. 

• Modelling of processing effects: sometimes it is known that concentrations are reduced by food 
processing, e.g. cooking, and frying. MCRA can incorporate processing factors as fixed effects or 
by sampling from a processing factor distribution. The latter possibility requires the specification 
of a nominal and an upper value for the processing factor. 

• Modelling of unit variability: compound concentrations are often measured in large composite 
samples, thus hiding part of the variability that exists between individual units. MCRA has 
extensive possibilities to model unit variability e.g. sampling from a Beta, Bernoulli or Lognormal 
distribution. 

• Modelling of non-detects levels: compound concentrations are often only known above a certain 
limit, the Limit Of Reporting (LOR). In a worst-case analysis, all non-detect measurements may 
be replaced by the LOR value.  

• Subset selection: extensive possibilities to select data on age, weight or sex of consumers, day of 
consumption, consumed and derived foods, year, country and sampling type of concentration 
data. 

• Insertion of worst case values for foods without concentration measurement values. 
• Calculate intake distribution for consumption-days only 
• Chronic risk assessment: MCRA calculates the usual intake distribution when the total number of 

intake days per consumer is 2 or more. In MCRA, basically, two methods are implemented: the 
first method (parametric) is called the betabinomial/normal method. The betabinomial distribution 
is used to model the intake frequency and the normal distribution is used to model logarithmically 
or power transformed intake amounts. Both distributions are numerically integrated to obtain the 
usual intake distribution for the entire population. In an extended version of this method, the 
frequencies and the amounts can also be related to a covariable and/or cofactor to estimate 
covariable- and cofactor-dependent percentiles and uncertainty intervals. The second method 
(discrete/semi-parametric) follows an approach proposed by Nusser et al. (1996, 1997) and Dodd 
(1996). The chronic intake distribution is characterised by percentiles and uncertainty intervals on 
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these percentiles. Following Dodd et al. (2006) we refer to this method as the ISUF (Iowa State 
University Foods) model. 

2.2 Registration 

To use MCRA, navigate the web browser to http://mcra.rikilt.wur.nl. The opening screen gives some 
general information, as well as links to fixed versions of the manual of the latest release. Find the 
latest developments and most recent information in the On Line Manual. 
 
As a potential new user, first fill in the registration form. Click registration form to get the form 
displayed in Figure 1. Here, specify your name, organisation, address and email address. Choose a 
username (no spaces allowed) and a password for use of the MCRA system. Click the ‘OK’ -button to 
send the request to the MCRA webmaster at RIKILT, and you will get a response by email as soon as 
possible. 
 

 

Figure 1: Registration form  

 
Registered users enter the website by clicking Login to MCRA for registered users on the home page. 
Specify username and password, and the first screen of the MCRA website is shown: Main Menu.  

2.3 MCRA Main menu 

In Figure 2, options within the Main menu are shown: 
 
 
 
 
 

http://mcra.rikilt.wur.nl/
http://mcra.rikilt.wur.nl/mcra/
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Figure 2: MCRA Main Menu 

 

• Click ‘MCRA 6.0’ to start preparations needed to do an MCRA analysis. 

• Click ‘Manage input/output’ to upload (and download) your own data (see 2.5 ) or to 
download output from a former MCRA analysis. 

• Click ‘Older versions’ to run old releases of the program (older versions are not supported). 

• Click ‘MCRA 6.0 (field trial data and Dutch consumption data)’ to run MCRA with features 
to edit your own compound concentration data. 

• Click ‘Registered user information’ to view which information about you is stored in the user 
database.  

• Click ‘Help’ for explanation about options in the Main menu. 

• Click ‘Logout from MCRA website’ to leave the MCRA website. Your personal data files, 
latest output files and the latest input options remain stored for later use. 

2.4 Data needed 

What data are needed to run MCRA? All data for MCRA are stored in Microsoft Access database 
tables according to a predefined format. To use your own data, prepare your database off-line and 
upload it to your personal user area on the MCRA website. The ‘MCRA 6.0 (field trial data and Dutch 
consumption data)’ option in the Main menu (see 2.3 ) offers some possibilities to edit data on-line. 
However, on-line editing is restricted to compound concentration values, unit variability, processing 
factors, acute reference dose (ARfD) and average daily intake (ADI) (see Chapter 7 ). 
  
In Chapter 9 , a full description of the format is given how data should be saved in a MS Access 
databases. Basically, input data for MCRA originate from two sources: food consumption surveys and 
monitoring programs on compound concentration data. Often, additional tables are needed to link 
consumption data to compound concentration data or to implement model options like unit variability. 
In Figure 3, a short outline is presented how tables are linked to each other: consumption data are 
linked directly to compound concentration data or in an indirect way, through the use of food 
composition data, food marketshare data, processing data or by the use of a supertype algorithm. 
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Figure 3: Links between consumption and compound concentration data 

 
The MCRA system has a central database with example data. You may run example analyses without 
having data yourself. However, MCRA is primarily designed to work with user databases, or with a 
mixture of user data and centrally supplied data. For example, provide your own data on compound 
concentrations and combine these with the centrally supplied consumption data. Be careful when 
using tables from different databases: the codes of foods of the centrally supplied data and your own 
data should be consistent with each other. 
Consumption data are consumed portions of food (consumed at different days) of consumers. To get 
standardized intakes, in any case the weight of each consumer should be supplied. Other 
characteristics of the consumers, like age and/or sex, may be used in further analyses. The second type 
of data, compound concentration data, are the amounts of compound found on monitoring samples of 
food. The third category, additional tables, provides information that links consumption data to 
compound concentration data or store information for more sophisticated analyses like unit variability 
(see Figure 3).  
Food composition data specifies the composition of foods. So, speaking about pizza, the composition 
specifies proportions for e.g. wheat, tomato, cheese etc. Food marketshare data specifies the 
proportion of subtypes, so for apple, marketshares are e.g. Jonagold, Granny Smith, Golden Delicious 
etc. Processing data specify the unprocessed food, the processed food and the corresponding 
processing factors, e.g. for grapes raisins are specified. The supertype of a food is, if needed, 
automatically determined. So the supertype of e.g. Granny Smith is apple. 
As a registered MCRA user you have complete control over the file management in your personal 
area by starting ‘Manage input/output’ in the Main menu (see 2.5 ). 

2.5 Manage input/output 

The ‘Manage input/output’ option in the Main menu brings you to a screen where you can upload 
your data files (see Figure 4). Each user has a personal data area with two subdirectories named ‘IN’ 
and ‘OUT’. The ‘IN’-directory is used to upload your own MS Access databases. Databases are 
uploaded directly or in zipped form. Other options in this menu are e.g. zip, rename or delete files. 
MS Access databases and zip-files can also be downloaded. Note: never delete subdirectories ‘IN’ and 
‘OUT’. 
  

Consumed foods in table: 
- FoodConsumption 
 

Measured foods in table: 
- ConcentrationValues 
- ConcentrationSummaryStatistics 
- ConcentrationDiscreteValues 
- ConcentrationWorstCaseValues 

Foods in table: 
- Processing 

- FoodComposition 
- FoodMarketshare 
- supertype algorithm 
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Figure 4: Manage input/output 

 
Output from MCRA is written to the personal ‘OUT’-directory. To download output for off-line 
viewing do the following. Go to the central menu (see Figure 7), click the ‘View-output’-button and 
click DownloadOutput (see Figure 5). Output files are downloaded in a zipped format. The download 
includes a file ‘viewoutput.htm’ which gives the same options to study output as available on the 
website.  
Occasionally, after pasting ComponentOne Charts into Word the chart is not displayed (at all) and 
instead, an icon appears. To our experience, pasting charts from the clipboard encounters no 
difficulties when the Word document is opened first, then press the 'Copy to Clipboard'-button and 
paste the contents of the clipboard into the Word document. 
Occasionally, system faults occur due to errors like incorrect database contents, queries giving empty 
subsets, subset selections combining inconsistent levels or scripting errors. The best way to proceed is 
to log out and enter the website again (login). Then, click the ‘Manage input/output’ link in the main 
menu, click your personal directory link or the ‘IN’ or ‘OUT’-subdirectory links (a number of buttons 
appear) and click the ‘Clear history’-button: all system files (files created by MCRA, but not visible) 
are deleted from the personal directory. Files on the ‘IN’ or ‘OUT’-subdirectory are not deleted (see 
also ch. 11 ). 
 

 

Figure 5: Download output for off-line viewing 
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2.6 Starting the MCRA program 

To start MCRA, click the ‘MCRA 6.0’ option in the Main menu (see Figure 2). Then, depending on 
whether you are a new user or not, the screen in Figure 6 or Figure 7 is shown. Each activity is started 
from the MCRA central menu. After finishing the activity, the user returns to the MCRA central menu 
to start a new activity.  
New users are automatically brought to the MCRA central menu in Figure 6. Click the ‘go’-button to 
start selection of data.  
 

 

Figure 6: MCRA central menu, start of data selection 

In all subsequent cases, the menu in Figure 7 is shown. 
 

 

Figure 7: MCRA central menu 
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First, select the data. In Figure 6, there are no further options. When a selection already exist, continue 
with the same selections as before by clicking the MCRA-input-form ‘go’-button (see Figure 7). For 
selecting new data, click the selection-of-data ‘clear’-button and enter the screen in Figure 6. Click the 
to-overview-of-conversion ‘go’-button to enter an overview of the latest food conversion.  

2.6.1 Selection of the tables 

Select tables from remote data servers or supply own data by clicking the selection-of-data ‘go’ or 
‘clear’-button in the MCRA central menu (see Figure 7). The screen in Figure 8 displays a list of data 
servers that are sharing data with you (according to your user credentials). Select one or more data 
servers and click the ‘go’-button. In Figure 8, data server ‘Biometris’ is checked.  
 

 

Figure 8: Selection of data servers 

 
In Figure 9 all databases that are available to you are shown. From here select databases for further 
use in the MCRA analysis. Click the compound-and-survey-selection ‘go’-button for selection of a 
new compound or survey if data are retrieved on an earlier occasion. 
As mentioned before, the coding used in various tables should be consistent. Therefore, the safest 

way to select data is using data from one and only one source. If not, convince yourself that data 
coming from different sources are consistent and suited for your purposes. 
On each of these sources, find some information by clicking the ‘info’-button and, next screen (not 
shown), by clicking the buttons with country names.  
 
 
 



 15 

 

Figure 9: Selection of databases 

 
Figure 10 displays the selected databases and shows which tables are available. Select whole 
databases at once (check ‘All Tables’) or make combinations of tables from different databases as 
done in Figure 10.  
 

 

Figure 10: Table selection for MCRA analysis 

 
Scroll the mouse over the checkboxes and tablenames are displayed in red, green or grey textboxes.  

• It is compulsory to select all tables for which red textboxes appear (Foodconsumption, Foods, 
Individual, Compounds and Country).  

• It is compulsory to select one of the tables containing compound concentration data 
(ConcentrationValues, ConcentrationSummaryStatistics and ConcentrationDiscreteValues). 
These tables have their name displayed in green textboxes (see also 3.2.1 ).  
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• All tables with grey textboxes are optional (Foodproperties, Processing, Processingtype, 
ConcentrationWorstCaseValues, AgriculturalUse, VariabilityProd, VariabilityCompProd, 
VariabilityProcCompProd).  

 
Make sure to select all compulsory tables otherwise the menu keeps returning with warnings about not 
selecting the required tables. Make also sure that each type of table is represented once.  
To use an alternative language for labelling foods, check ‘Use alternative foodnames (foodname2))’. 
Check your tabels and click the ‘go’-button.. 

2.6.2 Selection of food consumption survey and of compound 

After selecting tables, the screen of Figure 11 is shown. Checkboxes for ‘allow marketshares not 
summing to 100% (step 4)’ and ‘allow worst-case concentrations (step 7)’ are only shown when table 
FoodMarketshare and ConcentrationWorstCaseValues are selected. Here, table 
ConcentrationWorstCaseValues is not selected (checkbox not shown). When checkbox ‘allow 
marketshares not summing to 100% (step 4)’ is not checked, all derived foods not summing up to 
100% are ignored in the analysis. 
Select a survey name from the scroll-down menu. MCRA works on single compounds. Select a 
compound name from the scroll-down menu (see Figure 11). 
 
 
 

 

Figure 11: Selection of food consumption survey and compound 
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MCRA performs a check whether all columns are available in the selected tables. If not, a report of 
errors is produced, see Figure 12 
 

 

Figure 12: Error report on missing columns 

In all examples, the centrally supplied database ‘Validation.mdb’ is used.  

2.6.3 Selection of foods 

After table selection, information on the number of consumed and of derived foods is displayed.  
 
For consumed foods, three situations may occur:  
1. on some foods only positive concentration values are measured, 
2. on some foods only non-detects are found, 
3. on some foods only worst-case values are found. 
 
Further output is: 
4. on some derived foods no information is found, 
5. on some consumed foods no information is found. 
 
Now, three options are available (see Figure 13):  

1. continue with only foods for which positive concentration measurements are available, 
2. continue with foods for which concentration data are available i.e. positive concentrations 

and/or non-detects, 
3. continue with all foods i.e. also foods for which worst-case values are found (not shown). 
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Figure 13: Food selection for MCRA analysis 

 
Check one of the radio buttons and click the ‘go’-button to enter the MCRA central menu (see Figure 
7). Click the MCRA-input-form ‘go’-button to enter the MCRA options menu treated in Chapter 3 . 
 
Information about subset selection of the consumer population and foods is found in Chapter 6 . 
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3  Specifying MCRA options and running a job 

3.1 Overview 

In this chapter, all options of the input form are discussed with references to paragraphs in Chapter 5 
for more theoretical background. 
Click the MCRA-input-form ‘go’-button of the central menu (see Figure 7). When MCRA is entered 
for the first time, the screen in Figure 14 (default options) is entered.  
 

 

Figure 14: MCRA input form. 

 
The input form is divided into a top, left and right section in which model options are specified: 

• In the top section, choose the risk type, acute or chronic, and whether to perform an 
uncertainty analysis.  

• In the left section, a number of options related to the choices made in the top section are 
specified. For an acute risk assessment, three more specifications are made concerning 1) the 
concentration model; 2)  the unit variability model for the concentrations; 3) and the intake 
model which may be extended with an analysis to relate the acute intake to a covariable (e.g. 
age) and/or cofactor (e.g. sex). For a chronic risk assessment, two models are specified 1) the 
concentration model; 2) and the intake model. Note that the unit variability model is not 
relevant for chronic risks. 

• The right part of the screen displays a number of special option blocks which depend on the 
choices made in the top and left section. For an acute risk model at least 3 option blocks are 
displayed 1) Concentration data; 2) Additional; 3) and Output. For a chronic risk model at 
least 3 option blocks appear 1) Concentration data; 2) Intake model; 3) and Output. In Figure 
14 the option block Uncertainty analysis is shown because in the top section uncertainty 
analysis is checked. Click a change-options-button to reveal the options (see Figure 15, 
default options). 

 
After clicking any (radio) button or any item in a scroll-down menu, the screen is rebuilt to implement 
the choice. After changing a value in a text box, leave the field (move the mouse/replace pointer) to 
implement the value. 
Each description (like ‘risk type’, ‘uncertainty analysis’, ‘concentration model’ etc. in Figure 14) has 
its own mouse-over function revealing a blue screen-tip with short information on the topic. By 
double-clicking the description name, the On Line Manual is opened for more information.   
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Save your settings by clicking the save-user-defaults-button in the top section.  
The scroll-down menu Choose-default-option-setting has 4 settings: current, previous, system and 
user.  

• ‘current’ is shown when one of the input options is changed.  

• ‘previous’ recalls all program settings from the last performed MCRA analysis.  

• ‘system’ sets all default settings.  

• ‘user’ implements all user defaults.  
 
When no MCRA analysis has been performed in the past, setting ‘previous’, ’user’ and ‘system’ are 
identical. 

 
 

Figure 15: Right section after clicking the ‘change options'-buttons in the input form. 

 
Click the ‘submit MCRA job’-button in the top section to start MCRA (see 3.6 ) 

3.2 Acute risk type 

Specify risk type is acute and find the specifications in the left section of the screen (see Figure 16, 
default options). Scroll-down menus for the concentration model (see 3.2.1 ), the unit variability 
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model (see 3.2.3 ) and the intake model (see 3.2.5 ) are shown together with some numerical 
specifications.  

 

Figure 16: Left section of the MCRA input form if risk type is acute 

 

Number of Monte Carlo simulations 
Days of consumption are randomly sampled from the consumer database. Each time a consumption 
day is sampled, it contributes to the probability distribution of intakes. Each individual contribution is 
called a simulation. In Figure 16, the total number of MC-simulations is 100,000. 

 

Random seed 
The MC-simulation uses a pseudo-random number generator that is initialised by setting the seed. To 
get time-based values, set seed to zero. For repeatable sequences, set the seed to an integer number. 

 

Number of resampled sets 
Specify the number of resampled sets to assess the uncertainty distrubution. In Figure 16, the 
specified number is 100.  

 

Number of simulations per resampled set 
Specify the number of simulations per resampled set. In Figure 16, the specified number of 
simulations per resampled set is 10,000.  

3.2.1 Concentration model options 

Settings are: 

• empirical (only shown for full data) [default for full data] 

• binomial/normal (no pooling) 

• binomial/normal with pooling 

 

Compound concentration data are present as full data (a list of compound concentrations is available), 
summary data (only some summary statistics, for example means, percentiles or maxima are 
available) or histogram data (only numbers of observations classified in intervals are available). Select 
the type of concentration data in the selection of tables menu in 2.6.1 .  
In the probabilistic model, a distribution of compound concentration data is used to sample from. A 
choice is made between a parametric and a non-parametric (empirical) approach. Compound 
concentration data may be used as such (empirical modelling, only with full data) or fitted by 
binomial/normal distributions e.g. parametric modelling, based on full data, summary data or 
histogram data.  
Parametric modelling becomes important in data-scarce situations. The normal distribution with 
parameters ȝ and σ has been selected as being both theoretically sensible and practically useful 
(Shimizu & Crow 1988, Van der Voet et al. 1999). The non-parametric approach requires more data 
to obtain a satisfying representation of the full distribution.  
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Summarizing, for concentration data we have: 
 
 

Type of concentration data full data summary data histogram data 

Option settings in concentration model    

Non-parametric: empirical x - - 

Parametric: binomial/normal 
 (with or without pooling) 

x x x 

Table 1: Possible combinations of option settings with type of concentration data. 

See also: How to deal with limited information on compound concentration data 

3.2.1.1 Empirical 

In the non-parametric approach, choose ‘empirical’: concentration values are sampled at random from 
the available compound concentration data and combined with food consumption data to generate the 
intake distribution of intake values. 
See also: Distributional assumptions 

3.2.1.2 Binomial/normal (no pooling) 

In the parametric approach, compound concentration values per food are sampled from parametric 
distributions based on full, histogram or summary data. Parameters ȝ and σ of the normal distribution 
are estimated using the log-transformed non-zero compound concentrations (full data) or condensed 
data (summary or histogram data). Choose this setting only, when enough data are available to 
estimate ȝ’s and σ’s for all foods. 
Estimation of the variance and/or mean may fail because compound concentration data on specific 
foods are sparse or even missing. In case of missing parameters, a warning message is printed. Re-run  
MCRA with setting ‘binomial/normal with pooling’. 
A related question is the reliability of estimates based on a few degrees of freedom. To overcome 
these problems, basically, compound concentration data on other foods are used to give sufficient data 
to base estimates upon. Foods are classified into groups of similar foods and missing or unreliable 
parameters are estimated using all compound concentration data in a group. This process of using 
concentration data on similar foods to base estimates for ȝ and σ upon is called pooling (see also 
5.3.1.1.3 ) 
See also: Distributional assumptions 

3.2.1.3 Binomial/normal with pooling 

Specifying pooling means that foods are automatically assigned into groups and pooled. The 
identification of groups is based on the CODEX system (see 9.2 ), using the first 2 characters of the 
code. When the code contains information on supertypes e.g. indicated by the presence of symbol ‘$’, 
then the supertype is used to form groups. Foods with equal first 2 characters or equal supertypes are 
placed into the same group. 
 
Pooling is performed in a two step procedure following the next scheme: 
1. Test homogeneity of variances within the groups 

if variances are homogeneous, 
 pool variances.   

test homogeneity of means within the groups 
if means are homogeneous, 
 pool means. 

2. Test homogeneity of variances of foods with df < 10 against overall-variance  

if variances are homogeneous, 
replace variances with overall-variance. 
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Results of step 1 and 2 are (sub) groups with: 
a) pooled variances and pooled means,  
b) pooled variances and the original (unpooled, heterogene) means,  
c) the original (unpooled, heterogene) variances and original means. 
 
An example of pooling is given in 10.7 . 
See also: Distributional assumptions 

3.2.2 Concentration data options 

Find in the right section of the input form, option block Concentration data (see Figure 17, default 
options). Specify settings for missing data and non-detects and processing effects. 
 

 

Figure 17: Option block Concentration data 

3.2.2.1 Replacement of non-detects 

Settings are: 

• no replacement of non-detects [default] 

• replace all non-detects 

• replace non-detects based on crop treated 

 

In many cases of compound risk assessment (e.g. pesticides) the majority of the monitoring 
measurements are non-detects, i.e. no quantitative measurement is reported. Only values higher than 
the Limit Of Reporting (LOR) are reported. When a compound enters the food chain only via crop 
treatment and the percentage crop treated is (approximately) known, this knowledge is used to infer 
that some of the monitoring measurements should be real zeroes, contributing nothing to the intake, 
whereas other non-detects in the monitoring data could have any value below the limit of reporting.  
Non-detects (all non-detects or a specified fraction) are replaced with 0 or the LOR multiplied by a 
multiplication constant. If percent crop treated data are available (see table AgriculturalUse, 9.5.9 ), 
then replacement by LOR is restricted to an appropriate fraction of the non-detects by specifying 
‘Replace non-detects based on crop treated’.  
See also: Modelling of missing data and replacement of non-detects 

3.2.2.2 Modelling processing effects 

Settings are: 

• no processing [default] 

• processing (fixed factors) 

• processing (distribution based) 

 
Concentrations in the consumed food may be different from the monitoring compound due to 
processing such as peeling, washing and cooking. Usually, processing lowers the concentration in the 
consumed food compared to the concentration in the unprocessed food. The effect of processing is 
modelled by multiplying the monitoring compound by a factor fk which will typically be between 0 
and 1. Occasionally, the processing factor may also be > 1, e.g. for drying. Often, processing factors 
may be variable across situations. This variability may be entered into the model by specifying two 
values:  



 24 

• fk,nom, the nominal value, typically some sort of central value;  

• and, fk,upp, an upper 95% confidence limit.  
 

Distribution based processing factors require both values whereas for fixed factors only fk,nom or fk,upp 
needs to be specified (when both are specified, the highest value will be used; worst case scenario). 
No processing implies that fk = 1. 
 
To use processing factors fk , choose processing (fixed factors) or processing (distribution based). 
Processing factors are read from table ‘Processing’ (fk,nom = procnom, fk,upp = procupp) and processing 
codes and labels from table ‘ProcessingType’. Note that specifying no processing is a worst case 
scenario (fk =  fk,upp = 1). 
The program multiplies concentrations with fixed processing factors (in which case the conservative 
value fk = fk,upp is used), or with random values sampled from a normal distribution with parameters ȝ 
and σ. The mean and standard deviation are based on transformed values of fk,upp and fk,nom. The type of 
transformation for each processing type is specified in the last column of table ProcessingType. 
Choose disttype = 1 for a logistic-normal distribution or disttype = 2 for a lognormal distribution. To 
process simultaneously some foods using fixed factors and others distribution based, choose 
‘processing (distribution based)’. Now, fixed factors fk are obtained by providing only fk,upp whereas 
random factors fk are sampled when both fk,upp and fk,nom are given.  
It is not necessary to fill out a complete list of processing factors for all foods. Missing values of fk,nom 

and fk,upp are, by default, replaced by the value 1. 
See also: Modelling of processing effects 

3.2.3 Unit variability model options 

Settings are: 

• no unit variability [default] 

• beta distribution 

• lognormal distribution 

• bernoulli distribution 

 
Monitoring measurements are typically made on homogenised composite samples. Each sample is 
composed of nuk units with nominal unit weight wuk each. The weight of a composite sample is often 
larger than a daily consumer portion. This implies that the mean level of the monitoring compound 
may be a fair estimate of the mean level of the food, but the variability of the monitoring 
measurements is certainly not appropriate to estimate the variance. Therefore, acute risks may be 
higher than would follow from a direct use of the composite sample data. This problem has been 
addressed by modelling unit variability.  
In MCRA, the following three models for unit variability are available: 
1. Beta model, requires knowledge of the number of units in a composite sample, and of the 

variability between units (realistic or conservative estimates); 
2. Lognormal model requires only knowledge of the variability between units (realistic or 

conservative estimates). 
3. Bernoulli model, requires only knowledge of the number of units in a composite sample (results 

are always conservative); 
See also: Modelling of unit variability 

3.2.3.1 Estimated parameters for unit variability 

When parameters for unit variability based on empirical studies are available, these are used to 
simulate concentrations for a unit, assuming a parametric form for the unit-to-unit variability within a 
batch e.g. the beta or lognormal distribution. 
Table 2 describes the four options when a parametric form for unit variability is specified. 
Compounds are simulated for a new unit in the batch using a lognormal distribution or for a unit 
belonging to the composite sample leading to the use of the beta distribution. 
 



 25 

 Simulate for new unit in batch  
 

(lognormal distribution) 

Simulate for unit belonging to 
composite sample 
(beta distribution) 

Estimates of unit 
variability  are 
realistic (R) 

• no censoring at cmk 
• no upper limit to the unit 

concentration 

• no censoring at cmk 
• unit values never higher than 

kk cmnu ⋅   

Estimates  of unit 
variability are 
conservative (C) 

• unit values will be left-censored 
at cmk 

• no upper limit to the unit 
concentration 

• unit values will be left-censored at 
cmk 

• unit values never higher than 

kk cmnu ⋅   

Table 2: Choices for estimated variability factors. cmk =  value of composite sample 

concentration, nuk  =  number of units in composite sample. 

See also: Approaches to unit variability in probabilistic modelling: specifying distributions 

3.2.3.2 Beta distribution 

Find in the right section of the input form, option block Unit variability: Beta distribution (see Figure 
18, default options). 
 

 

Figure 18: Option block Unit variability: Beta distribution 

 
The parameter for unit variability is specified as a variability factor v or as a coefficient of variation cv 
of the unit values in the composite sample. Variability factors v (97.5th percentile divided by mean), 
coefficient of variation cv (standard deviation divided by mean) and number of units nu in the 
composite sample are retrieved from table VariabilityProd when unit variability is independent of the 
compound and processing type. If the variability factor is dependent on compound and/or processing 
type, data are expected in tables VariabilityCompProd or VariabilityProcCompProd, respectively.  
 
The following variability factors v are recommended:  

• for large crops (wuk > 250g) value v = 5;  

• for medium crops (wuk 25- 250g) v = 7;  

• for small crops (wuk ≤ 25g) v = 1 (FAO/WHO, 1997).  

• and for foods which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, 
v = 1.  

 
The latter information is specified in field bulkingblending of table ProcessingType (see 9.4.4 ). If the 
parameter for variability is missing, zero variability is assumed, and the unit concentrations are equal 
to the sampled composite sample concentrations. 
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Specify whether the supplied values for variability are realistic or conservative estimates. In the latter 
case, unit values are left-censored at the value of the mean (composite sample concentration). If there 
are no user-defined values for the number of units in the composite sample these are taken using a 
default scheme of nominal unit weights. This scheme follows in principle the definition of FAO/WHO 
(1997), as illustrated in Figure 18, but can be modified by the user. 
See also: Beta model for unit variability 

3.2.3.3 Lognormal distribution 

Find in the right section of the input form, option block Unit variability: Lognormal distribution (see 
Figure 19, default options). 
 

 

Figure 19: Option block: Unit variability: Lognormal distribution 

 
In Figure 19 a parametric form for the unit-to-unit variability is specified. Concentrations are 
simulated for new units in the batch leading to the lognormal distribution.  
The parameter for unit variability is specified as a  variability factor v or a coefficient of variation cv. 

 
The conversion of a variability factor into parameters of the lognormal distribution requires an exact 
definition of what is meant. Here, the variability factor is defined as the 97.5th percentile of the 
concentration in the individual measurements divided by the corresponding mean concentration seen 
in the composite sample. Specify whether estimates are realistic or conservative.  
 
In the conservative approach, unit concentrations of the composite sample are left-censored at the 
value of the monitoring compound. The realistic approach implies that the unit value may be lower 
than the value of the monitoring compound. 
See also: Lognormal model for unit variability 

3.2.3.4 Bernoulli distribution 

Find in the right section of the input form, option block Unit variability: Bernoulli distribution, (see 
Figure 20, default options). 
 

 

Figure 20: Option block Unit variability: Bernoulli distribution 
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In practice, measurements on individual units to obtain a measure for unit variability are not very 
common. Therefore, the number of units nuk in the composite sample is used to define the parameter 
for unit variability (see van der Voet et al. 2001). When the number of units nuk in the composite 
sample is missing, the nominal unit weight wuk is used to calculate the parameter for unit variability.  
The following variability factors v are recommended:  

• for large crops (wuk > 250g) value v = 5;  

• for medium crops (wuk 25- 250g) v = 7;  

• for small crops (wuk ≤ 25g) v = 1 (FAO/WHO, 1997).  

• and for foods which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, 
v = 1.  

 
The latter information is specified in field bulkingblending of table Processing (see 9.4.4 ). The 
number of units within a consumption is calculated and for each unit a Bernoulli distribution is used 
to sample the monitoring compound with probability (v-1)/v or a multiple v of it with probability 1/v 
(see Figure 20). 
See also: Bernoulli model for unit variability 

3.2.4 Additional options concerning IESTI and consumption days 

Find in the right section of the input form, option block Additional options that handles IESTI and 
consumption days only (see Figure 21, default options). 
 

 

Figure 21: Option block Additional in the third section of the MCRA input form screen 

 
The IESTI (International Estimated Short-Term Intake) is a prediction of the short-term intake of a 
compound on the basis of the assumptions of high daily food consumption per consumer and highest 
compounds and, in case of blending and bulking, the median compound from supervised trials. The 
IESTI is expressed in microgram/kg body weight/day and estimated per food. 
IESTI estimates are requested when estimation of IESTI is set to yes. Standard unit variability factors 
and a standard body weight of 60 kg are specified. The IESTI is compared with estimates of a 
specified percentile (per food) of the MC-simulation.  
In the output (not shown) two kinds of estimates of the MC-percentile are given: one for “All days” 
and one for “Consumption days only”. Be aware that specification of option ‘consumption days only’ 
may alter the interpretation (and estimate) of the percentile for “All days”. In the latter case the 
estimate refers to a smaller subset containing consumption days only. However, note that still not 
every food is eaten on every consumption day. The interpretation and estimate of the percentile for 
“Consumption days only” is not affected by setting option ‘consumption days only’. 
The IESTI calculations correspond to the definition of FAO/WHO (2002) that may be considered as 
the deterministic counterpart of the probabilistic approach used in MCRA. 
In 10.3 output of IESTI calculations are shown. 
See also: Additional: Comparison of probabilistic with deterministic estimates of acute risk 
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3.2.5 Intake model options 

Settings are: 

• only empirical estimates [default] 

• empirical estimates and betabinomial/normal  

3.2.5.1 Only empirical estimates 

This is a straightforward acute risk analysis.  

3.2.5.2 Empirical estimates and betabinomial/normal  

Find in the right section of the input form, option block Intake model (see Figure 22, default options). 
 

 

Figure 22: Option block Intake model in the right section of the MCRA input form screen 

Note that estimation of a covariable and/or cofactor dependent acute intake distribution is additional 
to the standard analysis. The simulated intake values of an acute analysis are used as input. Then the 
analysis proceeds:  

• the betabinomial distribution is used to model the intake frequency. Frequencies may be 
related to a covariable using a spline or polynomial function and/or to a cofactor;  

• non-zero intakes are transformed using a logarithmic or power transformation. The normal 
distribution is used to model the transformed intake amounts and a spline or polynomial 
function may be used to describe the effect of a covariable;  

• both distributions are numerically integrated to obtain the acute intake distribution. 
Covariable- and cofactor-dependent percentiles can be derived from the corresponding acute 
intake distributions. 

See also: Empirical estimates and betabinomial/normal 

 

Intake frequency model 
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The intake frequency function models the probability of consumers of having an intake. Depending on 
the consumption pattern, we have regular, less regular and incidental consumers. So each consumer 
has his own probability of having an intake. For many foods, there may be a relation with age (or sex 
or, if available, other demographic data): the probability of having an intake may be related to e.g. the 
age of the consumer. The betabinomial distribution is very suited to sample consumer probabilities 
using e.g. age and/or sex as explanatory variables. 
In Figure 22, decide on modelling the effect of a covariable. Choose a spline function or a 
polynomial. A smoothing spline is a complicated function, constructed from segments of cubic 
polynomials with constraints to ensure smoothness. A polynomial function is based on orthogonal 
linear, quadratic, cubic or quartic curves. The degree of smoothness of the spline or polynomial 
function is controlled by increasing or decreasing the degrees of freedom. A spline with the maximum 
degrees of freedom is less smooth than a spline with the minimal degrees of freedom. Decide on the 
method of testing: backward selection means that testing starts with a spline or polynomial of the 
highest degree. In each elimination round the number of degrees of freedom is decreased one at a 
time, and the process is stopped when the resulting decrease in fit is significant at the specified 
significance level as judged on the basis of a deviance test. Forward selection means that the 
evaluation of the degree of the spline or polynomial is started with a function of the lowest degree. In 
all evaluations the testing level is 0.01. 
See also: Modelling the intake frequency distribution 
 

Intake amount model 
Choose whether the non-zero intakes are transformed by a logarithmic or power transformation and 
whether the amounts should be related to e.g. age and/or sex. The transformed amounts are analysed 
with maximum likelihood using a spline or polynomial function to describe the effect of a covariable. 
The analysis provides covariable- and cofactor-dependent mean intakes and the standard deviation of 
the transformed intake distribution, see Figure 22. 
See also: Modelling transformed intake amounts 
 

Estimation of covariable- and/or cofactor-dependent percentiles 
For each combination of levels of the covariable and cofactor the acute intake distribution is obtained 
by numerical integration. The parametric intake frequency and intake amount model are used to 
derive distributions of intake frequency and intake amount values through the use of MC-sampling. 
For each level of the covariable and cofactor, the corresponding distributions are multiplied, and an 
acute  intake distribution is obtained which represents the acute intake for that specific combination of 
levels of the explanatory variable(s). The number of MC simulations is specified in the MCRA input 
form, see Figure 16. 
See also: Estimating the acute intake distribution 

3.3 Chronic risk type 

Specify in the top section (see Figure 14) risk type is chronic and uncertainty. Specifications in the 
left section (see Figure 23, default options) are: 
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Figure 23: Left section of the MCRA input form if type of analysis is Chronic 

 
In dietary risk assessment, usual intake is defined as the long-run average of daily intakes of a dietary 
component by an individual consumer. In the MCRA program, for chronic risk assessment, the intake 
is calculated as the consumption on each day of each consumer multiplied by the average value of the 
compound concentration levels (non-detects and detects) divided by body weight and, if specified, 
applying processing and/or replacing zeros with the LOR (based on percent crop treated). Note, unit 
variability is not relevant in chronic risk assessment. Compound data for a chronic risk assessment 
may be present as full, summary or histogram data. For full data, a choice can be made between a 
parametric and a non-parametric (empirical) approach. For summary or histogram data a parametric 
approach is obligatory. Note, option ‘consumption-days only’ is not relevant for chronic risks and 
chronic risk assessment is only performed when the total number of days per consumer is 2 or more. 

See also: Chronic risk assessment 
 
Number of Monte Carlo simulations 
The usual intake distribution is obtained by a numerical integration procedure. Specify the number of 
MC-simulations to estimate the distribution. In Figure 16, the total number of MC-simulations is 
100,000. 
 

Random seed 
The numerical integration is based on MC-simulation and requires a pseudo-random number 
generator that is initialised by setting the seed. To get time-based values, set seed to zero. For 
repeatable sequences, set the seed to an integer number. See 3.2  

 

Number of resampled sets 
Specify the number of resampled sets to assess the uncertainty. Settings are the same as for the acute 
risk model. See 3.2  

 

Number of simulations per resampled set 
Specify the number of simulations per resampled set. In Figure 16, the specified number of 
simulations per resampled set is 10,000.  

3.3.1 Concentration model options 

Settings are: 

• empirical [default] (see 3.2.1.1 )  

• binomial/normal (no pooling) (see 3.2.1.2 )  

• binomial/normal with pooling ( see 3.2.1.3 ) 
 

For options of Concentration data (see 3.2.2 ) 

3.3.2 Intake model options 

Settings are: 

• betabinomial/normal (BBN) [default] 

• discrete/semi-parametric (ISUF) 

 

The covariable and/or cofactor are selected in the screen shown in Figure 11. 

3.3.2.1 Betabinomial/normal (BBN) 

Find in the right section of the input form, option block Intake model (Figure 24, default options). 
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Figure 24: Option block Intake model if intake model is betabinomial/normal (BBN) 

 
For a chronic risk assessment, the intake is calculated as the consumption on each day of each 
consumer multiplied by the average value of the compound concentration levels divided by body 
weight (see 3.3 ). Apply the betabinomial/normal model:   

• the betabinomial distribution is used to model the intake frequency. A spline or polynomial 
function are available to describe the effect of a covariable. Choose whether an interaction is 
included when both cofactor and covariable effect are modelled.  

• non-zero intakes are transformed to normality and a maximum likelihood algorithm is used to 
estimate the effects of explanatory variables and the standard deviation parameter of the usual 
intake distribution (variance between individuals).  

• both distributions are numerically integrated to obtain the usual intake distribution. For each 
combination of levels of the explanatory variables, an intake frequency distribution and a 
transformed intake amount dsitribution is simulated through MC-sampling. Both distributions 
are multiplied to obtain the usual intake distribution. The number of MC-simulations is 
specified in the MCRA input form, see Figure 23. Covariable- and cofactor-dependent 
percentiles can be derived from the corresponding usual intake distributions. 

 
Note that the interaction option refers to both models (no separate modelling).  
See also: Betabinomial/normal 
 

Intake frequency model 
The intake frequency model describes the probability of having an intake. Depending on the 
consumption pattern, we have regular, less regular and incidental consumers, each consumer has his 
own intake frequency.  
For many foods, there may be a relation with explanatory variables like e.g. age and/or sex. The 
betabinomial distribution is very suited to model the intake frequency as function of explanatory 
variables. 
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In Figure 24, choose whether to model e.g. age and/or sex effects. Choose a spline or a polynomial 
function. A smoothing spline is a complicated function, constructed from segments of cubic 
polynomials with constraints to ensure smoothness. A polynomial function is based on orthogonal 
linear, quadratic, cubic or quartic curves. The degree of smoothness of the spline or polynomial 
function is controlled by increasing or decreasing the degrees of freedom. A spline with the maximum 
degrees of freedom is less smooth than a spline with the minimal degrees of freedom. Decide on the 
method of testing: backward selection means that testing starts with a spline or polynomial of the 
highest degree. In each elimination round the number of degrees of freedom is decreased one at a 
time, and the process is stopped when the resulting decrease in fit is significant at the specified 
significance level as judged on the basis of a deviance test. Forward selection means that the 
evaluation of the degree of the spline or polynomial is started with a function of the lowest degree. 
Choose your testing level. If both cofactor and covariable are included, decide on modelling the 
interaction. For a polynomial, the interaction means that curves are no longer parallel and intercepts 
may differ. 
See also: Modelling the intake frequency distribution 
See also: Intake frequency model with covariable and/or cofactor 
 

Intake amount model 
The non-zero intake amounts are transformed to approximately normality by a logarithmic or power 
transformation. The transformed amounts are analysed with maximum likelihood using a spline or 
polynomial function to model the effect of a covariable. The analysis provides mean intakes of the 
transformed intake distribution dependent on explanatory variables. The total variance of the non-zero 
transformed intake amounts is divided into a between individuals and a between days within 
individuals a variance component. The between-individuals component is the basis for the estimation 
of the distribution of the usual intake.  
See also: Modelling the positive intake amounts 
See also: Intake amount model with covariable and/or cofactor 
 

Estimation of the usual intake distribution by numerical integration 
The e.g. age and/or sex dependent usual intake distribution is derived by a numerical integration. The  
parametric intake frequency model and parametric intake amount model are used to derive for each 
combination of levels of age and sex, a distribution of intake frequency values and intake amount 
values. This is done by MC-sampling. By multiplying both distributions, a distribution is obtained 
which represents the usual daily intake for a specific combination of levels of age and/or sex. The 
number of MC simulations is specified in the MCRA input form, see Figure 16. 
See also: Estimating usual intake distributions 

3.3.2.2 Discrete/semi-parametric (ISUF) 

Find in the right section of the input form option block Intake model (see Figure 25, default options). 
 
 

 

Figure 25: Option block Intake model if intake model setting is discrete/semi-parametric (ISUF) 

 
For a chronic risk assessment the intake is calculated as the consumption on each day of each 
consumer multiplied by the average value of the compound concentration values divided by body 
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weight (see 3.3 ). Before estimating the chronic percentiles of the distribution applying the 
discrete/semi-parametric (ISUF, Iowa State University Foods) model, non-normal intake data are 
transformed to approximate normality following an approach proposed by Nusser et al. (1996, 1997) 
and Dodd (1996). 
See also: Discrete/semi-parametric (ISUF)  
 

Transformation: power or logarithmic 
Specify a power or logarithmic transformation. Usually, a power transformation is satisfactory. 
See also: Power or log transformation 

 
Spline fit or not 
The transformation to normality is improved by fitting a spline to the transformed intakes. A 
smoothing spline is a complicated function, constructed from segments of cubic polynomials with 
constraints to ensure smoothness.  
See also: Spline fit 
 

Number of iterations to estimate the  intake frequency distribution 
The intake frequency distribution is estimated in an iterative process. Specify the number (x 1000);  
here 5  is specified, giving a total of 5000 iterations, see Figure 25: 
See also: Back transformation and estimation of usual intake 
 

Number of bins for discretisation 
The intake frequency is estimated on a discretised probability grid. Here, the resolution of the grid is 
equal to 20. So, the probability mass is discretised at a grid ranging from 0 to 1 with step length equal 
to 0.05. 
See also: Back transformation and estimation of usual intake 

3.4 Uncertainty analysis 

Specify in the top section (see Figure 14) an uncertainty analysis. 
See also: Uncertainty of risk assessments: resampling data  

3.4.1 Uncertainty analysis options for acute risks 

Find in the right section of the input form, option block Uncertainty analysis (see Figure 26, default 
options). 
 

 

Figure 26: Option block Uncertainty analysis if an acute (or chronic BBN) risk model is chosen 

 
The uncertainty of output statistics (e.g. mean or percentiles of the intake distribution) is assessed by 
resampling datasets (consumptions, concentrations) or distributions (processing factors). Resampling 
can be applied on the level of fresh MC-samples, on the level of consumers and on the level of the 
compound concentration data. To examine the uncertainty due to MC-variability in each analysis 
only, specify ‘no’ for all three options. Then data are resampled from the original data. Apply 
resample consumptions and resample concentration data: from each dataset, data are resampled (with 
replacement) to construct a so-called bootstrap sample. Setting resample procesing factors to yes will 
generate new processing factors from a parametric uncertainty distribution. Parameters of this 
uncertainty distribution have to be entered in the Processing table (see 9.4.5 ). From the resampled 
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data sets and parameters an intake distribution is simulated. Each resampled set provides a mean, 
maximum and percentiles according to the specified percentages and all replicates together contain 
the information to make inferences from the data, e.g. to establish the uncertainty of mean, maximum 
and percentiles.  
The number of resampled sets and the number of simulations per set is specified in the left section of 
the MCRA input form (see Figure 16). Here, 100 resampled sets are specified and each set is 
resampled 10,000 times. The number of values within a set restricts which percentiles are displayed. 
Here, the highest possible percentage for which uncertainty information can be calculated is the 
99.99th percentile, for a set containing 1000 simulations this is the 99.9th percentile. 

3.4.2 Uncertainty analysis options for chronic risks: betabinomial/normal (BBN) 

Options are the same as for an uncertainty analysis for acute risks, described in 3.4.1 . 

3.4.3 Uncertainty analysis options for chronic risks: discrete/semi-parametric (ISUF) 

Find in the right section of the input form, option block Uncertainty analysis (see Figure 27, default 
options). 
 

 

Figure 27: Option block Uncertainty analysis if chronic risk model ISUF is chosen 

 
Uncertainty is assessed by resampling the consumption and compound concentration data. Option ‘re-
estimate consumption frequency distribution’ is only relevant when consumptions are resampled. 
Note that estimation of the frequency distribution is time consuming. Options ‘re-estimate power 
transformation’ and ‘re-estimate number of knots for spline’ are used in the transformation to 
normality of the intake distribution. 

3.5 Output 

Depending on the type of analysis there are different output option blocks to specify graphics and 
tables. 

3.5.1 Output options for acute risks: only empirical estimates 

In Figure 28 (default options), percentages and exposure limits are specified separated by a space.  
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Figure 28: Option block Output if an acute risk model is chosen with only empirical estimates 

 
The next option specifies the percentage that is used for summarising the contribution of foods to the 
right tail of the intake distribution and to display a graph of the upper tail. A percentage may be 
specified, but specifying an intake value in the option below overrules the percentage. The drill-down 
percentage is used to select the nine consumers around the percentile of the intake distribution that 
corresponds to the specified percentage. For these consumers the age and weight are displayed, the 
intake, the consumption and the compound concentration contents found on each consumption. To   
display information of consumers with the highest intake, specify percentage 100. 

3.5.2 Output options for acute risks: empirical estimates + betabinomial/normal (BBN) 

The upper part of Figure 29 (default options), see 3.5.1 . In the lower part, options related to the 
covariable are shown, here age. The minimum and maximum age are retrieved from the database, but 
are overruled by specifying own values. The step length is automatically determined but can be 
overruled. Default, approximately 20 steps are taken and the calculated step length is rounded to the 
nearest integer. To get predictions for specific ages, specify your extra age’s space separated. Extra 
ages may lay outside the specified range determined by the minimum and maximum age.  
 

 

Figure 29: Option block Output if an acute risk model is chosen with empirical estimates + 

betabinomial/normal (BBN) 

3.5.3 Output options for chronic risks: betabinomial/normal (BBN) 

See Figure 30 (default options) and 3.5.1  and 3.5.2 . 
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Figure 30: Option block Output if chronic risk model betabinomial/normal (BBN) is chosen 

The last 4 options are only relevant when a covariable is modelled (see Figure 24). 

3.5.4 Output options for chronic risks: discrete/semi-parametric (ISUF) 

See Figure 31 (default options) and 3.5.1 . 
 

 

Figure 31: Option block Output if chronic risk model discrete/semi-parametric (ISUF) is chosen 

3.6 Running an MCRA job 

Click the ‘MCRA-submit-job’-button in the top section to run a MCRA analysis. Check the radio 
button if you wish to be notified when the analysis is completed. After submitting the form, enter the 
MCRA central menu (see Figure 32).  

3.7 Checking the processing time 

After a submit, all model specifications are passed to the server and the analysis is initiated. First, all 
data are exported to system files located on the user directory. Export of data takes is only done when 
data are changed, that is after selection of new tables or subset selection.  
Click the ‘show progress’-button to view the progress of the analysis (see Figure 32). Here, also 
information is given about the estimated CPU time. Performing a risk assessment may be time 
consuming when data files are large and/or the number of simulations is high. Click the ‘update 
window’-button to refresh the screen. Click the ‘kill job’-button to end a job (with a fatal error status, 
not shown). 
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Figure 32: Central menu, show progress 

 
After completion (click the ‘update window’ button) a new button ‘view output’ appears (see Figure 
7). Click the ‘view output’-button to get the screen in Figure 34 (see 4.1 ). 
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4  Example output 
Click the ‘view output’-button in Figure 7. Depending on the type of analysis, several output windows 
may appear (for example Figure 34 and Figure 39).  
In 4.1 , the output is shown of an acute risk analysis. In 4.2 an example is given of a chronic risk 
analysis. Other examples can be found in Ch. 10 . For downloading results for off-line viewing, see 
2.5 . 

4.1 Acute risk assessment: basic analysis 

This example shows output of an acute risk assessment for organo phosphate pesticide Chlorpyrifos 
which has neurotoxic effects. The Dutch Validation database from RIKILT (NL) is used. Select ‘All 
tables’, survey ‘DNFCS-3’ and compound ‘CHLORPYRIFOS’. Then, after selection of (see 6.2 ): 
Table_grapes, Grapefruit, Lemon, Mandarin, Orange, Apple, Peach, Peppers and Potato, the input 
form is reached (see Figure 33).  
 

 

Figure 33: MCRA input form for an acute risk analysis 

 
Table 3 lists the main options: 

Input form   

risk type acute 
uncertainty analysis no 
concentration model empirical 
number of Monte Carlo simulations  100000 
unit variability model no unit variability 
random seed 0 
intake model only empirical estimates 
concentration data system defaults 
Additional system defaults 
output: 
percentage for summary/graph 

 
95 

Table 3: Input form options: basic acute risk analysis 
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Click the ‘submit MCRA job’ in Figure 33 to start the analysis. When the analysis is finished, view 
your results using the ‘view output’-button in the central menu. This gives Figure 34: 
 
 

 

Figure 34: View output window for an acute risk analysis 

 
Choose ‘Additional output’ and click the ‘Submit’-button in Figure 34. In Table 4 you find the main 
characteristics concerning this analysis taken from the ‘Additional output’ file. 
 

‘Additional output’ file  

Survey name DNFCS-3 
Compound code  CHLORPYRIFOS 
Number of foods 9 
Acute reference dose (ARfD) 100 
Acceptable daily intake (ADI) 10 
Number of detects 655 
Number of non-detects 3267 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
Sex female, male 

Total no of consumption days 12132 

Table 4: Information taken from the ‘Additional output’ file 

 
Choose ‘Summary of databases of food consumption and compound concentrations’ and click the 
‘Submit’-button in Figure 34: a summary is given from the data stored in your databases (see Table 
5). The upper part of the table displays all information concerning consumption data and the lower 
part all information concerning compound concentrations. For each food you will find the code and 
label. 
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In the upper part the average consumption over all consumers and all days (MeanConsum) together 
with the average consumption on consumption days only (MeanConsDays) is given. In addition, the 
number of consumption days (NconsDays) and total number of days (Ndays) are displayed, also 
expressed as percentage consumption days (%ConsDays). So, there are 12500 days (2 days for 6250 
consumers). Grapefruit is consumed on 1785 days (14.3%). The average consumption of Grapefruit 
on these days is 4.06 x 12500/1785 = 28.5 g.  
 
  

-------------------------------------------------------------------------------- 
Summary of databases of consumptions and compound concentrations with respect to: 
 
Compound:  CHLORPYRIPHOS 
 
-------------------------------------------------------------------------------- 
 
Code         : food code 
Food         : food label 
-------------------------------------------------------------------------------- 
MeanConsum   : average consumption, all consumers, all days 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%ConsDays    : percentage consumption days 
-------------------------------------------------------------------------------- 
MeanConcen   : mean concentration of all samples 
MeanPosConc  : mean concentration of samples with positive concentrations 
NSamplPos    : number of samples with positive concentrations 
NSamples     : total number of samples with concentration measurements 
%SamplPos    : percentage samples with positive concentrations 
-------------------------------------------------------------------------------- 
 
 
FOOD CONSUMPTION DATA 
 
        Code         Food MeanConsum MeanConsDays NConsDays    NDays   %ConsDays 
                                 (g)          (g)                            (%) 
      FB1235 TABLE-GRAPES      13.23         34.2      4836    12500        38.7 
      FC0203 GRAPEFRUIT,        4.06         28.5      1785    12500        14.3 
      FC0204 LEMON, SEE A       1.54          4.2      4589    12500        36.7 
      FC0206 MANDARIN, SE       8.83         41.2      2677    12500        21.4 
      FC0208 ORANGE, SWEE      57.06         99.6      7163    12500        57.3 
      FP0226 APPLE             61.50         99.4      7737    12500        61.9 
      FS0247 PEACH              2.08          7.3      3538    12500        28.3 
      VO0445 PEPPERS, SWE       3.33         16.5      2533    12500        20.3 
      VR0589 POTATO           138.52        173.1     10005    12500        80.0 
 
COMPOUND CONCENTRATION DATA 
 
        Code Food         MeanConcen  MeanPosConc NSamplPos NSamples   %SamplPos 
                             (mg/kg)      (mg/kg)                            (%) 
      FB1235  TABLE-GRAPES    0.0159       0.1178       136     1007        13.5 
      FC0203  GRAPEFRUIT,     0.0693       0.1591        47      108        43.5 
      FC0204  LEMON, SEE A    0.0128       0.0575        16       72        22.2 
      FC0206  MANDARIN, SE    0.1073       0.1467       166      227        73.1 
      FC0208  ORANGE, SWEE    0.0522       0.1078       222      459        48.4 
      FP0226  APPLE           0.0030       0.0554        37      680         5.4 
      FS0247  PEACH           0.0076       0.0562        21      156        13.5 
      VO0445  PEPPERS, SWE    0.0011       0.1156         9      942         1.0 
      VR0589  POTATO          0.0002       0.0600         1      271         0.4 
                                                       ----     ----             
                              number of detects =       655     3922 = total  
                                                               number of samples 
 
                    the number of non-detects =        3267 ( 3922 - 655  ) 
  

Table 5: Summary of the database, consumptions and compounds 
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The lower part of Table 5 displays information concerning compound concentrations on each food. 
The mean concentrations of all samples (MeanConcen) and of positives only (MeanPosConc) are 
calculated. The number of positives (NSamplPos) and the total number of concentration 
measurements (NSamples) are given as well as the percentage of positive concentrations 
(%SamplPos). In this example for Grapefruit 47 positive concentrations are found out of 108 samples 
(43.5%). The mean concentration of the positive samples is 0.0693 x 108/47 = 0.1591 mg/kg.  
 
Choose ‘Summary of simulated intakes’. In Figure 34 you find essentially the same kind of 
information but all statistics are calculated using simulated data (see Table 6). The simulation is 
performed by sampling N (in Table 6 100,000) times a consumption pattern from the food 
consumption database (with replacement). For each consumed food a concentration value is sampled 
from the distribution of concentrations of that food. Multiplying consumption and concentration gives 
the intake per food. Summing up the intakes over foods divided by the body weight gives the total 
intake of the compound (here CHLORPYRIFOS) expressed in microgram per kg body weight per 
day. For both consumption and concentration find additional statistics DeltaC and DeltaR. These 
statistics displays the difference expressed as percentage between the mean (MeanConsum and 
MeanConcen, respectively) of the simulated data and the mean of the data as found in your database, 
respectively. The better the simulation mimics the database, the lower the percentages indicating the 
deviation between simulated and input data. 
 
 

----------------------------------------------------------------------------------- 
Summary of simulations of consumptions and compound concentrations with respect to: 
 
Compound:  CHLORPYRIPHOS 
 
----------------------------------------------------------------------------------- 
Code         : food code 
Food         : food label 
----------------------------------------------------------------------------------- 
MeanConsum   : average consumption, all consumers, all days 
DeltaC       : difference (%) compared to average consumption 
               in database 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%ConsDays    : percentage consumption days 
---------------------------------------------------------------------------------- 
MeanConcen   : mean concentration in simulations with positive amount consumed 
DeltaR       : difference (%) compared to average concentration 
               in database 
NSamplPos    : number of positive concentrations in simulations with positive 
               amount consumed 
NSamples     : total number of concentration measurements 
               (detects and non-detects) in simulations with positive 
               amount consumed. 
%SamplPos    : percentage positive concentrations 
ProcFact     : mean processing factor 
----------------------------------------------------------------------------------- 
 
Food consumption data 
 
   Code  Food        MeanConsum  DeltaC  MeanConsDays   NConsDays   NDays   %ConsDays 
                            (g)     (%)           (g)                             (%) 
 FB1235  TABLE-GRAPES     13.14    -0.7         33.93       38713  100000        38.7 
 FC0203  GRAPEFRUIT,       4.02    -1.2         28.54       14075  100000        14.1 
 FC0204  LEMON, SEE A      1.48    -4.0          4.04       36635  100000        36.6 
 FC0206  MANDARIN, SE      8.99     1.9         41.86       21484  100000        21.5 
 FC0208  ORANGE, SWEE     57.08     0.0         99.53       57345  100000        57.3 
 FP0226  APPLE            61.56     0.1         99.53       61853  100000        61.9 
 FS0247  PEACH             2.12     2.3          7.54       28146  100000        28.1 
 VO0445  PEPPERS, SWE      3.39     1.7         16.62       20392  100000        20.4 
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 VR0589  POTATO           38.03    -0.4        172.74       79907  100000        79.9 
 
Compound concentration data 
 
  Code  Food           MeanConc  DeltaR     NSamplPos    NSamples %SamplPos  ProcFact 
                           mg/kg     (%)                                 (%)           
 FB1235  TABLE-GRAPES     0.0154   -3.3          5229       38713      13.5      1.00 
 FC0203  GRAPEFRUIT,      0.0684   -1.3          6058       14075      43.0      1.00 
 FC0204  LEMON, SEE A     0.0127   -0.3          8147       36635      22.2      1.00 
 FC0206  MANDARIN, SE     0.1069   -0.3         15705       21484      73.1      1.00 
 FC0208  ORANGE, SWEE     0.0520   -0.4         27701       57345      48.3      1.00 
 FP0226  APPLE            0.0030   -1.8          3376       61853       5.5      1.00 
 FS0247  PEACH            0.0076    0.1          3828       28146      13.6      1.00 
 VO0445  PEPPERS, SWE     0.0010   -6.5           186       20392       0.9      1.00 
 VR0589  POTATO           0.0002    7.8           318       79907       0.4      1.00 

 

Table 6: Summary of simulated intakes 

 
In the left part of Figure 34, a number of icons are displayed. Click the icon ‘Total’ to display a 
histogram of the simulated total intakes (see the left plot in Figure 35). Click the icon ‘Upper’ to 
display the upper tail of the intake distribution (see the right plot of Figure 35). The specified 
percentage for the upper tail is 5%, corresponding with an intake of 0.44 microgram/kg bw/day. The 
acute reference dose (ARfD) for Chlorpyrifos is equal to 100 microgram/kg bw/day.  
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Figure 35: Total intake distribution and upper tail (5%) 

 
The part of the intake distribution exceeding the ARfD is displayed in red (not happening in Figure 
35). 
 
Choose ‘Summary of total distribution of intakes’ and see Table 7. Here the contributions are 
expressed as percentages (RelContr) of each food to the total intake distribution. A pie chart (see  
Figure 36) of the foods with the 9 largest contributions is displayed by clicking the icon ‘Pie’ in 
Figure 34. Also the mean, median and the percentiles of the 2.5% and 97.5% (p2.5% and p97.5%) 
point of the total intake distribution per food are given in Table 7. The last column (%Zeros) shows 
the number of zero intakes per food. If %Zeros is greater than 97.5% the p97.5% is lower than the 
mean! 
Let’s take Orange as an example. It contributes 61.8% to the total intake distribution and its average 
concentration is 0.052 microgram/kg bw/day. The p2.5%, median, p97.5% and %Zeros of the total 
intake distribution of Orange are: 0.000, 0.000, 0.542 microgram/kg bw/day and 72.3% respectively.  
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---------------------------------------------------------------------------------------------- 
Summary of the characteristics of the total intake distribution 
 
Compound:  CHLORPYRIPHOS 
 
---------------------------------------------------------------------------------------------- 
Contribution (%) per food to the total distribution, 
RelContr: relative contribution (%) per food 
p2.5%   : 2.5% perc. of intake distr. per food(microgram/kg bw/day) 
Mean    : mean of intake distr.per food(microgram/kg bw/day) 
Median  : median of intake distr.per food(microgram/kg bw/day) 
p97.5%  : 97.5% perc. of intake distr. per food(microgram/kg bw/day) 
%Zeros  : percentage zeros per food 
---------------------------------------------------------------------------------------------- 
         Food  RelContr       Mean         Median         p2.5%         p97.5%     %Zeros 
                      %   (microgr/     (microgr/     (microgr/      (microgr/          % 
                         kg bw/day)    kg bw/day)    kg bw/day)     kg bw/day)           
 TABLE-GRAPES       4.4       0.004         0.000         0.000          0.014       94.8 
 GRAPEFRUIT,        5.3       0.004         0.000         0.000          0.008       93.9 
 LEMON, SEE A       0.4       0.000         0.000         0.000          0.002       91.9 
 MANDARIN, SE      22.1       0.019         0.000         0.000          0.215       84.3 
 ORANGE, SWEE      61.8       0.052         0.000         0.000          0.542       72.3 
 APPLE              4.8       0.004         0.000         0.000          0.004       96.6 
 PEACH              0.4       0.000         0.000         0.000          0.001       96.2 
 PEPPERS, SWE       0.1       0.000         0.000         0.000          0.000       99.8 
 POTATO             0.7       0.001         0.000         0.000          0.000       99.7 
 

Table 7: Contribution to the total intake distribution  

 
Choose ‘Summary of upper tail of intakes’ and see Table 8. Find the contributions expressed as 
percentages (RelContr) of each food to the upper tail according to the specified percentage (here 5%). 
A pie chart (right plot of Figure 36) of the foods with the 9 largest contributions to the upper 5% of 
the intake distribution is displayed by clicking the icon ‘Pie’ in Figure 34. Also the mean, median and 
the percentiles of the 2.5% and 97.5% (p2.5% and p97.5%) point of the upper 1% of the intake 
distribution per food are given in Table 8. The table shows the same statistics for that part of the 
intakes per food that correspond with the upper 5% of the intake distribution. See also Figure 37, 
where the mean intake for each food in the upper tail is graphically displayed. The last column 
(%Zeros) shows the number of zero intakes per food.  
Let’s take Orange as an example. It contributes 68.5% to the upper 5% of the intakes and its average 
concentration is 0.670 microgram/kg bw/day. The p2.5%, median, p97.5% and %Zeros of the upper 
5% of the intakes are: 0.000, 0.542, 2.624 microgram/kg bw/day and 22.3% respectively.  
 
 
---------------------------------------------------------------------------------------------- 
Summary of characteristics of the upper intake distribution 
 
Compound:  CHLORPYRIPHOS 
 
---------------------------------------------------------------------------------------------- 
Characteristics per food of the upper 5.0% of the distribution, 
corresponding with a total intake higher than 0.4438 (microgram/kg bw/day) 
RelContr: relative contribution (%) per food 
p2.5%   : 2.5% perc. of intake distr. per food(microgram/kg bw/day) 
Mean    : mean of intake distr.per food(microgram/kg bw/day) 
Median  : median of intake distr.per food(microgram/kg bw/day) 
p97.5%  : 97.5% perc. of intake distr. per food(microgram/kg bw/day) 
%Zeros  : percentage zeros per food 
---------------------------------------------------------------------------------------------- 
         Food  RelContr       Mean         Median         p2.5%         p97.5%     %Zeros 
                      %   (microgr/     (microgr/     (microgr/      (microgr/          % 
                         kg bw/day)    kg bw/day)    kg bw/day)     kg bw/day)           
 TABLE-GRAPES       3.8       0.037         0.000         0.000          0.537       90.0 
 GRAPEFRUIT,        5.8       0.057         0.000         0.000          0.723       86.7 
 LEMON, SEE A       0.1       0.001         0.000         0.000          0.004       90.0 
 MANDARIN, SE      16.9       0.165         0.000         0.000          1.174       65.8 
 ORANGE, SWEE      68.5       0.670         0.542         0.000          2.624       22.3 
 APPLE              4.5       0.044         0.000         0.000          0.553       92.5 
 PEACH              0.1       0.001         0.000         0.000          0.001       95.6 
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 PEPPERS, SWE       0.0       0.000         0.000         0.000          0.000       99.7 
 POTATO             0.3       0.003         0.000         0.000          0.000       99.3 
 

Table 8: Contribution to the upper tail (1%) of the intake distribution 

 
In Figure 36, find a graphical display of the figures in Table 7 and Table 8.  
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Figure 36: Relative contribution of foods to the total intake distribution and upper tail (5%) 

 
Scroll the mouse over the pie chart to find the contribution of each food. Here, the relative 
contribution for Orange is displayed.  
 
Choose ‘Percentiles of daily intakes’ and see Table 9. The percentiles of the acute intake distribution 
for the percentages specified in the first line of the Output options in the MCRA input form (see 
Figure 33) are shown. In this example, 0.01% of the population has an intake higher than 7.35849 
microgram/kg bw/day. Also the mean and maximum are given.  
 
--------------------------------------------------------------------------- 
Random sampling is based on seed :        0 
Number of simulations (consumers):   100000  out of   6250 
CHLORPYRIPHOS (microgr/kg bw/day)  consumption:    49412 out of 100000 
 
Compound:  CHLORPYRIPHOS 
 
--------------------------------------------------------------------------- 
     Percentiles, maximum and average intake 
--------------------------------------------------------------------------- 
 
   Percentage     Percentiles of CHLORPYRIPHOS  (microgr/kg bw/day) 
 
        50.00        0.00000 
        90.00        0.23915 
        95.00        0.44365 
        99.00        1.21429 
        99.90        3.41250 
        99.99        7.35849 
         mean        0.08382 
      maximum       10.77044 

Table 9: Percentiles for the acute intake distribution 
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In the left plot of Figure 37 find a graphical display of the figures in Table 9. The right plot of Figure 
37 shows the mean intake per food in the upper tail (the third column of Table 8). 
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Figure 37: Percentiles and mean intake per food of the acute intake distribution 

 
Choose ‘Consumptions: characteristics of nine consumers’, ‘Concentrations: characteristics of nine 
consumers’ or ‘Intakes: characteristics of nine consumers’. Summaries are displayed in Table 10, 
Table 11 and Table 12. A drill down of nine consumers according to a specified percentage (here 
97.5%) is displayed: the sampled consumption, compound concentration and intake (as well as the 
consumer number, weight, age and Total for the intake in Table 12). So for consumer number 323461 
(52 kg, 61 years), the total intake is 0.715 microgram/kg bw/day. This consumer consumed 2 foods 
(Potatoes 100.0 gr, Orange 120.0 gr). Only on Orange a compound was found (0.310 mg/kg), so the 
total intake for this consumer is 120.0 x 0.310/52 = 0.715 microgram/kg bw/day. 
 
--------------------------------------------------------------------------------------------- 
Drilldown consumption 
 
Compound:  CHLORPYRIPHOS 
 
--------------------------------------------------------------------------------------------- 
 Drill down: consumption (g/day) per food of the 9 consumers 
 around the specified percentage (97.50%) for the intake distribution 
                 -4       -3       -2       -1        0       +1       +2       +3       +4 
Food 
 TABLE-GRAPES     .      0.5        .      8.4      1.0        .        .        .        . 
 GRAPEFRUIT,      .        .     75.2      0.8        .        .        .        .        . 
 LEMON, SEE A     .        .        .      0.6      3.0        .        .        .        . 
 MANDARIN, SE 110.0     83.0        .     29.0      1.5        .     43.6    290.0     55.0 
 ORANGE, SWEE   3.3     60.3    120.3    206.8    321.1    120.0    260.0        .        . 
 APPLE        303.3      0.4    434.0      1.7    125.4        .        .        .        . 
 PEACH          3.3      0.2        .      0.8        .        .        .        .      4.0 
 PEPPERS, SWE     .        .        .      2.8        .        .        .        .        . 
 POTATO       207.1      7.7     90.0      2.6    251.5    100.0    210.0     20.0        . 
 

Table 10: Drill down of consumers for the acute intake distribution: consumptions 

 
 
---------------------------------------------------------------------------------------------- 
Drilldown concentrations 
 
Compound:  CHLORPYRIPHOS 
 
---------------------------------------------------------------------------------------------- 
 Drill down: compound concentrations (mg/kg) per food of the 9 consumers 
 around the specified percentage (97.50%) for the intake distribution 
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                 -4       -3       -2       -1        0       +1       +2       +3       +4 
Food 
 TABLE-GRAPES     .    0.040        .    0.000    0.000        .        .        .        . 
 GRAPEFRUIT,      .        .    0.300    0.000        .        .        .        .        . 
 LEMON, SEE A     .        .    0.000    0.000    0.000        .        .        .        . 
 MANDARIN, SE 0.320    0.130        .    0.100    0.090        .    0.200    0.180    0.260 
 ORANGE, SWEE 0.200    0.070    0.210    0.100    0.160    0.310    0.170        .        . 
 APPLE        0.040    0.000    0.030    0.000    0.000        .        .        .        . 
 PEACH        0.000    0.030        .    0.040        .        .        .        .    0.000 
 PEPPERS, SWE     .        .        .    0.000        .        .        .        .        . 
 POTATO       0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000        . 
 

Table 11: Drill down of consumers for the acute intake distribution:concentrations  

 
 
---------------------------------------------------------------------------------------------- 
Drilldown intake 
 
Compound:  CHLORPYRIPHOS 
 
 Drill down: the 9 consumers around the specified percentage (97.50%) for the intake 
 distribution (microgr/kg bw/day) 
                 -4       -3       -2       -1        0       +1       +2       +3       +4 
---------------------------------------------------------------------------------------------- 
  Individual    95243   361383   705152   263774   375142   323461   709242   328622   322893 
 Body Weight       67       21       85       33       72       52       74       73       20 
         age       21        7       79        7       23       61       41       38        6 
       Total    0.716    0.716    0.716    0.716    0.715    0.715    0.715    0.715    0.715 
 Food              
 TABLE-GRAPES       .    0.001        .    0.000    0.000        .        .        .        . 
 GRAPEFRUIT,        .        .    0.265    0.000        .        .        .        .        . 
 LEMON, SEE A       .        .    0.000    0.000    0.000        .        .        .        . 
 MANDARIN, SE   0.525    0.514        .    0.088    0.002        .    0.118    0.715    0.715 
 ORANGE, SWEE   0.010    0.201    0.297    0.627    0.714    0.715    0.597        .        . 
 APPLE          0.181    0.000    0.153    0.000    0.000        .        .        .        . 
 PEACH          0.000    0.000        .    0.001        .        .        .        .    0.000 
 PEPPERS, SWE       .        .        .    0.000        .        .        .        .        . 
 POTATO         0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000        . 

 

Table 12: Drill down of consumers for the acute intake distribution: intake 

4.2 Chronic risk assessment: betabinomial/normal (BBN) 

In this example, output is shown for a chronic risk assessment for aspartaam. This database is not 
centrally supplied. This example is also used in 10.8 10.9 and 10.10 . 
Find in Figure 38 the MCRA input form: 
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Figure 38: MCRA input form for chronic risk analysis betabinomial/normal 

 
Table 13 lists the main options: 
 

Input form   

risk type chronic 
uncertainty analysis no 
concentration model empirical 
number of MC simulations 100000 
intake model betabinomial/normal without covariable 

and cofactor 
concentration data system defaults 
Output Percentages at percentiles:  

40 500 2000 40000 

Table 13: Input form options: betabinomial/normal without covariable and cofactor 

Click the ‘submit MCRA job’ to start the analysis. View your results using the ‘view output’-button in 
the central menu to get the screen of Figure 39: 
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Figure 39: View output window for chronic risk analysis betabinomial/normal 

Click the icon ‘Intake’ to display the empirical distribution of the non-zero daily intake values, 
calculated as daily intake values divided by body weight (see left plot Figure 40). Note the spike near 
0 (zero intakes are already excluded here). The distribution is skewed. A logarithmic transformation is 
chosen to approximate normality.  
Click the icon ‘Transf Intake’ to display the logarithmic transformed intake distribution (see right plot 
Figure 40). There is a better symmetry, but clearly the non-normal character of the data is not 
removed by a simple logarithmic transformation. Compare this figure also with the power 
transformed distribution in the right plot of Figure 78.  
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Figure 40: Untransformed and ln transformed intake distribution 

 
The Dutch National Food Consumption Survey is used, which has 6250 consumers x 2 days is 12500 
days in total. 
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Choose ‘Summary of databases of food consumption and compound concentrations’ to get Table 14. 
Aspartaam measurements were made in 113 samples. All of them had a positive value.  
 
 

--------------------------------------------------------------------------------- 
Summary of databases of consumptions and compound concentrations with respect to: 
 
Compound:  aspartaam 
 
--------------------------------------------------------------------------------- 
Compound:  aspartaam 
Code         : food code 
Food         : food label 
--------------------------------------------------------------------------------- 
MeanConsum   : average consumption, all consumers, all days 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%ConsDays    : percentage consumption days 
--------------------------------------------------------------------------------- 
MeanConcen   : mean concentration of all samples 
MeanPosConc  : mean concentration of samples with positive concentrations 
NSamplPos    : number of samples with positive concentrations 
NSamples     : total number of samples with concentration measurements 
%SamplPos    : percentage samples with positive concentrations 
--------------------------------------------------------------------------------- 
Food consumption data 
        Code Food         MeanConsum MeanConsDays NConsDays    NDays   %ConsDays 
                                 (g)          (g)                            (%) 
        1002 IJs consumpt       0.02        110.0         2    12500         0.0 
        1135 Siroop limon       0.09         19.3        61    12500         0.5 
        1463 Dubbeldrank        4.13        270.2       191    12500         1.5 
        1521 Limonadevruc       4.07        371.7       137    12500         1.1 
        1522 Frisdranklig      10.79        385.4       350    12500         2.8 
        1523 Frisdranklig      22.56        470.7       599    12500         4.8 
        1591 Zoetstoftabl       0.20          7.1       357    12500         2.9 
        1596 Zoetstofpoed       0.10          5.2       227    12500         1.8 
        1813 Yakult drank       0.23         66.5        43    12500         0.3 
        1833 Yoghurt mage       0.35        196.3        22    12500         0.2 
        1834 Yoghurtdrank       0.34        305.6        14    12500         0.1 
         305 Kwark magere       1.18        109.5       135    12500         1.1 
         400 Frisdrank         38.96        362.9      1342    12500        10.7 
         417 Limonade vru      19.65        309.4       794    12500         6.4 
         447 Kauwgom z su       0.06          3.1       253    12500         2.0 
         463 Siroop vruch       4.99         56.4      1107    12500         8.9 
         657 Yoghurtdrank      24.46        294.6      1038    12500         8.3 
 
Compound concentration data 
        Code Food         MeanConcen  MeanPosConc NSamplPos NSamples   %SamplPos 
                             (mg/kg)      (mg/kg)                            (%) 
        1002 IJs consumpt   238.4000     238.4000         5        5       100.0 
        1135 Siroop limon    42.0000      42.0000         2        2       100.0 
        1463 Dubbeldrank     68.7500      68.7500         4        4       100.0 
        1521 Limonadevruc   139.9286     139.9286        14       14       100.0 
        1522 Frisdranklig   265.5000     265.5000         4        4       100.0 
        1523 Frisdranklig   214.2222     214.2222        18       18       100.0 
        1591 Zoetstoftabl 12033.3333   12033.3333         6        6       100.0 
        1596 Zoetstofpoed 30333.3333   30333.3333         6        6       100.0 
        1813 Yakult drank   164.0000     164.0000         2        2       100.0 
        1833 Yoghurt mage    91.7500      91.7500         8        8       100.0 
        1834 Yoghurtdrank    92.0000      92.0000         6        6       100.0 
         305 Kwark magere    96.0000      96.0000         2        2       100.0 
         400 Frisdrank       51.8000      51.8000         5        5       100.0 
         417 Limonade vru    65.3571      65.3571        14       14       100.0 
         447 Kauwgom z su   704.2500     704.2500         4        4       100.0 
         463 Siroop vruch    68.3333      68.3333         6        6       100.0 
         657 Yoghurtdrank    69.1429      69.1429         7        7       100.0 
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                                                       ----     ---- 
                                  number of detects =   113      113 = total   
                                                                 number of samples 
 
                              number of non-detects =     0   (  113  -   113 ) 
 

Table 14: Summary of the database, consumptions and compounds 

 
On average, everyone consumes e.g. 39 g of Frisdrank per day. This is an average consumption of 
362.9 g on 1342 consumption days and 0 g on 12500 - 1342 = 11158 non-consumption days. The 
average concentration of the 5 positive aspartaam samples of Frisdrank is 51.8 mg/kg. 
Choose ‘Summary of intake frequency (before modelling)’ and see Table 15.  
 

--------------------------------------------------------------------------- 
Summary of intake frequencies (before modeling) with respect to: 
 
Compound:  aspartaam 
 
--------------------------------------------------------------------------- 
Number and percentage of consumers with positive intakes 
 
                nPosDays    %PosDays  nConsumers  %Consumers 
                       0         0.0        3034        48.5 
                       1        50.0        1296        20.7 
                       2       100.0        1920        30.7 
 
                                 All    Positive   %Positive 
                             intakes     intakes     intakes 
  Number of observations       12500        5136        41.1 
     Number of consumers        6250        3216        51.5 
 
For a graphical presentation of the distribution of the positive intakes: 
click the first icon from the top 
 
For a graphical presentation of the distribution of the transformed 
positive intakes: 
click the second icon from the top 
 

Table 15: Summary of intake frequency 

Choose ‘Summary of intake amounts (before modelling)’ and see Table 16. 
 
--------------------------------------------------------------------------- 
Summary of daily intakes (before modeling) with respect to: 
 
Compound:  aspartaam 
 
--------------------------------------------------------------------------- 
Summary of all intake data (zeros included) 
 
     Number of observations =      12500 
                       Mean =    344.204 
                     Median =      0.000 
                    Minimum =      0.000 
                    Maximum =  29446.326 
             Lower quartile =      0.000 
             Upper quartile =    315.822 
 
Summary of positive intake data (without zeros) 
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     Number of observations =       5136 
                       Mean =    837.723 
                     Median =    454.944 
                    Minimum =      1.120 
                    Maximum =  29446.326 
             Lower quartile =    183.425 
             Upper quartile =   1055.158 
 
For a graphical presentation of the distribution of the positive intakes: 
click the first icon from the top 
 
For a graphical presentation of the distribution of the transformed 
positive intakes: 
click the second icon from the top 
 

Table 16: Summary statistics of the calculated daily intake amounts 

 
In Table 17 you find the main characteristics concerning this analysis. The intake frequency function 
is estimated with a betabinomial model. The intake probability is 0.411 and the overdispersion 
parameter is 0.572. The model for the logarithmically transformed intake amounts is based on ML. 
The estimate of the ‘between person’ variance is 1.25 and of the ‘within person’ variance 0.54. 
 
‘Additional output’ file  
Number of foods 1 
Acute reference dose (ARfD) * 
Acceptable daily intake (ADI) 5 
Number of detects 113 
Number of non-detects 0 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
Sex female, male 

Total no of consumption days 5136 
Replace all non-detects  
Multiplication factor for LOR 0.5 

 
 
Intake Frequency: BetaBinomial model (no cofactor and no covariable) 
========================================================================== 
 
Estimates of parameters (autoscaled covariable) 
----------------------------------------------- 
 
                     Parameter       estimate      s.e.      t(*) 
                      Constant      -0.360296  0.022751    -15.84 
 
 
            Overdispersion phi         0.5717   0.01053     54.30 
               _2Loglikelihood       12995.52 
            Degrees of freedom           6248 
 
 
 
Transformed Intake Amounts: ML model (no cofactor and no covariable) 
========================================================================== 
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Estimates of parameters (autoscaled covariable) 
----------------------------------------------- 
                     Parameter       estimate      s.e.      t(*) 
                      Constant       5.929186  0.022446    264.15 
 
       Between person variance         1.2526                     
        Within person variance         0.5390                     
               _2LogLikelihood       16281.80 
            Degrees of freedom           5134 
 
 
***** Usual intake percentiles/percentages are calculated from: 
--------------------------------------------------------------- 
            sex       age   Intake probability   Transformed intake amount 
              -         -               0.4109                      5.9292 
 

Table 17: Information in ‘Additional output’ file 

 
Click the icon ‘Plots’ in Figure 39 to display the screen of Figure 41. Here 3 more plots can be 
chosen: the density of the Beta distribution of the Frequency model, the cumulative distribution of the 
Amount model and the cumulative usual intake, see Figure 42. 
 

 

Figure 41: Display of more plots 
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Figure 42: Density of the intake frequency distribution, cumulative distribution of the amount 

and usual intake 

 
Find in Figure 43 a Normal QQ-plot to see the result of the transformation to normality and a plot 
which reveals any correlation between the frequency of consumption and the amount consumed. The 
left Box-Cox diagram shows the data of consumers having an intake on 1 out of 2 days, the second 
diagram shows consumers having intakes on 2 out of 2 days. 
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Figure 43: Normal QQ-plot and Box-Cox plots for intake frequency versus intake amounts 

 
Choose ‘Percentiles of usual intakes’ to get percentiles of the usual intake distribution for the entire 
population are shown (see Table 18). 
 
--------------------------------------------------------------------------- 
Long term exposure (usual intake) 
Based on the BetaBinomial frequency distribution and transformed (to 
normality) distributed amounts 
 
Compound:  aspartaam 
 
--------------------------------------------------------------------------- 
 
 
Usual intake percentiles of total population for percentiles (p_): 
 
 sex       age       p50       p90       p95       p99     p99.9    p99.99 
   -         -    112.30    958.86   1579.97   3795.26  10007.78  24961.30 
 
See also technical information for more details 
  

Table 18: Percentiles of the usual intake distribution 

Choose ‘Percentages of consumers lower than specified limits of usual intake’ to get Table 19. 
 
  

--------------------------------------------------------------------------- 
Long term exposure (usual intake) 
Based on the BetaBinomial frequency distribution and transformed (to 
normality) distributed amounts 
 
Compound:  aspartaam 
 
--------------------------------------------------------------------------- 
 
 
Usual intake percentages of total population lower than intake limit (q_): 
 
            sex       age     q40.0     q500.0     q2000.0     q40000.0    
              -         -     34.68      79.83      496.60        99.99    
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See also technical information for more details 

Table 19: Percentages of Consumers lower than specified Limits of Usual Intake 

4.3 Help on Charts 

To view ComponentOne Charts, an ActiveX-aware browser is needed. Users can manipulate the chart 
they view by right-clicking the chart, which brings up the Property Editor (see Figure 44). Some more 
information is available under the link InfoCharts on the View Output screen. ComponentOne Chart 
graphs can be printed, or copied to the clipboard, for later inclusion in documents. Occasionally, after 
pasting ComponentOne Charts into Word the chart is not displayed (at all) and instead, an icon 
appears. To our experience, pasting charts from the clipboard encounters no difficulties when the 
Word document is opened first, then press the 'Copy to Clipboard'-button and paste the contents of the 
clipboard into the Word document. 
Tabular output is available in separate ASCII output text files in the output directory. Alternatively, 
text can be copied and pasted from the ‘view output’ window into another document. In order to 
obtain a proper lay-out the function Paste Special from the Edit menu should be used, selecting 
“Unformatted text”.  
ComponentOne Chart is comprised of a 2D Control (ActiveX) for use in Windows applications. The 
control is stored in a so-called Cabinet-file, Olectra.CAB. A licence pack file Olectra.LPK is needed 
to register the control. To be able to view a ComponentOne Chart, the cabinet file and license pack 
have to be downloaded. Depending on the security level of your Internet Explorer, you may get the 
chart. You can change the security settings by doing the following: 

• In Internet Explorer select {Tools | Internet Options} and choose the "Security" tab.  

• Then select the Web zone "Internet" or "Local Internet" depending on whether you view the 
MCRA charts on the internet or local disk. Click the "Custom Level" button, and use the 
following settings (you may not see all of these settings): 

1. Automatic prompting for ActiveX Controls: Enable  
2. Binary and script behaviors: Enable  
3. Download signed ActiveX controls: Prompt  
4. Download unsigned ActiveX controls: Prompt  
5. Initialize and script ActiveX controls not marked as safe: Disable  
6. Run ActiveX controls and plug-ins: Enable  
7. Script ActiveX controls marked safe for scripting: Enable  

 
To be sure those changes to the charts (after re-running the program) are displayed by the browser, 
you may need to do the following. Click: 

1. Tools. 
2. Internet Options. 
3. General. 
4. Settings. 
5. Check: every visit to the page. 
6. OK 
7. OK  

The setting for "Download unsigned ActiveX controls" is probably the most critical one. The first 
time you display an MCRA chart, you will get the Security Warning displayed here about installing 
OLECTRA.CAB. Click "Install" and you are done.  
 
On some computers another version of the "Chart" ActiveX component might be installed, giving 
spurious error messages and/or no graphs when viewing this website. You then have to delete the file 
"olch2x7.ocx" from the "WINDOWS\system32" directory, and restart the website. This will copy the 
correct version of "olch2x7.ocx" to the "WINDOWS\system32" directory. 
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In Internet Explorer 6, after selecting an icon to display a chart in the View Output Menu, you may 
see an "active contents" security warning in the Internet Explorer Information Bar on top of your 
screen. Click on the warning, select Allow Blocked Contents and choose YES in the Security 
Warning displayed on the right. 

4.3.1 To display the Property Editor 

Click the right mouse button over any part of the chart and select properties of the pop-up menu. 
Select the tab that corresponds to the element of the chart that you want to edit. 
Click the ‘OK’ or ‘Cancel’-button to close the Property Editor (see Figure 44). 
 

 

Figure 44: Property editor 

 

Interacting with Chart 
You can interact with the chart as it is running to examine data more closely or visually isolate a part 
of the chart. The interactions described here affect the chart displayed inside the ChartArea; other 
chart elements like the header are not affected. ComponentOne Chart provides users with 2 different 
mechanisms for zooming the chart: Graphics zoom and Axis zoom. Performing a Graphics zoom 
enlarges the selected area of a chart, while not necessarily showing the axes. Performing an Axis 
zoom changes the minimum and maximum data values to those selected, and redraws only that data 
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with axes. Scaling, moving, or graphics zooming the chart sets the PlotArea margin properties, so the 
chart will not automatically control margins anymore when other chart properties change. 
  

To Scale the Chart: 
1. Press CTRL, and hold down both mouse buttons (or middle button on 3-button mouse). 
2. Move the mouse down to increase chart size, or move the mouse up to decrease chart size. 
 

To Move the Chart: 
1. Press SHIFT, and hold down both mouse buttons (or the middle button on 3-button mouse).  
2. Move the mouse to change the positioning of the chart inside the ChartArea. 
 

To Graphics Zoom an Area of the Chart: 
1. Press CTRL, and hold down left mouse button. 
2. Drag mouse to select zoom area and release the mouse button. 
 

To Axis Zoom the Chart: 
1. Press SHIFT, and hold down left mouse button. 
2. Drag the mouse to select the zoom area and release the mouse button. 
 

To Rotate the Chart (Bar/pie charts displaying 3D effect only): 
1. Hold down both mouse buttons (or middle button on 3-button mouse). 
2. Move mouse up or down to change the 3D inclination. 
3. On bar charts, you can also move mouse left or right to change the 3D rotation angle. 
 

To Reset to Automatic Scale and Position: 
Press the “r” key to remove all scaling, moving, and zooming effects; chart regains control of 
PlotArea margins. 
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5  Model description 

5.1 Basic model 

Food consumption data may arise from different sources. Typically, national food consumption 
surveys or monitoring programs provide information on food intake in the general population. For 
example, from the Dutch Food Consumption Survey (1997) food consumption patterns (x1 ,...,xp), 
body weight (w) and age (a) are available for 6250 consumers on 2 consecutive days.  
 
When concentrations are not measured on consumed foods, a composition database is necessary to 
convert the amounts of food as consumed (e.g. pizza) to amounts of foods (x1 ,...,xp) which are used in 
the model. Van Dooren et al. (1995) provide such a conversion for the Dutch situation. 
 
Compound concentration data may be available from different sources. In some countries national 
monitoring databases exist, which are useful for the risk assessment of chemical compounds already 
in use. For example the Dutch KAP database (van Klaveren 1999) stores annually more than 200,000 
records of measurements originating from food monitoring programs for meat, fish, dairy products, 
vegetables and fruit.  
 
This chapter describes the stochastic (or Monte Carlo) models behind the MCRA program. These 
models assess acute (short-term) or chronic (long-term) risks due to the intake of chemical 
compounds from food by combining food consumption survey data and compound concentration data 
from e.g. monitoring programs.  
The model for acute risk, as opposed to the model for chronic risk, allows for effects of food 
processing between monitoring and ingestion, it can model unit variability either from available data 
or using default assumptions, and it uses information on Limit of Reporting (LOR) and percent crop 
treated to check whether non-detects present a source of uncertainty.  
The basic model for the intake of a special compound in an acute risk analysis is: 
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where yij is the intake by consumer i on day j (in microgram chemical compound per kg body weight), 
xijk is the consumption by consumer i on day j of food k (in g), cijk is the concentration of that chemical 
compound in food k eaten by consumer i on day j (in mg/kg, ‘ppm’), and wi is the body weight of 
consumer i (in kg). Finally, p is the number of foods accounted for in the model. Note that the 
definition of ‘food’ is flexible: it may represent a Raw Agricultural Commodity (RAC), e.g. ‘apple’, 
but it may also specify subdivisions, e.g. ‘apple, peeled’ or ‘apple, imported’. 
 
In the stochastic model for the intake in an acute risk the quantities xijk, wi and cijk are assumed to arise 
from probability distributions describing the variability for food consumption and weight, 
p(x1,...,xp,,w), and for compound concentrations in each food, pk(c). In principle, these probability 
distributions may be parametric (e.g. completely defined by the specification of some parameter 
values) or empirical (e.g. only implicitly defined by the availability of a representative sample). Given 
these probability distributions (or estimates thereof) MC-simulations can be used to generate an 
estimate of the probability distribution p(yij) to assess acute risks by intake of the compound (see 5.3 ). 
 
The basic model for the intake in a chronic risk analysis is: 
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where yij is the intake by consumer i on day j (in microgram chemical compound per kg body weight), 
xijk is the consumption by consumer i on day j of food k (in g), ck is the average concentration of the 
chemical compound in food k (in mg/kg, ‘ppm’), and wi is the body weight of consumer i (in kg). 
Finally, p is the number of foods accounted for in the model.  
 
Depending on the problem, MC-samples may be drawn from the complete data base, from a day- or 
age-restricted subset or from consumption-days only. In some cases there is insufficient information 
for specific subgroups in the population. For example, in a study on infants (age up to 12 months), a 
separately constructed food consumption database has been used (Boon et al. 2003). 
 
When dietary components are consumed on a nearly daily basis, intake values yij may be used to 
estimate the probability distribution p(yi.) for chronic risk assessment purposes (see 5.4 ). 

5.2 How to deal with limited information on compound concentration data 

In the probabilistic model, a distribution of food consumption data as well as a distribution of 
compound data are used. For both components of the model, a choice can be made between a non-
parametric (see 5.2.1 ) or a parametric (see 5.3.1.1.2 and 5.3.1.1.3 ) approach. In a parametric 
approach the data are modelled with an appropriate distributional form (e.g. lognormal with 
parameters σ and ȝ). In a non-parametric approach the empirical distribution is used to sample from 
directly. Obviously the latter approach requires more data to obtain a satisfying representation of the 
full distribution. Therefore, parametric modelling becomes important in data-scarce situations (see 
5.2.1 ). 
 
Occasionally limited information emerge not as a consequence of the amount of data but how they are 
presented: data are reported using e.g. the mean and variance (see 5.2.2 ) or data are summarised as 
counts of observations falling into a series of classes (see 5.2.3 ). It is evident that a parametric 
approach is the only way out and that the parameters of the lognormal distribution should be inferred 
using the available data. 
 
If for some foods there are far less concentration data than for others, it may be sensible to consider 
pooling procedures for means and or variances of the concentration distributions (see 5.3.1.1.3 ). 
If the amount of data is limited, this may lead to a relatively large sampling uncertainty. Resampling 
methods may be used to assess the magnitude of this uncertainty (see 5.5 ). 
Back to: Concentration model options 

5.2.1 The choice between a parametric and non-parametric approach 

How many compound concentration data are required for a sensible calculation of upper-tail 
percentiles in the intake distribution based on a non-parametric approach? The rule of thumb can be 
used that the chosen percentile should be contained directly in the data. For example, at least 20 
measurements are needed to estimate the 95th percentile and at least 100 measurements to estimate the 
99th percentile.  
 
More generally, the number of measurements per food (n) should at least equal 1/(1-p%/100) to allow 
a rough empirical estimate of the pth percentile of the compound concentration distribution to be 
made. Of course, the risk assessment is only coarse with this minimum amount of data and more 
measurements per food are certainly worthwhile.  
 
In situations where the number of measurements becomes a problem, an appropriate risk analysis 
should be based on further modelling. Essentially, the lack of data is compensated by a priori 
assumptions. Assuming a simple distributional form for the compound data, the number of 
measurements can be smaller in principle (at least 10, say). However, non-detect measurements 
provide no information about variability, and therefore we should now count the number of positive 
measurements. Figure 45 shows which approach could be best used depending on the total number of 
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measurements and the number of non-zero measurements. In principle, such a choice could be made 
separately for each food.  

 

Figure 45: Use of non-parametric or parametric modelling for estimating the 99% percentile of 

the intake in relation to number of positive measurements and the total number of 

measurements. 

5.2.2 Estimation based on histogram data 

In EU reporting, compound data are sometimes reported in a tabulated (histogram) form: data are 
expressed as counts of observations falling into a series of groups. The observed counts are n1…nc, 

which fall into c classes with limits c1…cc. The number n1 is the number of positive samples, which are 
nevertheless below the LOR (= c1); n2 is the number of positive samples that fall in between limits c1 
and c2; nc is the number of samples that fall in between limits cc-1 and cc.  
For histogram data, parameters ȝ and σ of the lognormal distribution can be obtained by fitting a 
normal distribution to a set of observations n1…nc. In an iterative way, expected counts for a 
standardised normal variable are calculated using the log-transformed group limits. Each round, 
parameters are updated until the process converges.  

5.2.3 Estimation based on summary data  

Occasionally, data are reported in a very condensed form. Summary statistics like the mean, quantiles 
and dispersion measures as the variance or the coefficient of variation are used to describe 
characteristics of the underlying concentration distributions. The reported statistics are calculated 
using all values (with concentrations below LOR sometimes replaced by ½*LOR), or using positive 
values (detects) only. In order to use the binomial-lognormal model, summary statistics based on all 
values must be corrected for the values replacing the concentrations below LOR. For the mean, the 
correction is straightforward, taking a zero or the midpoint-value (½*LOR). Likewise, the standard 
deviation or any measure of dispersion is corrected for the sum of squares due to all zero values and 
taking into account the corrected mean. The median is also corrected, but instead of correcting the 
value itself, a corrected quantile zq is calculated corresponding to q, the lower fraction and zq 

satisfying: 
  
 zq = Φ-1{q} = Φ-1{(½N – n0)/(N – n0)}  
 
with Φ(.), the cumulative probability function of the standard normal distribution, N, the total number 
of samples and n0, the number of zeroes.  
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The maximum is the largest order statistic. Its expected value can be approximated by taking the 
appropriate population quantile, especially in large samples. Here, the problem is the other way 
around: the population quantile corresponding to the largest value given the sample size is to be 
estimated. For sufficiently large N an approximation to E(qmax) is provided by the value of zq 
satisfying Φ(zq) = N/(N+1). Blom (1958) and Harter (1961) made the following suggestions for 
smaller sample sizes: 
 

  zq = Φ-1{(N - α)/(N - 2α + 1)} 
 

with α = .315065 + .057974u - .009776u2 and u = log10N. Over a wide range of N α approximates the 
value 3/8. This empirical formula is a very accurate approximation to the exact value of E(qmax) and is 
used to estimate appropriate population quantiles for qmax. (David, 1970; Pearson and Hartley, 1972 ; 
Blom, 1958; Harter, 1961).  
 
Three situations can be distinguished:  

1) the reported information is insufficient to estimate both ȝ and σ, or 
2) the reported statistics are sufficient to extract ȝ and σ, or  
3) the information is redundant so various estimates for ȝ and σ are available.  
 

Here, we first consider approaches for situation 2. Situation 1 requires additional information: a 
solution might be to use the information on comparable food-compound combinations to assess the 
necessary estimates. Situation 3, basically, is a pooling problem how to weigh and combine estimates 
that originate from different statistics.  

5.2.3.1 Moments and other characteristics 

A positive random variable X is said to be lognormally distributed with parameters µ and σ2 if Y = lnX 
is normally distributed with mean ȝ and variance σ2. The probability density function of X is:  
 

f(x) = 1/(√2πσx) exp(-(lnx - ȝ)2/2σ2).  
 
The corresponding normal distribution for Y is denoted by N(ȝ, σ2).  
 
Estimation of ȝ and σ using summary statistics is based on equations and characteristics derived from 
the moment generating function of the lognormal distribution. Required parameters are estimated by 
solving the formulas of the first two moments for ȝ and σ. 
The following characteristics for variable X derived from the moment generating function are given:  
 

mean: exp(μ + 1/2σ2) (1) 
variance: exp(2ȝ + σ2)(exp(σ2) – 1) (2) 
mode: exp(ȝ - σ2) (3) 
quantile (qq): exp(ȝ + zqσ),  (4) 
vc:  √(exp(σ2) – 1) (5) 
 

with vc the coefficient of variation, q a given lower fraction and zq the corresponding standard normal 
deviate. The 50th quantile, the median, is a special case with zq = 0. The geometric mean of X is equal 
to the median. 

5.2.3.2 Estimation 

Approach 1: estimation based on two quantiles, qq1 ≠ qq2. 
 
Using (4) gives: 
 
  σ = log(qq1/qq2) / (zq1 – zq2). Substituting σ yields ȝ. 
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Approach 2: estimation based on a quantile and the mean. 
 
Solving for σ using (1) and (4) gives:  
 
 σ2 – 2zqσ - 2log(mean/qq) = 0, with roots for σ according to: 
 

  zq ± √(zq
2 + 2log(mean/qq ))  (6) 

 
For moderate to small sample sizes the estimation of σ fails because the discriminant is negative, i.c. 
the argument of the square root function. Empirical simulations show that a negative discriminant 
happens more often for small sample sizes and for estimation based on extreme quantiles like the 
maximum. Figure 46 shows the empirical relation between the sample size and the fraction of failures 
for estimation methods involving the mean with respectively, the maximum and median. For the 
maximum, failures occur already at sample sizes n = 30 to 40, for the median n = 15 to 20. Negative 
discriminants occur when estimation is based on empirical (sampled) values instead of theoretical 
(calculated) values assuming a normal underlying distribution. The amount of failures for small 
sample sizes is in accordance with large sample theory. When the maximum is involved and 
estimation fails, an estimate of σ is assessed by equating the discriminant to zero. Empirical results 
show that this works out very well for sample size n > 4, although σ is slightly biased upwards being a 
conservative estimate. In case of the median no solution to this problem is available so the estimate of 
σ is set to a missing value. 
 

Figure 46: Simulated fraction of failures versus sample size for estimation of σ based on the 

mean and respectively the maximum and median 

 
In general, for n large enough, say n > 40, σ has two roots. Usually, the mean is larger than the 
median. Then, σ is estimated with: 
 

 zq + √( zq
2 + 2log(mean/median)) with condition σ > 2zq..  

 
In case of the mean and maximum σ is estimated with: 
 
 zq - √( zq

2 + 2log(mean/max )) with condition σ < 2zq..  
 
Note that maximum is always greater than the mean. Here, the smallest root is taken as an estimate 
because empirical results show that the largest root yields unlikely high measures of dispersion and 
therefore should be rejected. 
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Approach 3: estimation based on mean and variance or coefficient of variation. 
 
The coefficient of variation, vc = √(variance)/mean. Using (5), parameter σ is estimated with: 
 

  √(log(vc2 + 1))  
 
and ȝ is estimated solving (1). 
 

Approach 4: estimation based on a quantile and coefficient of variation. 
 
For estimation of σ, see approach 3. Using (4), parameter ȝ is estimated with: 
 
 log(quantile) - zqσ 
 
For the median, estimation of ȝ simplifies to: 
 
 log(median)  

5.3 Acute risk assessment 

5.3.1 Concentration model: modelling of compound concentrations in consumed food 

5.3.1.1 Distributional assumptions 

Compound concentrations in the various foods are independent and therefore can be modelled by 
univariate distributions. 
 
5.3.1.1.1 Non-parametric modelling of concentrations (empirical) 
In the empirical (non-parametric) approach, concentrations are sampled at random from the available 
data and combined with the consumption data to generate a new distribution of intake values. To 
assess the risk-intake, percentiles of the intake distribution are estimated. 
Back to: Empirical 
 
5.3.1.1.2 Parametric modelling of concentrations (binomial/lognormal no pooling) 

In the parametric approach, compound concentrations per food are sampled from parametric 
distributions. A special feature of compound data is that the large majority of measured concentrations 
(often more than 80%) is recorded as zero (non-detects). These values may correspond to true zero 
concentrations (for example because the compound is never used in the specific food), or they may 
correspond to low concentrations which are below a pre-established reporting limit (LOR). In any 
case, the compound concentration distribution is very skew, with a large spike at zero and an extended 
tail to higher values. For statistical modelling a two-step procedure is chosen. First, the presence of a 

concentration ≥ LOR on food is modelled with a binomial distribution with a parameter p representing 
the probability of a reported concentration. Probability p depends on the chemical compound and the 
food and is estimated as the fraction of detects. Secondly, the non-zero compounds are modelled with 
the lognormal distribution. After consideration of several possibilities using the program BestFit, this 
distribution has been selected as being both theoretically sensible and practically useful. The 
parameters ȝ and σ are the mean and standard deviation of the log-transformed non-zero compound 
concentrations. 
In the basic model (see 5.1 ) 
 

 ijkijkijk cposIc ⋅=  
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with ijkI  indicating whether a compound concentration is sampled ( ijkI =1) or not ( ijkI =0), and cposijk 

the compound concentration in the subpopulation of positive values. The probability of ijkI  being 1 or 

0 depends on the number of detects found for food k and ijkI  is sampled separately for each consumer i 

on occasion j.  
Back to: Binomial/lognormal (no pooling) 
 
5.3.1.1.3 Parametric modelling of concentrations (binomial/lognormal with pooling)  

When data are limited, it may be advantageous to apply the parametric approach for modelling of the 
positive concentrations. In MCRA the positive concentrations are modelled as lognormal with 
parameters ȝ and σ2, representing mean and variance of the natural logarithm of the concentrations. 
However, estimation is often hampered because data on compounds in specific foods are sparse or 
even missing. In those cases, grouping of foods into food groups enlarges the number of 
measurements per group and may give sufficient data to base estimates upon. We must assume that 
concentration distributions are the same for the grouped foods. A second related question is the 
reliability of estimates, based on a few number of degrees of freedom. The following procedure is 
designed to cope with the above problems.  
1. Pooling variances within food groups. For each food the variance σ2 and mean ȝ is estimated. 

Then, foods are assigned to groups which are composed of related foods, e.g. a foodgroup 
containing sorts of cabbages or a group containing all kind of berries. Foods where agricultural 
use is allowed are remained separate from foods where agricultural use is not allowed. The 
homogeneity of variances in the different groups is assessed using Bartlett's test (Snedecor & 
Cochran, 1980). The test statistic determines whether variances within a group are to be pooled 

automatically (p > 0.05) or not (p ≤  0.05).  
2. Pooling means within food groups. After pooling the variances, an overall test for differences of 

means within each group is performed, based on analysis of variance. Means within groups are 
pooled automatically if the probability p > 0.05.  

3. Using overall variance if there are < 10 degrees of freedom. Estimates of variances based on 
less than 10 df are considered not very reliable. Therefore, variances based on < 10 df are 
compared to the overall variance (pooled over all foods except the tested food itself, i.c. 
corrected) and tested for equality. Variances are replaced by the overall variance (uncorrected) 
whenever the hypothesis of equality of variances is not rejected; if rejected, the original variances 
are maintained.  

 
For a parametric risk assessment all variances and means must be present. This requirement implies 
that very often rearrangement of foods into (sub) groups preceeds the actual simulation of the intake 
distribution. 
 
To summarise, actions are: 
• calculate variances and means for each food 
• classify foods into groups 
• test homogeneity of variances and equality of means within groups of foods. Results are: not 

significant (p > 0.05) or significant (p ≤ 0.05). 
• take foods(-groups) with df < 10 
• compare variance with overall variance (corrected). Replace variance with overall variance 

(uncorrected) for non-significant test results. 
Back to: Binomial/lognormal with pooling 

5.3.1.2 Modelling of missing data and replacement of non-detects 

Missing data should be indicated by 9999 in the database tables. In principle such values are ignored 
in the analysis. 
Most monitoring measurements of chemical compounds are non-detects, i.e. no quantitative 
measurement is reported. For this reason data are entered in the Concentration table by specifying the 
total number of measurements made together with the LOR. We use LOR to mean exactly what the 
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term says: measurements below LOR are not reported, whereas values equal to or higher than LOR 
are represented by numerical values in the database. 
In the analytical and food risk fields analytical limits are often indicated as LOD (limit of detection) 
or LOQ (limit of quantification). Unfortunately, it is not always clear what is meant with these terms. 
In any case official recommendations are to always report any available numerical values even if they 
are below LOD or LOQ limits (IUPAC 1995).  
For legal applications of compounds data may be available about the percentage of the crop which 
receives treatment. When a chemical compound can enter the food chain only via crop treatment, and 
when the percentage of crop treated is (approximately) known to be 100pcrop-treated, then this 
knowledge may be used to infer that 100(1-pcrop-treated)% of the monitoring measurements should be 
real zeroes, contributing nothing to pesticide intake, whereas other non-detects in the monitoring data 
could have any value below the LOR. For 100(pnon-detect + pcrop-treated - 100)% of the monitoring 
measurements, 0 and LOR represent best-case and worst-case estimates. A simple way (tier 1 
approach) to consider the uncertainty associated with non-detects is to compare intake distributions 
for these best-case and worst-case situations.  
Back to: Replacement of non-detects 

5.3.1.3 Modelling of processing effects 

Concentrations in the consumed food may be different from concentrations in the food as measured in 
monitoring programs (typically raw food) due to processing, such as peeling, washing, cooking etc. 
In general, we assume the model: 
 

 ijkkijk crfcpos ⋅=  

 
where crijk is the concentration in the raw food, and where fk is a factor for a specific combination k of 
RAC and processing. Values will typically be between 0 and 1, although occasionally the processing 
factor may also be >1 (e.g. drying as applied for grapes and figs).  
The user of the model will have to specify processing factors for each food k as defined in the food 
consumption data base. For this purpose, it is advised to maintain a data base of processing factors, 
indexed by chemical compound, RAC and processing type (e.g. washing, peeling or other 
processing). Before running the model, it may then be necessary to specify how the necessary 
processing factors are derived from the data base entries and/or other information. Example: if there 
are no processing factors known for captan in pears, it may be decided to use the corresponding 
factors for apples instead. 
Often processign effects may be variable, and this may be entered in the Monte Carlo modelling by 
specifying two values for each processing factor: 
1. fk,nom: the nominal value, typically some sort of central value from an experimental study 
2. fk,upp: an upper 95% confidence limit, which typically will be set by an expert (even if statistical 

information on variability of the factor is available) 
A typical data base entry might thus read: 

RAC processing fk,nom fk,upp  
apple washing 0.5 0.7 

 
In the MC-modelling, processing factors can be used in either of three ways (for each food k to be 
chosen by the user): 
 
5.3.1.3.1 No processing factor  
Just take fk = 1. This is in most (though not all) cases a worst-case assumption. No data on processing 
are needed and therefore this route is useful in a first tier approach. 
 
5.3.1.3.2 Processing (fixed factors)  
Use fk = fk,upp. Available information on specific processing effects is used, although still in a 
cautionary way (in accordance with the precautionary principle). Note that fk,nom values need not to be 
specified. 
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5.3.1.3.3 Processing (distribution based)  
Sample fk using a normal distribution. Log or logit transformed values of fk,nom and fk,upp are used to 
define the first two moments of the normal distribution. Two situations are distinguished depending 
on the type of transformation.  

a) The logarithms of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper 
confidence limit of a normal distribution. This normal distribution thus is specified by a mean 
ln(fk,nom) and a standard deviation {ln(fk,upp) – ln(fk,nom)}/1.645. Values are drawn from this 
distribution in the MC-simulations. Processing factors fk will be nonnegative. Note: fk,upp and 
fk,nom values equal to 0 are replaced by a low default value (0.01); this is useful 
computationally to avoid problems with logarithms.  

b) The logits of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper confidence 
limit of a normal distribution. This normal distribution thus is specified by a mean logit(fk,nom) 
and a standard deviation {logit(fk,upp) – logit(fk,nom)}/1.645. Values are drawn from this 
distribution in the MC-simulations. Processing factors fk will be between 0 and 1. Note: fk,upp 

and fk,nom values equal to 0 and 1 are replaced by default values (0.01 and 0.99); this is useful 
computationally to avoid problems with logits. 

The user should keep in mind that, in case of a lognormal distribution, fk,nom defines the median, 
while fk,upp quantifies skewness. The same holds for the logistic. Usually, a logarithm will be the 
standard transformation, but for very skew distributions (see Figure 47) occasionally values above 
1 are sampled (upper row, 1rst, 3rd and 5th plot). A logit transformation should be considered 
instead. 
 

 

Figure 47: Lognormal (upper row) and logistic (lower row) distributions for various values of 

fk,nom (= nom) and fk,upp (= upp) 

 
Back to: Modelling processing effects 

5.3.2 Modelling of unit variability 

5.3.2.1 Introduction, variability in deterministic modelling 

Variability in compound concentrations between individual units is a relevant factor in the assessment 
of short-term dietary intake of chemical compounds. It is addressed separately because monitoring 
measurements cmk are typically made on homogenised composite samples, both in controlled field 
trials and in food monitoring programs. Such a composite sample for food k is composed of nuk units 
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with nominal unit weight wuk each. The weight of a composite sample is therefore wmk = nuk × wuk . 
This weight is often larger than a consumer portion, e.g. a typical composite sample of 20 sweet 
peppers weighs 3.2 kg, whereas daily consumer portion weights in the Dutch Food Consumption 
Survey 1997 ranged from 0.08 g to 458 g.  
How should monitoring data be used to estimate the raw food concentration levels crijk in consumer 
portions? Although the mean level of cmk may be a fair estimate of the mean level of crijk, the 
variability of cmk is not appropriate to estimate the variability of crijk. In smaller portions more 
extreme values may occur more readily, and thus acute risks may be higher than would follow from a 
direct use of the composite sample data. 
Therefore, the FAO/WHO Geneva Consultation recommended to include a variability factor (v) in the 
non-probabilistic calculation of an international estimate of short-term intake (IESTI) (FAO/WHO 
1997). The IESTI has been adopted by the Joint Meeting of FAO and WHO experts on Pesticide 
Compounds in food in 1999, and was modified in 2000 to reflect that the supply for actual 
consumption on a given day is likely to be derived from a single lot (JMPR 1999, 2000). In both the 
original and the modified definition, the variability factor is used in a similar way. The basic idea is 
that the compound concentration for the first unit eaten is multiplied by v, whereas this factor is not 
applied for any remaining part of the daily consumption. 
 
In the original presentation v was meant to reflect “the ratio of a highest concentration in the 

individual product unit to the corresponding concentration seen in the composite sample” 
(FAO/WHO 1997). It was not clearly stated what was meant with “a highest concentration”. Should 
this be the maximum concentration found or should it be a high percentile, e.g. p95 or p97.5? In 
practical terms this did not matter too much, because little data were available. Therefore the 
FAO/WHO Consultation recommended to take initial values of v equal to “the number of units in the 

composite sample as given in Codex sampling protocols”. This will provide a conservative estimate of 
the compound concentration in the first unit, based on the assumption that all of the compounds 
present in the composite sample are present in this single unit. If Codex sampling protocols are used, 
then the number of units per composite sample is 5 for large crops (unit weights > 250 g) and 10 for 
medium crops (unit weights 25-250 g). For small crops (< 25 g) a variability factor v = 1 was 
recommended. More recently, it has been proposed to replace the default value 10 with 7. For foods 
which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, a variability factor v = 
1 is proposed. To summarise: 
 

unit weight, wu FAO/WHO default variability factor, v 

< 25 g 
25 –250 g 
> 250 g 
juicing, marmalade/jam, sauce/puree 

1 
7 
5 
1 

Table 20: Default variability factors for IESTI calculations 

The Consultation specifically recommended to replace these default values with more realistic values 
obtained from studies on actually measured units. A working group of the International Conference on 
Pesticide Residues Variability and Acute Dietary Risk Assessment held in York in 1998 suggested to 
define v, for samples taken from controlled trials, as the 97.5th percentile of the unit levels divided by 
the sample mean (Harris et al. 2000), and this is used in the current version of MCRA as the defining 
relation.  
Back to: Unit variability model options 

5.3.2.2 Approaches to unit variability in probabilistic modelling: specifying distributions 

How should variability between units be incorporated in probabilistic modelling of acute risks? In 
probabilistic modelling we generate consumption amounts and compound concentrations which will 
be multiplied, summed over foods and divided by body weight to estimate the intake. However, the 
compound concentration cmk will usually be derived from a distribution based on measurements on 
composite samples. Assume that a batch of food contains N units (N large, for the statistics we assume 
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infinite). The monitoring measurement cmk is made on a composite sample of nuk units (for example, 
nuk = 5). These units are assumed to be representative of the batch. Unit concentrations crijk are to be 
simulated for one or more units from this batch that will be part of a consumption portion in the MC-
simulation. Basically, there are three possibilities depending on the availability of data: 
1. use actual measurement data on individual units; 
2. use variability factors or other summary statistics based on measured individual units; 
3. use conservative assumptions. 
In MCRA only methods under categories 2 and 3 are implemented. The first approach has been 
pioneered in the context of a large UK survey on pesticides in fruit (Hamey 2000).  
 
In MCRA the following three models, discussed below in more detail, are implemented: 
1. Beta model, requires knowledge of the number of units in a composite sample, and of the 

variability between units (realistic or conservative estimates); 
2. Bernoulli model, requires only knowledge of the number of units in a composite sample (results 

are always conservative); 
3. Lognormal model, requires only knowledge of the variability between units (realistic or 

conservative estimates). 
 
Preferably realistic estimates of unit variability are to be used, either expressed as coefficients of 
variation cv (standard deviation divided by mean) or as variability factors v (defined in MCRA as 
97.5th percentile divided by mean). However, often such information is not directly available. In such 
cases it is customary to select high values for the variability factor, either based on collections of 
variability factors for other compounds/foods, or calculated as the theoretical maximum derived from 
the number of units in a composite sample. 
 
How to translate the concept of conservatism to the probabilistic model? In a non-probabilistic model 
a higher value of v gives a higher IESTI, but in a stochastic model a higher variability means more 
spread around a central value. In general this means that higher values, but also lower values can be 
generated. In order to retain an overall conservatism it is therefore necessary to replace all simulated 
values below the monitoring level (cmk) with cmk itself. 
 
It is common to use default conservative values, such as the FAO/WHO variability factors in Table 
20. However, one should be aware that two entirely different interpretations are possible: 
1. The default variability factor may be defined in the same way as a data-based variability factor (v 

= 97.5th percentile/mean). For example, it may be an expert opinion based on seeing many actual 
data sets from trials, that a certain value v can be used as a conservative value for other situations 
(see e.g. Table 1 in Harris et al. 2000). Then we might use the beta or the lognormal model, 
censoring these distributions at cmk to guarantee conservative behaviour. For the beta model 
additional information on the number of units in a composite sample is needed. 

2. Alternatively, one can revert to the original definition and interpret FAO/WHO variability factors 
as the number of units in the composite sample (v = nuk). In this case, without other information, 
the only workable model is the Bernoulli model. 

Back to: Estimated parameters for unit variability 
 
5.3.2.2.1 Beta model for unit variability 

With this model MCRA will generate values for individual unmeasured units of a measured 
composite sample. If cmk is the concentration measured (or simulated) for the composite sample in 
monitoring for food k, then the concentration in any unit can be no larger than cmax = nuk * cmk , where 
nuk is the number of units in the composite sample. Under the Beta model simulated unit values are 
drawn from a bounded distribution on the interval (0, cmax). The parameter for unit variability is 
specified as a coefficient of variation cvk of the unit values in the composite sample, or as a variability 
factor.  
The standard beta distribution is defined on the interval (0, 1) and is usually characterised by two 
parameters a and b, with a>0, b>0 (see e.g. Mood et al. 1974). Alternatively, it can be parameterised 

by the mean µ=a/(a+b) and the variance σ2=ab(a+b+1)-1(a+b)-2, or, as applied in MCRA, by the 
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mean µ and the squared coefficient of variation cv2=ba-1(a+b+1)-1. Note that the coefficient of 
variation is the same for the unscaled and the scaled distributions. 
For the simulated unit values in each iteration of the program we require an expected value cmk. This 
scales down to a mean value µ = cmk/cmax = 1/nuk in the (standard) beta distribution. From this value 
for µ and an externally specified value for cvk the parameters a and b of the beta distribution are 
calculated as: 
 

( ) 1
1

−−= knuba  

( )( )
2
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kkk
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cvnunu
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−−−
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From the second formula it can be seen that cvk should not be larger than 1−knu  in order to avoid 

negative values for b. 

When the unit variability is specified by a variability factor 
k

k
k

cm

p
v

5.97
=  instead of a coefficient of 

variation cvk then MCRA applies a bisection algorithm to find a such that the cumulative probability 

975.0)],([ =baBetaP for ( )1−= knuab .  

Sampled values from the beta distribution are rescaled by multiplication with cmax to unit 
concentrations crijk on the interval (0, cmax).  
In the case that variability has been estimated by a conservative high value, all sampled values lower 
than cmk are replaced by cmk. 
In Figure 48, for several values of the coefficient of variation and number of units the beta distribution 
is shown with estimated parameters a and b. When the parameter for unit variability is high (upper 
left plot) the ratio of the spikes on the extremes (3:1) represent the 75% probability at crijk = cmk and 
25% probability at crijk = cmax. In the upper right plot, the parameter for unit variability is smaller and 
some unit values in between the two extremes are sampled. The ratio of the spikes is about 5:1, which 
is according to the number of units in the composite sample. In the lower left plot, variability is low 
and unit values are sampled around the monitoring compound. In the extreme case, when unit 
variability is close to zero the monitoring compound itself is sampled and a spike occurs (not shown ). 
The lower right plot shows an intermediate situation, moderate to high variability. 
  

 
cvk =1.732; nuk=4; a=0.00005; b=0.00015 

 
cvk =1.20; nuk=6; a=0.4; b=2

 
cvk=0.62; nuk=6; a=2; b=10 

 
cvk =1.46; nuk=4; a=0.1; b=0.3
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Figure 48: Standard Beta distribution for different values of the coefficient of variation cvk and 

number of units nuk in the composite sample. x axis from 0 to 1.  

Back to: Beta distribution 
 
5.3.2.2.2 Lognormal model for unit variability 

With the Beta and Bernoulli models, MCRA simulates concentrations for units in the composite 
sample, such that the concentration of an individual unit can never be higher than the monitoring 
measurement multiplied by the number of units in the composite sample cmax = nuk * cmk . 
With the Lognormal model for unit variability MCRA simulates concentrations for new units in the 
batch from which the composite sample was taken. Effectively the number of units in a batch is very 
large, so in this case there is no practical upper limit to the concentration that can be present.  
The lognormal distribution is considered as an appropriate model for many empirical positive 
concentration distributions. With the Lognormal model MCRA assumes a lognormal distribution for 
unit compound concentrations. Let this distribution be characterised by ȝ and σ, which are the mean 
and standard deviation of the log-transformed concentrations. The unit log-concentrations are drawn 

from a normal distribution with mean ( )ikcmln=μ .  

Also for the Lognormal model MCRA allows two choices to specify the parameter for the unit 
variability. The parameter is specified as a coefficient of variation (cvk) or as a variability factor (vk). 
The coefficient of variation cv is turned into the standard deviation σ on the log-transformed scale 
with: 
 σ = √ln(cv2 + 1) 
 
A variability factor v is converted into the standard deviation σ as follows: 
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with ȝ and σ representing the mean and standard deviation of the log-transformed concentrations. So 

 
 ln(v) = 1.96σ – 1/2σ2 

 
Solving for σ gives: σ2 – 2*1.96σ – 2log(v) = 0, with roots for σ according to: 

 

 σ = 1.96 ± √(1.962 +2log(v)) 
 

The smallest positive root is taken as an estimate for σ (see also 5.2.3.2 ). 
 
In the case that variability has been estimated by a conservative high value, all sampled values lower 
than cmk are replaced by cmk. 
Back to: Lognormal distribution 
 
5.3.2.2.3 Bernoulli model for unit variability 

The Bernoulli model is a limiting case of the Beta model, which can be used if no information on unit 
variability is available, but only the number of units in a composite sample is known. As a worst case 
approach we may take cvk as large as possible. When cvk is equal to the maximum possible 

value 1−knu , the (unstandardised) Beta distribution simplifies to a Bernoulli distribution with 

probability (nuk – 1)/nuk for the value 0 and probability 1/nuk for the value cmax = nuk * cmk..  
In MCRA values 0 are actually replaced by cmk, to keep all values on the conservative side. For 
example, with nuk = 5, there will be 80% probability at crijk = cmk and 20% probability at crijk = cmax.. 

Back to: Bernoulli distribution 
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5.3.2.2.4 Estimation of intake values using the concept of unit variability 

• For each iteration i in the MC-simulation, obtain for each food k a simulated intake xik , and a 
simulated composite sample compound concentration cmik . 

• Calculate the number of unit intakes nuxik in xik (round upwards) and set weights wikl equal to unit 

weight wuk, except for the last partial intake, which has weight ( ) kikikikl wunuxxw 1−−= . 

• For the Beta or Bernoulli distribution: draw nuxik simulated values țikl from a Beta or Bernoulli 
distribution. Calculate concentration values as cikl = țikl * cmk, max = țikl * cmk * nuk. Sum to obtain 
the simulated concentration in the consumed portion: 

 

ik
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ikliklik xcwcr
ik

∑
=

=
1

 

 
• For the Lognormal distribution: draw nuxik simulated logconcentration values lcikl from a normal 

distribution with mean ( )ikcmln=μ  and standard deviation σ. Back transform and sum to obtain 

the simulated concentration in the consumed portion: 
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5.3.2.3 Additional: Comparison of probabilistic with deterministic estimates of acute risk 

The IESTI (International Estimated Short-Term Intake) is a deterministic estimate of the short-term 
intake of a compound on the basis of the assumptions of high daily food consumption per consumer 
and highest compounds from supervised trials. The IESTI is expressed per kg body weight and has 
only been defined for single foods. 
MCRA calculates IESTI for comparison with MC-percentiles.  
Calculations of IESTI (according to FAO 2002) recognise four different case (1, 2a, 2b and 3). In 
cases 1 to 3 the following definitions are used: 

LP:  Highest large portion reported, calculated as the 97.5th percentile of the distribution of  
consumed portions on days with positive consumption of the food (kg food/day) 

HR:  Highest residue (=compound) in composite sample, mg/kg 
bw:  Mean body weight, kg; in MCRA values may be input by the user, or weighted means 
 are calculated over consumers with the number of days on which they consumed the 

food as weights  
U:  Unit weight of the edible portion, kg. 
v:  Variability factor – the factor applied to the composite compound to estimate the 

concentration in a high-compound unit 
MR:  Median residue (=compound) in food, mg/kg 

Although the FAO Manual refers to supervised trials only, MCRA calculates concentrations (HR or 
MR) from any compound concentration data set supplied (may also be monitoring data). 
Concentrations (HR or MR) may be multiplied with a processing factor on beforehand, in MCRA this 
depends on the options chosen for processing. 

 
Case 1: 
The compound in a composite sample reflects the concentration in meal-sized portion of the food 
(unit weight is below 25 gr). 
 

 IESTI = 
bw

HRLP *
 

 
Case 2: 
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The meal sized-portion, such as a single fruit or vegetable unit might have a higher concentration than 
the composite (whole fruit or vegetable unit weight is above 250 gr). Case 2 is further divided into 
case 2a and 2b. 
 
Case 2a:  
Unit edible weight of raw food is less than large portion weight. 
 

 IESTI = 
bw

HRULPvHRU *)(** −+
 

 
The formula is based on the assumption that the first unit contains compounds at the HR*v level and 
the next one contains compounds at the HR level, which represents the compound in the composite 
from the same lot as the first one. 
 
Case 2b: 
Unit edible weight of raw food exceeds large portion weight. 
 

 IESTI = 
bw

vHRLP **
 

 
The formula is based on the assumption that there is only one consumed unit and it contains 
compounds at the HR*v level. 
 
Case 3: 
For those processed foods where bulking or blending means that the median represents the likely 
highest concentration. 
 

 IESTI = 
bw

MRLP *
 

 
When an acute reference dose is available, the calculated IESTI values are also expressed as a 
percentage of the ARfD. 
 
IESTI is a deterministic estimate to reflect the unit variability within a composite sample. In the 
probabilistic approach, unit variability is explicitly modelled and the result is an estimate of the intake 
distribution (per food). These two different approaches handle the same problem, but it is undefined to 
which MC-percentile the IESTI value should be compared. In MCRA the user is free to choose a 
percentage point for this comparison. 
 
A point to note is that IESTI is calculated from positive consumptions on each separate food. To 
allow a fair comparison, the MC-percentiles are calculated in the same way. Note, however, that in a 
multi-food MC-analysis, even if one restricts the attention to consumption days only, the percentiles 
are typically based on consumption data which are partly zero (days with consumption zero for some 
but not all foods). 
Back to: Additional options concerning IESTI and consumption days 

5.3.3 Intake model 

5.3.3.1 Only empirical estimates 

This is an acute risk assessment using empirical compound data. 
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5.3.3.2 Empirical estimates and betabinomial/normal 

An acute risk assessment may be followed by an analysis where the acute intake distribution is related 
to a covariable and/or cofactor. The simulated acute intake are input and the betabinomial distribution 
is used to estimate an intake frequency model describing the effects of explanatory variables. The 
positive intake values are transformed to normality and an intake amount model is estimated, again 
relating the amount value to a covariable and/or cofactor. MC-sampling is used to obtain a simulated 
acute intake distribution for each combination of levels of covariable and cofactor.   
Back to: Empirical estimates and betabinomial/normal 
 
5.3.3.2.1 Monte Carlo data generation of intake 
Through MC-sampling, a large number of intakes is generated by combining randomly chosen 
consumption patterns of consumers i on day j with randomly chosen concentrations in the consumed 
foods. The replicates generated for consumer day ij are further indexed by k to represent differences 
due to concentration variability. We ignore the finiteness of the concentration data, that is, we ignore 
the identity of the chosen concentration values in the original concentration dataset. 
Back to: Empirical estimates and betabinomial/normal  
 
5.3.3.2.2 Intake frequency model 

Let in and inpos be the total number of simulated intakes per consumer, and the number of simulated 

positive intakes, respectively. Then inpos  is modelled as a function of e.g. age (and/or other 

consumer characteristics), using a betabinomial distribution with binomial totals in  and 

overdispersion parameter φ  (independent of age). The fitted binomial probabilities are ( )ix xf=π̂  , 

where xi is the age of consumer i, and the estimated overdispersion parameter is φ̂ . 

Back to: Empirical estimates and betabinomial/normal 
 
5.3.3.2.3 Intake amount model 
For the positive intakes, consider power of logarithmically transformed values yijk. (see 5.4.3.1  
Average over replicates to obtain consumer day averages yij.. These values are modelled in a ML 
analysis with random terms consumer and consumer.day as a function of age (and/or other consumer 
characteristics), with the number of values per consumer day (nij) as weights wij to correct for 
differences in the precision at the consumer day stratum. The fitted values from the model are 

( )ix xf=μ̂ , where xi is the age of consumer i. 

Back to: Empirical estimates and betabinomial/normal 
 
5.3.3.2.4 Estimating the acute risk variability of positive intake amounts 

Correct the full set of simulated positive intakes by )(
ˆ' ixijkijk yy μ−= . Estimate the variance 

2

'yσ  of 

ijky' . We denote the estimated variance as
2

'
ˆ

yσ . Now for each selected age x the transformed positive 

intake distribution is modelled as normal with mean ( )xfx =μ̂  and variance 
2

'
ˆ

yσ . 

Back to: Empirical estimates and betabinomial/normal 
 
5.3.3.2.5 Estimating the acute intake distribution 

Acute intake distributions dependent on a covariable and/or cofactor are obtained by numerical 
integration. For each combination of levels of the covariable and cofactor, intake frequency values 
and transformed intake amounts are simulated and multiplied. This results in a number of distributions 
each one representing the acute intake distribution corresponding to a specific combination of levels 
of the covariable and cofactor. Covariable- and cofactor-dependent percentiles can be derived. 
Back to: Empirical estimates and betabinomial/normal 

5.4  Chronic risk assessment 

In the MCRA program we have 2 models available to assess chronic risks:  
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1) the betabinomial/normal model (see 5.4.2 , 5.4.3 , 5.4.5 ),  
2) the discrete/semi-parametric (ISUF) model without covariable and cofactor (see 5.4.6 ).  

5.4.1 Introduction 

In a chronic risk assessment the main interest goes to the fraction of consumers with a usual intake per 
day higher than an intake limit. Usual intake is defined here as the long-run average of daily intakes of 
a (chemical) compound by a consumer.  
Usually, food consumption data are available for consumers on 2 (or more) consecutive days. We 
assume an equal number of days for each consumer. This is in confirmity with our method of data 
entry for consumption (see 9.4.1 ). As a consequence, days without consumptions do have zero intake.  
Through the assumed independence of consumption data and compound concentration values (a most 
reasonable assumption) the daily intake of consumer i on day j can be calculated as the sum over 
foods of consumption amount per kg body weight times average concentration. See the basic model in 
5.1. The average concentration of all available concentration measurements on a food is taken, with 

non-detect measurements entered as zero, LOR2
1 or LOR , or any other fraction of LOR as specified 

in the input options.  
To calculate the usual intake in the first 2 available models two aspects will be taken into account: the 
number of days that a consumer eats that compound and if so, the amount of that compound. The 
number of days will be assumed to have a binomial distribution with a probability p different for each 
consumer. These probabilities will be assumed to come from a beta distribution. The eaten compound 
will be assumed to have a normal distribution mostly after transformation. In the next paragraphs the 
modelling will be further discussed. 

5.4.2 Modelling the intake frequency distribution 

Let n and npos be the total number of days per consumer (for all consumers equal) and the number of 
days with a positive intake, respectively. Then npos is modelled using a betabinomial distribution 
with binomial totals n and probabilities p. The probabilities, p, are assumed to follow a beta 
distribution: 
 

 f(p)= 
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, the probability that npos equals x can then be written as: 
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This distribution is known as the betabinomial distribution. 
 
The mean and variance of a beta distribution are: 

 

 )/( βαα +   

and )]1()/[()( 2 +++++ βαβαβααβ n , respectively. 

Re-parameterizing by )/( βααπ += and )1/(1 ++= βαϕ  is a more stable and interpretable 

parameterization. It can be shown that the mean and variance of npos are equal to nπ  and 

n ])1(1)[1( ϕππ −+− n , respectively.  

 

Note that the first part of the variance n )1( ππ −  equals the binomial variance; the second part is the 

so-called overdispersion factor.  



 75 

Fitting the betabinomial model with maximum likelihood gives estimates π̂  and ϕ̂  for the 

parameters π and φ. Back-transformation  gives the following estimates for α and β: 
ϕϕπα ˆ/)ˆ1(ˆˆ −=  and ϕϕπβ ˆ/)ˆ1)(ˆ1(ˆ −−=  

 
The distribution of the probability that a consumer eats a compound at a certain day is then: 

Beta(α̂ , β̂ ). 

Back to: Chronic risk analysis 

5.4.3 Modelling the positive intake amounts 

5.4.3.1 Power or log transformation  

First, to achieve a better normality, the positive daily intake amounts are transformed. The user can 
choose a logarithmic transformation ( )yyf ln)( =  (no parameters to be estimated) or a power 

transformation γyyf =)(  (one parameter to be estimated). In the latter case the optimal power is 

determined on the grid { }
100

1
5.3

1
3
1

5.2
1

2
1

5.1
1 ,...,,,,,,1,2,10 , with a further refinement grid search around 

the best fitting value. If a power 100
1 gives the best fit in this grid search, then the logarithmic 

transformation is selected (Note that a logarithmic transform corresponds theoretically to 0=γ ). The 

goodness of fit is determined by minimising the residual sum of squares: 
2

1 ))(( γβ yiz − of a 

regression of normal Blom scores on the power-transformed daily intakes. Normal Blom scores are 
(Tukey 1962): 
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where i is the rank of the nth non-zero daily intake, n, the total number of non-zero intakes and ( )⋅Φ −1  is 

the inverse of the standard normal cumulative distribution function. 

5.4.3.2 Model with between-consumer and within-consumer variance component 

5.4.3.2.1 Log transformation 

The transformed positive intake amounts are modelled in a ML analysis with random terms consumer 
and interaction consumer.day to estimate the between-consumer and within-consumer variance 
component: 
 
 ln(yij)= ȝ + ci+ uij 

 
where ci and uij are the consumer effect and interaction effect respectively. These effects are assumed 
to be normally distributed N(0, σ2

between) resp. N(0, σ2
within). 

If the positive intake amounts are logarithmically transformed it can be shown that the expectation 
and variance of the positive intake amount per random consumption day of a random consumer are: 
 
 E(yij)  = exp(ȝ + ½ σ2

within) 
 Var(yij)  = σ2

between 

 

5.4.3.2.2 Power transformation 

The power transformed (with power q) positive intake amounts are modelled in a ML analysis with 
random terms consumer and interaction consumer.day to estimate the between-consumer and within-
consumer variance component: 
 
 yij

q = ȝ + ci+ uij 
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where ci and uij are the consumer effect and interaction effect respectively. These effects are assumed 
to be normally distributed N(0, σ2

between) resp. N(0, σ2
within). 

5.4.4 Modelling usual daily intake  

5.4.4.1 Analytical integration 

For logarithmic transformed intake amounts, a analytical solution is available (not implemented in the 
MCRA program).  
The usual intake is defined as the intake amount per random intake day (over both intake and non-
intake days) of a random consumer. To obtain the usual intake the E(y) from 5.4.3.2  has to be 
multiplied by the probability π from 5.4.2 . If π was constant for all consumers the usual intake would 
have a lognormal distribution with mean ln(π) + ȝ + ½ σ2

within and variance σ2
between. But because we 

have assumed in 5.4.2 that consumers have different p’s coming from a beta distribution, the 
probability that a consumer has a usual intake lower than say an intake limit z equals: 
 

 P(py ≤  z) = ypp
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where Φ is the cumulative normal distribution. 

5.4.4.2 Numerical integration 

If the positive amounts are transformed by a power transformation the power transformed values can 
not generally be written in terms of a probability distribution as in 5.4.4.1 : the distribution of the 
usual intakes has to be calculated numerically.  
However, in the MCRA program for both power and logaritmic transformation, the usual intake 
distribution is obtained by numerical integration.   
The distribution of the usual intakes can be obtained as follows: 
 
1. Draw 1 value of a normal distribution with mean ȝ and variance σ2

between  
2. Calculate the inverse transformation of the value of Step 1. 
 

2a. For a logarithmic transformation: x = exp(ȝ + σ between ln y) + ½ σ2
within. 

 
2b. For a power transformation: x =( ȝ + σ between e)Ȝ + Ȝ(Ȝ – 1) ( ȝ + σ between e)Ȝ- 2  σ2

within/2  

 
with q  = 1/ Ȝ, the power to approximately normality, e  standard normal distributed N(0, 1) 
(Dodd et al. 2006, p1646). 

 
3. Draw 1 value of the Beta distribution 
4. Multiply the value of Step 2. with the value of Step 3. 
 
The result is one random draw from the  distribution of usual intakes. 
Repeat Steps 1 till 4 a great number of times, say 50000.  
Back to: Chronic risk analysis 

5.4.5 Covariable and/or cofactor in the models 

The intake frequency and transformed intake amount model can be extended to describe the effect of 
a covariable and/or cofactor. Then, usual intakes are dependent on explanatory variables. 
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5.4.5.1 Cofactor 

5.4.5.1.1 Intake frequency model 

 
The model is: 
 
 logit(π) = β0l, l=1…L 
 

where L is the number of levels of the cofactor and π̂  is the fitted probability of 5.4.2 . 

 

5.4.5.1.2 Intake amount model 

 
The model is: 
 
 transf(yij) = β0l + ci + uij, l=1…L 
 
with notation as in 5.4.3 and 5.4.5.1.1  
 
5.4.5.1.3 Usual intake model 

The usual intake is calculated per level of the cofactor as described in 5.4.4  

5.4.5.2 Covariable  

5.4.5.2.1 Intake frequency model 

 
The model is: 
 
 logit(π) = β0 + β1 f(x1; df), 
 
where x1 is the covariable, f is a spline or polynomial function and df the degrees of freedom. The 
degree of the function is determined by backward or forward selection. 
 
5.4.5.2.2 Intake amount model 

 
The model is: 
 
 transf(yij) = β0 + β1 f(x1; df) + ci + uij, 
 
with notation as in 5.4.3 and 5.4.5.2.1  
 
5.4.5.2.3 Usual intake model 

The usual intake is calculated for user specified values of the covariable.  

5.4.5.3 Covariable and cofactor 

5.4.5.3.1 Intake frequency model 

 
The interaction model  is: 
 
 logit(π) = β0l+ β1l f(x1; df), l=1…L 
 
The main effect model is: 
 
 logit(π) = β0l+ β1 f(x1; df), l=1…L 

 
where x1 is the covariable, f is a spline or polynomial function and df the degrees of freedom. The 
degree of the function is determined by backward or forward selection. 
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5.4.5.3.2 Intake amount model 
 
The interaction model is: 
 
 transf(yij) = β0l+ β1l f(x1; df) + ci+ uij, l=1…L 
 
The main effect model is: 
 
 transf(yij) = β0l+ β1 f(x1; df) + ci+ uij, l=1…L 
 
with notation as in 5.4.3 and 5.4.5.3.1  
 
5.4.5.3.3 Usual intake model 

The usual intake is calculated for all levels of the cofactor for a number of values of the covariable.  
Back to: Chronic risk analysis 

5.4.6 Discrete/semi-parametric (ISUF) 

Nusser et al. (1996) describe how to assess chronic risks for data sets with positive intakes (a small 
fraction of zero intakes was allowed, but then replaced by a small positive value). The modelling 
allowed for heterogeneity of variance, e.g. the concept that some people are more variable than others 
with respect to their consumption habits. However, a disadvantage of the method was the restricted 
use to contaminated foods which were consumed on an almost daily basis, e.g. dioxin in fish, meat or 
diary products. The estimation of usual intake from data sets with a substantial amount of zero intakes 
became feasible by modelling separately zero intake on part or all of the days via the estimation of 
intake probabilities as detailed in Nusser et al. (1997) and Dodd (1996). In MCRA, a discrete/semi-
parametric model is implemented allowing for zero intake and heterogeneity of variance following the 
basic ideas of Nusser et al. (1996, 1997) and Dodd (1996). 
 
Nusser et al. (1996, 1997) describe a procedure for the assessment of chronic risks using non-normal 
dietary intake data. Principally, their method consists of four steps: 
1. transforming the daily intake data to approximate normality using a power function or log 

transformation 
2. fitting a grafted polynomial function to the power or log transformed daily intakes. The 

polynomial provides some flexibility against power transformed components that are still 
deviating from normality, 

3. estimating the parameters of the usual intake distribution in the transformed scale, and 
1. estimating the percentiles of the distribution of usual intakes in the original scale. 
Back to: Discrete/semi-parametric (ISUF) 
 

5.4.6.1 Power or log transformation  

To achieve a better normality, daily intakes are transformed. The user can choose a logarithmic 
transformation ( ( )yyft ln)( == , no parameters to be estimated) or a power transformation 

( γyyft == )( , one parameter to be estimated). In the latter case the optimal power is determined on 

the grid { }
100

1
5.3

1
3
1

5.2
1

2
1

5.1
1 ,...,,,,,,1,2,10 , with a further refinement grid search around the best fitting 

value. If a power 100
1 gives the best fit in this grid search, then the logarithmic transformation is 

selected (Note that a logarithmic transform corresponds theoretically to 0=γ ). The goodness of fit is 

determined by minimising the residual sum of squares: 
2

1 ))(( γβ yiz − of a regression of normal 

Blom scores on the power-transformed daily intakes. Normal Blom scores are (Tukey 1962): 
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where i is the rank of the nth non-zero daily intake, n, the total number of non-zero intakes and ( )⋅Φ −1  is 

the inverse of the standard normal cumulative distribution function. 
Back to: Discrete/semi-parametric (ISUF) 

5.4.6.2 Spline fit 

To achieve a better normality, a second transformation (optional) is performed: a spline function 

)(zgt = is fitted to the logarithmically or power transformed data t as a function of the normal Blom 

scores. The spline function is a grafted polynomial consisting of cubic polynomials between p = 3 
joint points (knots) and linear functions in the two outer regions. The daily intakes are transformed by 

interpolating from t to )(1 tgx −= , using the fitted spline function.  

After a successful transformation the daily intakes x will resemble Blom normal scores and their mean 
and total variance will therefore be approximately 0 and 1. The normality of the transformed values x 
is checked with the Anderson-Darling test. In the case of a spline transformation, if normality is 
rejected at the 85% confidence level, then the number of knots p is increased and the spline fit is 
repeated (until a maximum of 22 knots). 
Back to: Discrete/semi-parametric (ISUF) 

5.4.6.3 Estimation of the parameters of the usual intake distribution 

Variance components for between and within-consumer information are fitted to the transformed non-
zero daily intakes x using the model: 
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In this model the total variance of the daily intakes is divided into a between-consumer component 
and a within-consumer component. The within-consumer variance component can be heterogeneous, 
that is, it can be different for different consumers. In the model the between-consumer variance 

2

1σ and the mean and the variance of the within-consumer variance component distribution (
2

Bσ and 
2

Aσ ) are estimated using standard statistical methods (ANOVA). Further, a test statistic MA4 is 

calculated to test whether the heterogeneity of variances is significant (see Dodd 1996 for details). 

The estimate 
2

Bs of the between-consumer variance is the basis for the estimation of the distribution of 

usual intake. The distribution of usual intakes on non-zero intake days in the x scale is represented by 
a set of 400 normal Blom scores (which themselves represent the standard normal distribution) 

multiplied by s1: )(iBi zsx = . The same calculation is applied to user-requested percentiles 

)(1 pz p

−Φ= . 

Back to: Discrete/semi-parametric (ISUF) 

5.4.6.4 Back transformation and estimation of usual intake 

The 400+ values xi are back-transformed to the original scale. This is simple if no spline function has 
been estimated. If a spline function has been used, then it is a rather complicated procedure, because 
the spline function g was developed for daily intakes, not usual intakes. The following steps are made: 

1. First the 400+ values xi are expanded in a set of 9 * 400 values representing the distribution of 
daily intakes around each of the 400 points; 

2. These 9 * 400+ values are back transformed using the functions g and f , and the sets of 9 
values are then recombined (by weighted averaging) into 400 usual intake values yi ; 
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3. A spline function g1 ,especially adapted for usual intakes, is now fitted to the 400 data pairs 
(xi, ti), where )( ii yft = ; 

4. Finally the usual intakes on non-zero intake days are represented by the back-transform using 

this improved function: ))(( 1 ii xgfy = . 

 

The user-requested percentiles py are the additional values (i > 400) in the 400+ set. The 400 yi 

values define the cumulative distribution function by: 
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The distribution is adapted in order to account for days with zero intake of consumers (defined here as 
consumers who have a positive probability of intake on any day, and therefore a non-zero usual 
intake). This is done by estimating the distribution of individual intake probabilities. This distribution 
is approximated via a number of classes (e.g. 21 or 51, can be selected by the user) arranged by the 
proportion of days on which there is a positive intake (pm). Using a binomial distribution for each 

class, the fraction of consumers in each class ( Mmm ,...,0; =θ ) is estimated by optimising the fit 

of the predicted proportions of consumers with 0, 1, 2, ... intake days to the observed proportions. The 
number of parameters to be estimated is usually higher than the number of possible outcomes for a 
consumer (e.g. 3 when there are two days per consumer), and therefore a smooth approximation is 
made using a modified minimum chi-squared estimator. See Dodd (1996) for details. Only the 

fraction of non-consumers ( 0θ ) is estimated separately with no restriction to be similar to the other 

mθ . It can be noted that the distribution of individual intake probabilities can be better estimated 

when the number of days per consumer in the consumption survey becomes higher. With only 2 days 

per consumer the procedure gives a rather artificial distribution, often with an estimated 0θ of zero 

This step can be time-consuming. Therefore, the number of iterations in the estimation procedure can 
be limited by the user. In our experience it is not generally necessary to use 50,000 iterations as in 
Dodd (1996). 

The estimated distribution of individual intake probabilities ( Mθθ ˆ,...,ˆ
0 ) is used to transform the 

distribution of usual intake on non-zero intake days ( yF ) to the distribution of usual intake for 

consumers ( CF ) and finally to the distribution of usual intake for the entire population ( UF ). These 

transformations are based on the relation: 

 ∑
=

+=
M

m

mymU puFuF
1

0 )()( θθ  

which basically says that to obtain a certain level of usual intake u we should consider a different 
level ( u/pm ) for the class of consumers which consume only on a fraction pm of days. See Dodd 
(1996) for details of the computational procedure. Linear interpolation based on the 400 values of 

the yF distribution is then used to compute representations of the cumulative distribution functions for 

consumers only and the entire population. 
Back to: Discrete/semi-parametric (ISUF) 

5.5 Uncertainty analysis: resampling data sets and resampling from 

distributions 

In probabilistic risk assessment of dietary intake we use distributions which describe the variability in 
consumption within a given population of consumers and the variability of the occurrence and level of 
chemical compounds on the consumed foods. However, these calculations do not consider the amount 
of uncertainty that is due to the limited size of the underlying datasets. Typically, in a large number of 
simulations very many different combinations of consumption and compound concentrations are 
made. This leads to a smooth distribution of simulated intakes, and the impression of a very precise 
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estimation of intake percentiles or other quantities of interest. It is essential to realise that the accuracy 
of the inference depends on the accuracy of the basic data.  
 
When doing an uncertainty analysis in MCRA a number of iterations is chosen, and in each iteration 
new inputs are resampled for a complete Monte Carlo analysis: 

1. Datasets (concentration data, individual consumption data) are resampled from the original 
database (bootstrap methodology) 

2. Parametric inputs, such as processing factors and their variabilities are resampled from 
parametric distributions. 

5.5.1 Resampling datasets 

A computer-based instrument to assess the reliability of outcomes is the bootstrap (Efron 1979, Efron 
& Tibshirani 1993). In its most simple, non-parametric form, the bootstrap algorithm resamples a 
dataset of n observations to obtain a bootstrap sample or resampled set of again n observations 
(sampling with replacement, that is: each observation has a probability of 1/n to be selected at any 
position in the new resampled set). By repeating this process B times, one can obtain B resampled 
sets, which may be considered as alternative data sets that might have been obtained during sampling 
from the population of interest. Any statistic that can be calculated from the original dataset (e.g. the 
mean, the standard deviation, the 95th percentile, etc.) can also be calculated from each of the B 
resampled sets. This generates a uncertainty distribution for the statistic under consideration. The 
uncertainty distribution characterises the uncertainty of the inference due to the sampling uncertainty 
of the original dataset: it shows which statistics could have been obtained if random sampling from 
the population would have generated another sample than the one actually observed. 
 
In MC-modelling of acute risks two datasets are combined: consumption data and compound 
concentration data. It makes sense to apply resampling to both datasets separately, in order to 
characterise the uncertainty in the final intake. In MCRA the uncertainty algorithm (when selected) is 
applied to: 
1. the multivariate consumption patterns and associated body weights: actually the data set of 

consumer identifiers is resampled, and all consumer information (consumption patterns for all 
consumption days, body weight, and age) is coupled to the selected consumer identifiers.  

2. the univariate compound concentration data sets: these are resampled independently for all foods. 
In principle, the uncertainty algorithm is applied to the dataset consisting of both non-detects and 
positive values; in practice, for a dataset with n0 non-detects and n1 positive values, the number of 
positive values in a resampled set is obtained as a draw from a binomial distribution with 

parameter ( )101 nnn +  and binomial total 10 nn + . Then, this number of values is selected 

randomly from the set of n1 positive values. 
 
In MCRA the resulting uncertainty distribution of percentiles of the intake distribution is summarised 
by specifying empirical 2.5th , 25th, 75th and 97.5th percentiles. The outer percentiles constitute a 
central 95% confidence interval for the variability percentiles. However, for this it is necessary that 
the number of resampled sets B is high enough. The number of resampled sets  should be chosen 
depending on the confidence level wanted for the uncertainty interval. Typically 500-2000 resampled  
sets will be reasonable for a 95 % confidence interval (Efron & Tibshirani 1993, pp. 14-15, 275). 
 
The same uncertainty algorithm can also be applied to deterministic estimates which are calculated 
from data sets. For example the maximum concentration found in a resampled set will be different, if 
the actual maximum value in the original dataset has not been selected. Also data-based estimates of 
large portion and average body weight will vary. 
 

5.5.2 Resampling parametric distributions 

In MCRA 6 this is implemented for processing factors and the variability of processing factors. 
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Processing effects are modelled either by a fixed processing factor, or by a lognormal or logistic-
normal distribution (depending on the distribution type set in table Processingfactor).  
In the former case (fixed factor) the uncertainty distribution is lognormal or logistic-normal with the 

same mean μ as the fixed value, and with a standard deviation σunc which is calculated from the 
specified central; value (procnom) and an estimate of p95 of the uncertainty distribution 

(procnomuncupp). The calculation is σunc ={logit(procnomuncupp) – logit(procnom)}/1.645 in case of 

disttype 1 (logistic-normal distribution) and σunc ={ln(procnomuncupp) – ln(procnom)}/1.645 in case 
of disttype 2 (lognormal distribution). Values lower than 0.01 or higher than 0.99 (disttype 1 only) are 
replaced by default values (0.01 and 0.99); this is useful computationally to avoid problems. In each 
iteration of the uncertainty analysis a new value is drawn from this distribution to be used as a fixed 
factor in the Monte Carlo calculation. 
In the case of a processing factor distribution (describing the variability of processing factors) two 

uncertainties can be specified. First, the uncertainty about the central value μ can be specified as 
before using a parameter procnomuncupp. Secondly, the uncertainty about the variability standard 

deviation σvar can be specified by the number of degrees of freedom df of a modified chi-square 

distribution which is used to generate new values of σvar. Setting df very high means litte uncertainty, 

and  σvar will be almost equal in all iterations of the uncertainty analysis. Setting df close to 0 means a 

large uncertainty, and very different values of σvar  will be obtained in the iterations of the uncertainty 
analysis. 
 
Back to: Uncertainty analysis 

5.6 Binning 

Binning is a method to summarise the simulated data (total intake, intake per food, consumption per 
food, concentration per food) in frequency intervals for further use in deriving the intake distributions. 
The alternative would be to store observations for subsequent use, but this would require for moderate 
simulations already a large amount of storage capacity and an excessive administration. 
The mean value (mean) of the first, say 5%, of the total number of simulations is used to define the 
left limit of the central bin. For values above the mean, 1100 bins are used for storage. The upper 
limits of the upper bins are defined as 1% higher than the lower limit. So, for upper bin i the upper 
limit is calculated as mean x 1.01i. For values below the mean also 1100 bins are defined with lower 
limits defined by mean x 1.01-i. After the process of binning is completed, the quantile value of a 
specific percentile is determined by linear interpolation between the bin limits. These 2200 bins 
together provide efficient storage for numbers spanning more than 9 decades (1.012200=3.2x109), 
which should be amply sufficient for most practical problems. 
To get accurate results, it is rather important that the mean value of the first 5% of the simulations 
represents, approximately, the true mean of the sampled distribution. Therefore, the total number of 
simulations should not be chosen too small. During the simulation, if a simulated intake is higher than 
the upper limit, this value is replaced by the new maximum. 
When the mean value is missing, e.g. due to zero intakes, the program resorts to an average mean 
value, e.g. the average of the mean values of foods with nonzero intakes. 
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6  Selection of consumers and foods 
In the next sections, the centrally supplied database ‘validation.mdb’ is used. All tables are selected 
and data for survey DNFCS-3 and compound CHLORPYRIFOS are retrieved from the database. Find 
in Figure 49 the outcome of the selection. In total, 1230 foods are eaten. Application of the conversion 
algorithm shows that the number of derived foods is 33 + 43 = 76. Note that the selected foods do not 
depend on the choice of the compound. The retrieved foods are entirely determined by consumption 
patterns, e.g. the choice of a survey.  
The information in the lower part of the screen is related with the choice of the compound. Here, 
chlorpyrifos is selected and this compound is found on 33 derived foods. This means that there is at 
least one sample of each of the 33 foods with a positive concentration. On 43 derived foods only non-
detects are found. This means that for each of the 43 foods all samples were negative, i.e. no 
chlorpyrifos found. No worstcase values were found in the database.  
Check one of the two radio buttons to specify which foods must be used in the risk analysis. If non-
detects are not replaced by the LOR (see input form), the first and second radio button in Figure 49 
are equivalent. Note that the first button is computationally more efficient because less foods are 
involved.  
Press the ‘go’-button in Figure 49 to enter the central menu.  
 

 

Figure 49: Selected foods for survey DNFCS-3 and compound CHLORPYRIFOS 

 
With the subset-selection ‘go’-button in the MCRA central menu (see Figure 50) subset selections are 
made on the consumer population or on the foods. Through the use of scroll-down menus the user 1) 
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selects ages, weights and sexes (and covariable and cofactor if chosen) to define the population of 
consumers; 2) selects day(s) of consumption, foods, year, country and sampling type of the compound 
concentration data. In Figure 50 the subset-selection ‘show’-button shows all selected levels for those 
variables on which selections are active. The corresponding ‘clear’-button removes all selections 
already made. 
 
 

 

Figure 50: MCRA central menu, subset selection 

 
If you want to do the same type of analysis for one of the other options, click the to-overview-of-
conversion ‘go’-button in the centralmenu. 

6.1 Subset selection: consumers 

After clicking the subset-selection ‘go’-button in the MCRA central menu (see Figure 50) the first 
subset selection screen is shown (see Figure 51). Here, the consumer population is defined using 
characteristics on consumers (age, weight, sex, length and vegetarian). The first time, the 
characteristics of the total population are shown, so for age the minimum and maximum values are 1 
and 97 year (both current selection as database). Note that combining levels of variables occasionally 
results in empty subsets e.g. the combination of ages within the range 1 to 8 and weights in the range 
70 kg to 150 kg is an empty subset. So avoid making combinations of variables that yield empty 
subsets. The number of consumers currently selected is always mentioned in the screen, e.g. 6250 (see 
Figure 51). 
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Figure 51: MCRA subset selection: consumer population 

 
To make a selection of consumers, check one or more of the checkboxes and click the upper ‘go’-
button. The screen in Figure 52 appears after checking all checkboxes. Choose values for age, weight 
(the unit depends on the survey you are currently using, see table FoodSurvey in 9.4.3 ) or length and 
levels of sex or vegetarian. Change some levels and implement the changes by clicking the subset-
selection-based-on-chosen-levels ‘go’-button. The system automatically adjusts the levels of all 
variables. 
 

 

Figure 52: MCRA subset selection: select levels for consumers 
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For example, select a population between 1 and 6 years. The minimum and maximum weight is 8 and 
30 kg, respectively. The selected number of children is 530 (screens are not shown). If you want to 
include previously excluded levels in a further selection step, just click the radio button labeled 
‘database’ in the ‘select from:’-column and the original levels in the database are retrieved again. 
Note that age and weight are related, so results may be unexpected when combinations are selected 
which are inconsistent. So, in the children example, if you want to return to your original population, 
check for both age and weight the radio button ‘database’, check both checkboxes and press the ‘go‘-
button again. Then, your original population with 6250 consumers is selected again.  

6.2 Subset selection: consumption and concentration data 

Select the total population. The next screen shows you the current selected levels of each variable (see 
Figure 53). Also the levels of each variable stored in the database are shown. In our example, the 
number of derived foods with positive concentration values is 33 and these foods are derived from 
306 consumed foods.  
 
 

 

Figure 53: MCRA subset selection: consumption data and concentrations 

 
The subset selection screen for consumption and concentration data is used to select levels for a 
number of variables. Variables on which subset selection can be made are: 

• derived foods: to restrict the analysis to specific derived foods; 

• (consumption) day: to restrict typical consumption survey data to specific days (e.g. only the 
first); 

• year: to restrict the compound concentration data to specific years; 

• samplingtype: to include only compound concentration data from a specific samplingtype (i.e. 

monitoring); 

• country: to include only compound concentration data from foods originating from specific 
countries. 

• consumed foods: to restrict the analysis to specific consumed foods; 
 
In general, do not select combinations of levels which may result in empty subsets, e.g. grapefruits are 
not grown in the Netherlands. So, combination of these levels for foodname and country results in 
empty subsets. In this example, it is quite clear why things go wrong. Often it is less clear what you 
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might expect from a combination of levels, especially when ‘current selection’ is combined with 
‘database’ in order to retrieve the original levels for a variable, so be aware of empty subsets.  
The example is continued by checking the checkboxes for derived and consumed foods.Click the 
upper ‘go’button. A new screen appears with scroll-down menus for derived and consumed foods(see 
Figure 54) Choose the three BAMI GORENG foods in the first scroll-down menu and click the upper 
‘go’-button.  
 

 

Figure 54: MCRA subset selection: select levels 

 
The system automatically adjusts the levels of all variables: all foods that are not an ingredient of a 
BAMI GORENG food are removed as you can check by pressing the ‘show’-button in the central 
menu. Here, the steps above are repeated (check foodname checkbox and press upper button). In 
Figure 55, the selected foods are shown: LEMON, CELERY, ONION, SWEET PEPPER and 
CARROT are ingredients of BAMI GORENG foods. 
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Figure 55: MCRA subset selection: select levels 

7  On-line editing of data 
Instead of selecting data from a database stored in the central or user directory as discussed in 2.6.1 , 
it is also possible to edit data on-line. Choose ‘MCRA 6.0 (field trial data and Dutch consumption 
data)’ in the MCRA main menu (see Figure 2). Now you can add and edit your own concentration 
data on-line. You are able to combine your own concentration data with centrally supplied food 
consumption data; food codes for the concentration data are automatically generated from the food 
consumption database. 
From the central menu (see Figure 6), click the start-selection-of-consumption-and-compound-tables 
‘go’-button. Then the available databases are shown (see Figure 56).  
 

 

http://mcra.biometris.nl/mcra/_3.5/ft/usertype.asp
http://mcra.biometris.nl/mcra/_3.5/ft/usertype.asp
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Figure 56: Database selection menu, MCRA for field trial data 

 
Check one or more databases and click the ‘go’-button. The table selection menu appears (see Figure 
57). Its layout is changed and only tables related to consumption e.g. Foodconsumption, Foods and 
Individual are shown. It is compulsory to select these three tables (see also 2.6.1 ). Tables related to 
concentration data are not being displayed. Check ‘All Tables’ and the menus for on-line adding and 
editing data are reached. 
 

 

Figure 57: Table selection menu, MCRA for field trial data 

The first time, create a new database (see Figure 58). In all subsequent cases, databases created on-
line are shown in the scroll-down menu. Note that for a proper functioning of the editing menus only 
buttons and links in the window screen should be used. Do not use the 'back'-button in the toolbar 
during editing: this will mess up the order of the foods and a proper functioning of the menu is not 
guaranteed anymore. 
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Figure 58: Select database for concentration, create new database 

 
Specify the name of the database (see Figure 59 ) and press the ‘go’-button. Note you should only use 
letters and digits, no other characters are allowed. 
 

 

Figure 59: Select database for concentration, specify a new database name 

 
If you have entered compound concentrations on earlier occasions, Figure 60 appears. If not the ‘list 
or add  variability factors’, ‘list or add processing factors’ and ‘list or edit ARfD or ADI’-buttons are 
not available.  
Click the ‘list-or-add-concentrations’-button and a screen displaying an add-records link and a 
message ‘*** Concentration database is empty, add records ***’ is shown (only if you did not enter 
concentration values before). 
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Figure 60: Select data 

7.1 List or add concentrations 

Click the ‘list or add concentrations’-button to add compound concentration values. Specify the name 
of a compound (see Figure 61) if you are entering values for the first time.  

 

Figure 61: Specify compound name 

 
The menu for specifying a compound name is skipped when the database already contains compound 
concentration values. Select a food in the scroll-down menu, add compound concentration values (see 
Figure 62 ) and click the enter-food ‘go’-button. 
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Figure 62: Select food 

 
In Figure 63, for food Banana and compound Chlorpyrifos, the number of samples and the 
concentration value are entered. After saving this record, a message ‘*** one record added ***’ 
appears and another concentration value may be entered. Alternatively, click the select-new-food 
‘go’-button for entering values for a new food. 

 

Figure 63: Enter concentration data 

 
Click the list-records link (see Figure 63) for an overview of the compound concentration values in 
the database  (see Figure 64).  
 
 
 



 93 

 

Figure 64: List concentration values 

 
Click a button displaying the row number to retrieve a record. The value for the number of samples or 
the compound concentration value may be changed. Save or delete the record or choose a new food 
(see Figure 65). 
 

 

Figure 65: Edit concentration value 

7.2 List or add variability factors 

After supplying all compound concentrations values, click the back-to-fieldtrial-data-menu link (see 
Figure 63), and go back to the select data menu (see Figure 60). Now all foods are known and adding 
of variability factors, processing factors and ARfD/ADI values may be started. After entering all 
values, it still remains possible to supply new concentrations values for old and/or new foods. The 
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process of entering variability factors and/or processing factors for new foods may be repeated as 
well.  
Click the ‘list or add variability factors’-button. If the database does not contain any variability 
factors, a message ‘*** Variability database contains no records yet ***’ is displayed. Click the add- 
records link and enter the menu for adding variability factors (see Figure 66). The variability factor 
and the number of units of the composite sample should be specified. For each food in the 
concentration table, values should be supplied. Only foods for which no values are supplied are 
displayed and the process of supplying values is repeated until all necessary values are given. Then 
and only then, the message ‘*** Variability factors are specified for all foods present in the 
concentration table ***’ or ‘*** For all foods, variability factors are already specified ***’ is 
displayed. Records may be changed afterwards by clicking one of the buttons in the listing menu.  
 

 

Figure 66: Variability factors 

7.3 List or add processing factors 

In Figure 67 the menu for entering processing factors is displayed. If you did not enter any values 
before, a message ‘*** Processing factor database contains no records yet ***’ is displayed. Click the 
add-records link. Select from the scroll-down menu a processing type, enter a processing factor and 
save the record. Repeat this step until the message ‘All factors for Banana are specified’ appears and 
click the select-next-food ‘go’-button. 
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Figure 67: Processing factors 

 
To finish on-line editing for a food, click the ‘select-next-food’-button and continue entering values 
for the next food. It is not necessary to enter values for all combinations of foods and processing 
types: missing processing factors are by default replaced by value 1 (worst case scenario).  
To enter processing factors for only a few number of foods and processing type combinations, enter 
your values and click repeatedly the ‘select-next-food’-button until the message ‘*** Processing 
factors for foods are specified ***’ is displayed. If you want to enter values at a later stage, just click 
the ‘list or add processing factors’-button in the select data menu. A list of processing factors found in 
the database is given and after clicking the add-records link, new processing values may be entered. 
Note that the scroll-down menus are dependent on the food and contain only those processing types 
for which no values are supplied. Records may be changed afterwards by clicking one of the buttons 
the listing menu.  

7.4 List or edit ARfD or ADI 

Click the ‘list or edit ARfD or ADI’-button in Figure 60 to enter values for the acute reference dose 
(ARfD) or average daily intake (ADI). This brings you to Figure 68. 
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Figure 68: ARfD and ADI  
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9  APPENDIX A: Preparing the data 

9.1 Overview 

MCRA requires that all information needed for a risk assessment is stored in MS Access databases. 
Data are organised into tables which are divided into 3 groups with information on  

• food consumption data;  

• compound concentration data, and  

• linking and additional data.  
 
See Table 21 for an overview. To run MCRA, tables called ‘required’ should always be supplied. 
Selection of ‘additional’ tables depends on subset requirements (see Ch. 5 ) and model specifications 
(see Ch. 3 ).  
 

Required tables (minimal configuration) 
Food 
 

Food consumption 

FoodConsumption 
Individual 
 

Concentration of compounds 

Compound 
 
Country 
 

One and only one of: 
ConcentrationValues 
ConcentrationSummaryStatistics 
ConcentrationDiscreteValues 

food codes and labels (see 9.3.1 ) 
 
Description 

consumption of foods (see 9.4.1 ) 
consumer characteristics (see 9.4.2 )  
 
Description 

compound codes, labels, agricultural and toxicological limits (see 
9.5.1 ) 
country codes, labels (see 9.5.2 ) 
 
 
compound concentration data (full data) (see 9.5.3 ) 
compound concentration data (as summary statistics) (see 9.5.4 ) 
compound concentration data (table of frequency counts) (see 9.5.5 ) 
 

Additional tables (for querying or specific options) 
FoodProperties 
FoodComposition 
FoodMarketShare 
 

Food consumption 

FoodSurvey 
ProcessingType 
Processing 
 
Concentration of compounds 

VariabilityProd 
VariabilityCompProd 
VariabilityProcCompProd 
 
AgriculturalUse 
 
ConcentrationWorstcaseValues 

food codes and labels, and food specific information(see 9.3.2 ) 
food codes and labels, compositions (see 9.3.3 ) 
food codes and labels, marketshares (see 9.3.4 ) 
 

Description 

Name of survey (see 9.4.3 ) 
processing codes and labels (see 9.4.4 ) 
processing factors (see 9.4.5 ) 
 
Description 

unit variability factors (see 9.5.6 )  
unit variability factors, compound-specific (see 9.5.7 ) 
unit variability factors, processing- and compound-specific  
(see 9.5.8 ) 
information on the agricultural use of compounds (e.g. use allowed, 
percent crop treated) (see 9.5.9 ) 
information on worstcase values (e.g. compound and food specific 
worstcase values) (see 9.5.10 ) 

Table 21: Overview of tables 
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Tables are organised into columns (fields) and rows (records). In the next paragraphs, the format of 
tables is described.  
 
General remarks: 

• Table and column names should be exactly as indicated in the sections below and each table 
should contain all fields, except for tables ConcentrationSummaryStatistics (see 9.5.4 ) and 
ConcentrationDiscreteValues (see 9.5.5 ). 

• Missing values are indicated with code 9999, unless stated otherwise. In general, an empty cell 
is also interpreted as a missing value. Occasionally, the use of empty cells leads to errors in 
retrieving data. Therefore, it is advised to use the code 9999 to indicate missing values 
 

In sections 9.3 , 9.4  and 9.5  the format is explained: the table name is given followed by field names 
and a description with in parentheses the datatype. Each section ends with some notes and an 
example. 

9.2 Harmonised CODEX codes 

In the MCRA program we use harmonised CODEX codes in the interest of Pan-European risk 
assessment. This coding offers flexibility to enter food consumption data and chemical concentration 
data at any desired level of food coding (e.g. food as eaten, ingredient, raw agricultural commodity, 
processed food, brand level, etc.). 

9.2.1 Definitions 

A food code is a string consisting of symbols: 

• letters (case-unsensitive, so x and X are the same letter),  

• digits, and/or  

• special symbols, such as ~!#$^&*()+-=[]{};’:”,./<>?` 
 
Some special symbols are reserved for special use (see below), and can not be used freely in own 
codes: 

• & 

• $ 

• - 

• * 
 
Some symbols are not allowed at all, because this would interfere with the way the strings are 
analysed: 

• % 

• _ 

• @ 
 
The first symbol should be: 

• a letter (indicates a CODEX code or a code derived from a CODEX code), or 

• & followed by a 2-letter country code (indicates a national food code) 
 
CODEX codes start with two letters and four digits, and should comply with the CODEX 
Classification of foods and animal feeds. The code XX9999 (usually followed by a subtype code) can 
be used for all foods which cannot be placed in the Codex classification system. 
 
Any code (CODEX code or national code) can be followed by: 

• $ plus a subtype code, and/or 

• - plus a processing code 

• *- plus a processing code. Here the asterisk (*) serves as a wildcard for the preceding code: 
the processing information is valid for all codes that start with the code preceding the *. 
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Subtype codes and processing codes can have any format. Multiple levels of subtype code are allowed 
(e.g. &NL00$123$456). Only one level of processing code is allowed (e.g. FP0226-2). Subtype codes 
should precede processing codes (e.g. &NL00$123$456-2).  
 
Within EU-Safefoods we will harmonise subtype codes and processing codes as far as they apply to 
CODEX codes. For this purpose lists will be maintained at RIKILT, and any new subtype code or 
processing code is checked against this list, and when found appropriate added to this list. 
 
The table Food has to contain descriptive names for all food codes that occur in the tables 
FoodConsumption and Concentration..... and that the user wants to include in the analysis. Names 
will be in English, but an additional column with alternative names can be used. 

9.2.2 Conversion of codes 

We distinguish 3 types of food code conversion, which may be provided in three different tables: 
1. Food processing (table Processing) 

Processing factors will be applied to concentration data. 
2. Food composition (table FoodComposition) 

Composition percentages will be used to transform the consumed amounts. 
3. Subtypes/ Market share (table FoodMarketShare) 

Market share percentages will be used for as probabilities of selecting concentration data for 
each of the subtypes. 

9.2.3 Conversion rules 

• For each code in the FoodConsumption data set try to find the most appropriate 
concentration information by searching information in a specific order according to the steps 
in the scheme below.  

• If a code is converted into one or more other codes, then for any such other code re-start the 
search scheme before continuing to the next step or substep in the scheme with the old code.  

• The search is ended if concentration data have been found for code or as many as possible 
derived codes. When a code is converted to multiple new codes (composition, subtypes), then 
the search continues for all these new codes. 

• If no link can be made to concentration data, then the consumption of this code is considered 
irrelevant for the current intake assessment. 

 
In 9.2.4 a scheme is given to link the food consumption and compound concentration data.  
 

9.2.4 Scheme to link food consumption and compound concentration data 

Find in Figure 69, an schematic outline of the search for food codes. After a successful search, the 
code is found in one of the concentration values tables. If the code is not found, searching starts in one 
of the link tables. If the code is found, the search starts again in one of the concentration values tables 
and the search is repeated. If a code is not found at all, the search for a code is unsuccessful. 
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Figure 69: Link scheme to find CODEX codes 

 

Step 1. (Identical code) 
Try to find code in the field foodmeasured of the ConcentrationValues (9.5.3 ), 
ConcentrationSummaryStatistics (9.5.4 or ConcentrationDiscreteValues (9.5.5 ) table. If found, 
the search is ended successfully. (Note that one and only one of these tables should be present. These 
were formerly referred to as full data, summary data and histogram data, respectively) 
 
Step 2. (Processing link) 

a. Try to find code in the field foodprocessed of the Processing table (9.4.5 ), and convert to 
the code specified in the field foodunprocessed. 

b. (wildcard match) Try to find a wildcard match code in the field foodprocessed of the 
Processing table. Wildcard match codes consist of an initial string (startcode, may be empty), 
an asterisk (*), and possibly a processing part (-processingtype). * may be any string endcode 
(not containing a -) such that code equals startcodeendcode or startcodeendcode-

processingtype. 
a. If code contains a processing part (-processingtype), then the wildcard match code 

should also end with -processingtype. Convert to the code specified in the field 
foodunprocessed, where endcode is substituted for any * in the new code. 

b. If code contains no processing part, then the wildcard match code should also contain 
no processing part. Convert to the code specified in the field foodunprocessed, 
where endcode is substituted for any * in the new code. 

 
Step 3. (Food composition link) 

a. Try to find code in the field food of the Foodcomposition table (9.3.3 ), and convert to one or 
more ingredient codes found in the field ingredient 

b. If code contains a processing part (maincode-processingtype), then try to find maincode in the 
field food of the Foodcomposition table. Convert to one or more ingredient codes and add -
processingtype to the new codes. 

 

 not found found

Consumed foods 
- FoodConsumption 
 

unsuccessful 
search 

Measured foods (step 1, Identical code) 
- ConcentrationValues 
- ConcentrationSummaryStatistics 
- ConcentrationDiscreteValues 

linking information: 
- Processing link (step 2) 
- Food composition link (step 3) 
- Subtype link (step 4) 
- Supertype link (step 5) 
- Default processing factor 1 (step 6) 
- Worst case value (step 7) 
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Step 4. (Subtype link) 
Starting from code, try to find subtype codes equal to code$* in the field foodtype of the 
FoodMarketShare table (9.3.4 , where the strings represented by the wildcard are not allowed to 
contain a $ themselves (meaning that we look only for codes one level down in the type hierarchy). 
Check that for the selected codes the market share percentages in the field marketshare% sum to 
100%.  

If this is not OK, then the result depends on the user option “Allow conversion to subtypes 
not summing to 100% and rescale”.  

1. If this option is allowed, then the marketshare percentages are rescaled to a sum 
of 100 %.  

2. If this option is not allowed, then the search in step 4 is considered unsuccessful. 
 

Step 5. (Supertype link) 
This step will only be taken if the user has explicitly allowed this option.  

a. If code contains a subtype part but no processing part (maincode$subcode), then convert to 
maincode. 

b. If code contains a subtype part and a processing part (maincode$subcode-processingtype), 
then convert to maincode-processingtype. 

 
Step 6. (Default processing factor 1) 
If code contains a processing part (-processingtype), then remove it. 
 
Step 7. (Worst case value) 
This step will only be taken if the user has explicitly allowed this option.  
Try to find code in the field food of the ConcentrationWorstcaseValues table (9.5.10 ). If found, the 
search is ended successfully. 

9.2.5 Example of use 

The FoodConsumption table (9.4.1 ) may contain &NL070251  (Apple pie Dutch): 
 

individual dayofsurvey foodconsumed amountconsumed foodsurvey

1012 1 &NL070251   150 DNFCS 

 
If measurements are available for FP0226$Elstar (Apple Elstar), FP0226$JonaGold (Apple JonaGold) 
and GC0654 (Wheat), then we need a conversion. 
 
The FoodComposition table (9.3.3 ) may then specify the composition data that apple pie contains 
peeled apple and wheat: 
 

food ingredient proportion%

&NL070251  FP0226-2   58.09 

&NL070251  GC0654 14.52 

 
The Processing table (9.4.5 ) may contain a processing factor for peeling of apples: 
 

compound foodprocessed foodunprocessed proctype procnom procupp 

120701 FP0226-2 FP0226 2 0.3 0.5 

 
where the field proctype specifies explicitly the type of processing (2 = peeling in this case), and 
fields procnom and procupp are processing factor nominal and upper values. 
The FoodMarketShare table (9.3.4 ) may contain market shares for subtypes of apple: 
 

foodtype marketshare% 

FP0226$Elstar 30 
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FP0226$JonaGold 70 

 
Finally, the ConcentrationValues table (9.5.3 ) should then contain measured concentrations for 
FP0226$Elstar (Apple Elstar), FP0226$JonaGold  (Apple JonaGold) and GC0654 (Wheat): 
 

compound foodmeasured year month samplingtype country numberofsamples value

120701 FP0226$Elstar   2006 11 M NL 1 0.34

120701 FP0226$Elstar   2006 11 M NL 6 -0.01

120701 FP0226$JonaGold  2006 11 M NL 1 0.20

120701 FP0226$JonaGold  2006 11 M NL 1 0.05

120701 GC0654 2006 11 M NL 6 -0.01

 
The Food table (9.3.1 ) should at least contain the following entries: 
 

food foodname 

&NL070251   Apple pie Dutch 

FP0226$Elstar   Apple Elstar 

FP0226$JonaGold  Apple JonaGold 

GC0654 Wheat 

 
Note that entries for intermediate stages such as FP0226-2 or FP0226 are not obligatory. 
 

9.3 Food tables 

9.3.1 Food (compulsory) 

field name description 

food (text) 
foodname (text) 
foodname2 (text, optional) 

food code 
food label 
alternative food label, e.g. national language  

• Foodname2 is used for alternative foodnames. 
 
Example: 

 
 

9.3.2 FoodProperties (optional, (for unit variability compulsory)) 

field name description 

food (text) 
foodname (text) 
unitweight (number) 
edibleportion (number) 
largeportion (number) 

food code 
food label 
nominal weight of a unit (gr) 
edible portion (corrected large portion weight, gr) 
weight of a large portion (gr) 

• For unknown nominal unit weight use value 0. 

• Missing values for edibleportion and largeportion: 9999. 
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Example: 

 
 

9.3.3 FoodComposition (optional) 

field name description 

food (text) 
ingredient (text) 
proportion% (number) 

food code 
ingredients of the food 
proportion of each ingredient in the food (in percentages) 

• Specifies the composition of foods and corresponding proportions. 
 
Example: 

 
 

9.3.4 FoodMarketShare (optional) 

field name description 

foodtype (text) 
marketshare% (number) 

subtype of food 
market share of each subtype (in percentages) 

• Specifies food marketshares of subtypes. 
 
Example: 

 
 

9.4 Food consumption tables 

9.4.1 FoodConsumption (compulsory) 

field name description 

individual (number) 
dayofsurvey (number) 

consumer identification number  
day (sequential number in food consumption survey) 
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foodconsumed (text) 
amountconsumed (number) 
foodsurvey (text) 

food code 
consumed portion of food (g) 
name of survey 

• Contains data on consumed foods. Days without consumptions are not recorded. The number of 
available days per consumer is inferred from this table and is assumed to be the same for each 
consumer in the survey. 

• No missing values allowed. 
 

Example: 

 
 

9.4.2 Individual(compulsory) 

field name description 

individual (number) 
foodsurvey (text) 
age (number) 
weight (number) 
sex (text) 

consumer identification number  
name of survey  
age (e.g. in years, months or days) 
body weight (e.g. in kg or g) 
gender 

• Specify in table FoodSurvey (see 9.4.3 ) the unit for age and weight. 

• No missing values allowed. 
 
Example: 

 
 

9.4.3 FoodSurvey (optional) 

field name description 

foodsurvey (text) 
year (number) 
country (text) 
agein (text) 
weightin (text) 

name of survey 
year of survey  
country of survey 
unit of age  
unit of weight 

• Defines characteristics of the survey. 

• No missing values allowed. 
 
Example: 
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9.4.4 ProcessingType (optional, (for processing compulsory)) 

field name description 

proctype (number) 
procname (text) 
disttype (number) 
 
 
 
 
 
bulkingblending (number) 

code of processing type 
description of processing type 
indicator (1/2): 

• simulated processing factors are restricted to the interval 
(0,1) using a logistic-normal distribution (1),  

• or simulated processing factors are restricted to positive 
values using a log-normal distribution (2) 

indicator (0/1): 
for types of processing applied on large batches, e.g. juicing, 
sauce/puree (obligatory),  

• 0 =  no bulking/blending ;  

• 1 = bulking/blending 

• Information on bulking and blending is only relevant for modelling of processing effects in 
combination with unit variability and IESTI calculations, but should always be present in the table 
even when these effects are not explored. 

• No missing values allowed. 
 
Example: 

 
 

9.4.5 Processing (optional) 

field name Description 
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compound (text) 
foodprocessed (text) 
foodunprocessed (text) 
proctype (number) 
procnom (number) 
 
procupp  
(number, optional) 
 
 
procnomuncupp  
(number, optional) 
 
procuppuncdf  
(number, optional) 
 
procuppuncupp1 

(number, optional) 
 

compound code 
food code processed 
food code unprocessed 
code of processing type  
nominal value (best estimate of 50th percentile) of processing 
factor (defines median processing factor) 
upper value (estimate of 95th percentile or “worst case” estimate) of 
processing factor due to variability  
(from procnom and procupp a standard deviation for variability of 
the processing factor is derived) 
upper 95th percentile of procnom due to uncertainty  
(from procnom and procnomuncupp a standard deviation for 
uncertainty of procnom is derived) 
degrees of freedom of a chi-square distribution describing the 
uncertainty of the standard deviation for variability of the 
processing factor  
upper 95th percentile of procupp due to uncertainty 
(from procnom, procupp, procnomuncupp and procuppuncupp the 
degrees of freedom of a chi-square distribution describing the 
uncertainty of the standard deviation for variability is derived) 

• This table is only relevant when the input option for processing is set to fixed or distribution. 

• When the input option is set to fixed then in addition to the information in the first four columns 
only procnom or procupp needs to be specified. If both are specified the highest value will be 
used (worst case argument). For use in an uncertainty analysis also procnomuncupp may be 
specified. 

• When the input option is set to distribution then in addition to the information in the first four 
columns procnom and procupp have to be specified describing the variability of processing 
factors. For use in an uncertainty analysis also procnomuncupp and/or procuppuncdf (or 
procuppuncupp1) may be specified. 

• procupp should be higher than procnom. 

• procnomuncupp should be higher than procnom. 

• procuppuncupp should be higher than procupp. 

• procuppuncdf should be positive, with values close to zero defining maximum uncertainty, and 
high values defining minimal uncertainty. 

• Values lower than 0.01 are reset to 0.01; for processing types with disttype 1 (logistic) values 
higher than 0.99 are reset to 0.99. 

• Procuppuncdf and procuppuncupp are alternative ways to specify uncertainty for the variability of 
processing factors1. The variability of processing factors is described by a standard deviation (at a 
logistic or logarithmic scale), and its uncertainty is described by setting the degrees of freedom 
(procuppuncdf) of a modified chi-squared distribution (see van der Voet and Slob, 2007 for an 
example). Alternatively, an upper uncertainty percentile on the upper variability percentile 
(procuppuncupp) can be specified, from which the appropriate number of degrees of freedom  is 
derived by simulation1. 

• If a value for procuppuncdf is specified, procuppuncupp will be ignored. 
 
Example: 

 

                                                      
1 This option is not implemented in the first release of MCRA 6.0 and will be implemented later. 
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9.5 Compound concentration tables 

9.5.1 Compound (compulsory) 

field name Description 

compound (text) 
compoundname (text) 
arfd (number) 
adi (number) 
unit (number, optional) 

compound code 
compound label (name of compound) 
ARfD (acute reference dose), in microgr/kg bw/day 
ADI (acceptable daily intake), in microgr/kg bw/day 
-6 (default) or -9, see below 

• Missing values for ARfD and ADI: 9999. 

• Column unit contains a coding to determine the unit as used for compound concentration data and 
dietary intake. Coding is as follows:  

 
 
 
 

• If column unit doesn’t exist code -6 is assumed 
 
Example: 

 
 

9.5.2 Country (compulsory)  

field name Description 

country (text) 
countryname (text) 

code for country 
name of the country, label 

• No missing values allowed 
 
Example: 

 
 

9.5.3 ConcentrationValues  (optional) 

field name description 

compound (text) 
foodmeasured (text) 
year (number) 
month (number) 
samplingtype (text) 
country (text) 
numberofsamples (number) 
 
value (number) 

compound code 
food code 
sampling year 
number of month  
type of sampling (monitoring) 
country of sample 
count of the number of times the specified concentration or limit of 
reporting (LOR) occurs  
concentration (mg/kg) or LOR (see below) 

 -6 -9 
concentration: mg/kg microgram/kg 

intake: microgram/kg bw/day nanogram/kg bw/day 
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• The limit of reporting is specified in column value using a minus (-) sign to make the distinction 
between a measured concentrations, e.g. –0.02 (see example first row). 

• Concentration values are stored in column value and the number of times each value occurs in 
column numberofsamples, e.g. 0.21 and 1, respectively. 

• Missing LORs are reported as –9999. The MCRA program replaces missing LORs with 1) the 
maximum LOR found in the database, 2) if all LORs are missing, the lowest concentration found 
in the database. A warning is generated when 1) and 2) are not possible. 

• No missing values allowed for the other columns. 
 
Example: 

 
 

9.5.4 ConcentrationSummaryStatistics (optional) 

field name description 

compound (text) 
foodmeasured (text) 
country (text) 
limitofreporting (number) 
numberofsamples (number) 
numberofpositives (number) 
the mean: mean or meanall 
(number) 
the median: med or medall 
(number) 
max (number) 
the variance: var or varall 
(number) 
the percentile: perc or percall 
(number) 
percentile (number) 

compound code 
food code 
code for country 
limit of reporting (mg/kg) 
size of sample (detects and non-detects) 
number of positive concentration values (detects) 
statistic for the mean  
 
statistic for the median 
 
statistic for the maximum 
 
statistic for the variance 
 
statistic for the percentile  
specifies the percentage of the statistics perc and percall 

• Field names mean, meanall, med, medall, max, var, varall, perc, percall and percentile are 
optional and their order is free. Not all statistics need to be present in the table. See also last 
bullet. 

• Statistics ending on ‘all’ refer to statistics based on all samples including non-detects 
(concentrations below LORs), while statistics without suffix ‘all’ relate to statistics based on 
nonzero samples (non-detects) only.  

• The use of equivalent statistics, like mean and meanall, for one food in the same row is not 
allowed.  

• Be aware that statistics should be consistent e.g.: med is always smaller than mean; the 

calculated mean (nonzero samples only) that is derived from statistic meanall should be smaller 
than max; specifying medall implies that more than half the number of samples are detects 
(numberofpositives); specifying percall implies that the number of detects (numberofpositives) is 
greater than the percentage specified in column percentile.  

• Missing LORs are reported as –9999. The MCRA program replaces missing LORs with 1) the 
maximum LOR found in the database, 2) if all LORs are missing. A warning is generated when 1) 
and 2) are not possible. 
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• Missing statistics are reported as 9999. Columns containing only missing values are not allowed 
and should be deleted. 

 
Example: 

 
 

9.5.5 ConcentrationDiscreteValues (optional) 

field name description 

compound (text) 
foodmeasured (text) 
country (text) 
limitofreporting (number) 
numberofsamples (number) 
c%01 (number) 
c%02 (number) 
c%05 (number) 
c%1 (number) 
c%2 (number) 
c%5 (number) 
c1 (number) 
c2 (number) 
c<xxx> (number) 
c<xxx> (number) 
c<xxx> (number) 
cE10 (number) 

compound code 
food code 
code for country 
limit of reporting (mg/kg) 
size of sample (detects and non-detects) 

• number of samples with a concentration between the value 
extracted from the field name of the previous column 
(exception: for the first column a value 0 is taken) and the 
value extracted from the field name in the current column 
(mg/kg). 

 

• classes (i.e. columnnames) are free to choose so c<xxx>… 
may be replaced with any appropriate concentration e.g. 
c5, c10 etc. 

• Field names representing the number of frequency counts are constructed as follows:  
c = indicates class limit, 
% = represents the decimal point (if necessary), 
xx = is the value of the class limit. 

Thus: field name c%02 specifies class limit 0.02, field name c2 specifies class limit 2, field name 
cE10 specifies class limit 1*1010. 

• The number of non-detects measurements is given as the difference between the 
numberofsamples and the sum of frequency counts, e.g. see example first record 377 – 1 = 376,. 

• Missing LORs are reported as –9999. The MCRA program replaces missing LORs with 1) the 
maximum LOR found in the database, 2) if all LORs are missing…... A warning is generated 
when 1) and 2) are not possible. 

• For columns numberofsamples, c%02…cE10 no missing values is allowed: classes without 
frequency counts are reported as 0. When no data are available for a food, delete the entire row.  

 
Example:  

 
 

9.5.6 VariabilityProd (optional) 

field name description 

food (text) 
varfac (number)  
coefvar (number) 

food code 
variability factor 
coefficient of variation 
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nounitcomp (number) number of units in the composite sample 

• This table is used for specifying real empirical estimates of unit variability (e.g. from special 
studies) for the lognormal and the beta distribution and the number of units in a composite 
sample. 

• Estimates for unit variability are independent of the compound.   

• Missing values: 9999 

• When the parameter for unit variability is a coefficient of variation and the number of units equals 
1, unit variability is ignored for this food. 

 
Example: 

 
 

9.5.7 VariabilityCompProd (optional) 

field name description 

compound (text) 
food (text) 
varfac (number) 
coefvar (number) 
nounitcomp (number) 

compound code 
food code 
variability factor 
coefficient of variation 
number of units in the composite sample 

• This table is used for specifying real empirical estimates of unit variability (e.g. from special 
studies) for the lognormal and the beta distribution that are dependent on the compound. Values 
for unit variability in table VariabilityProd are replaced by the new ones.  

 
Example: 

 
 

9.5.8 VariabilityProcCompProd (optional) 

field name description 

compound (text) 
food (text) 
proctype (number) 
varfac (number) 
coefvar (number) 
nounitcomp (number)  

compound code 
food code 
processing type code 
variability factor 
coefficient of variation 
number of units in the composite sample 

• This table is used for specifying real empirical estimates of unit variability (e.g. from special 
studies) for the lognormal and the beta distribution that are dependent on the combination of 
processing type and compound. Values for unit variability in table VariabilityProd and 
VariabilityCompProd are replaced by the new ones. This can be used for example to reset the 
variability factor to 1 for grape juice and raisins (dried grapes). 
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Example: 

 
 

9.5.9 AgriculturalUse (optional) 

field name description 

compound (text) 
food (text) 
country (text) 
year (number) 
useallowed (number) 
 
perccroptreated (number) 

compound code 
food code 
code for country 
year 
indicator (0/1) whether use of the compound for the food is allowed (1) 
or not (0) 
maximum percentage of the food that is treated with the compound 

• For combinations of compound and foods that are not listed in table AgriculturalUse MCRA will 
assume that use is not allowed. 

 
Example: 

 
 

9.5.10 ConcentrationWorstcaseValues (optional) 

field name description 

compound (text) 
food (text) 
country (text) 
year (number) 
worstcasevalue (number) 

compound code 
food code 
code for country 
year 
worstcase value 

• When information on detects and non-detects is missing, worstcase values may be used. 
 
Example: 
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10  APPENDIX B:  Example output  
Appendix B shows more output examples. For the acute risk assessment the example of 4.1  is used, 
for the chronic risk assessment the example of 4.2 . 

10.1 Acute risk assessment: processing fixed factors 

In this example output is shown for an acute risk assessment for Chlorpyrifos. In paragraphs 10.2 unto 
10.7 the same data as in 4.1 are used. Set the ‘processing factors’ option is to processing (fixed 
factors). Table 22 lists the main options: 
 

Input form   

Compound CHLORPYRIFOS 
risk type acute 
uncertainty analysis no 
concentration model empirical 
number of Monte Carlo simulations  100000 
unit variability model no unit variability 
random seed 0 
intake model only empirical estimates 
concentration data: 
processing factors 

 
processing (fixed factors) 

additional system defaults 
output system defaults 

Table 22: Input form options: processing 

 
In Table 23, find the main characteristics concerning this analysis taken from the ‘Additional output’ 
file. Note that the number of foods and processing combinations is 11 whereas the number of foods is 
9. 
 

‘Additional output’ file  

Number of foods 9 
Acute reference dose (ARfD) 100 
Average daily intake (ADI) 10 
Number of detects 665 
Number of non-detects 3267 
Number of foods and processing 
type combinations 

 
11 

No of consumers 6250 
Population characteristics,  

minimum age 
 
1 

maximum age 97 
minimum weight 8 
maximum weight 150 
sex female, male 

Total no of consumption days 12132 

Table 23: Information in ‘Additional output’ file 

 
For a summary of the data, see Table 5. In Table 24 you find a summary of the simulated intakes. 
Compared to Table 6, this table contains a second section with information on processed foods only. 
Find an additional column (ProcFact) with, for fixed factors, the value of the fixed processing factor 
and for distribution based factors, the mean of the sampled processing factor values.  
 
 
---------------------------------------------------------------------------------------------- 
Summary of simulations of consumptions and compound concentrations with respect to: 
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Compound:  CHLORPYRIPHOS 
 
---------------------------------------------------------------------------------------------- 
 
Code         : food code 
Food         : food label 
----------------------------------------------------------------------- 
MeanConsum   : average consumption, all consumers, all days 
DeltaC       : difference (%) compared to average consumption 
               in database 
MeanConsDays : average consumption, consumption days only 
NConsDays    : number of consumption days in the data set 
NDays        : total number of days 
%ConsDays    : percentage consumption days 
----------------------------------------------------------------------- 
MeanConcen   : mean concentration in simulations with positive amount consumed 
               (after processing) 
DeltaR       : difference (%) compared to average concentration 
               in database 
NSamplPos    : number of positive concentrations in simulations with positive 
               amount consumed 
NSamples     : total number of concentration measurements 
               (detects and non-detects) in simulations with positive 
               amount consumed. 
%SamplPos    : percentage positive concentrations 
ProcFact     : mean processing factor 
---------------------------------------------------------------------------------------------- 
 
 
 
 
Food consumption data 
 
        Code  Food               MeanConsum  DeltaC   MeanConsDays   NConsDays       NDays   %ConsDays 
                                        (g)     (%)            (g)                                 (%) 
      FB1235  TABLE-GRAPES            12.99    -1.8          33.51       38776      100000        38.8 
      FC0203  GRAPEFRUIT,              4.05    -0.4          28.29       14308      100000        14.3 
      FC0204  LEMON, SEE A             1.56     1.1           4.21       37039      100000        37.0 
      FC0206  MANDARIN, SE             8.80    -0.4          41.09       21404      100000        21.4 
      FC0208  ORANGE, SWEE            56.81    -0.4          99.05       57352      100000        57.4 
      FP0226  APPLE                   61.51     0.0          99.22       61994      100000        62.0 
      FS0247  PEACH                    2.04    -1.9           7.17       28395      100000        28.4 
      VO0445  PEPPERS, SWE             3.32    -0.5          16.37       20270      100000        20.3 
      VR0589  POTATO                 138.21    -0.2         172.99       79893      100000        79.9 
 
 
 
 
Compound concentration data 
 
        Code  Food                 MeanConc  DeltaR      NSamplPos    NSamples   %SamplPos    ProcFact 
                                      mg/kg     (%)                                    (%)             
      FB1235  TABLE-GRAPES           0.0161     0.9           5191       38776        13.4        1.00 
      FC0203  GRAPEFRUIT,            0.0692    -0.1           6249       14308        43.7        1.00 
      FC0204  LEMON, SEE A           0.0126    -1.0           8208       37039        22.2        1.00 
      FC0206  MANDARIN, SE           0.0959    -0.6          16003       21404        73.0        0.90 
      FC0208  ORANGE, SWEE           0.0521     0.0          27678       57352        48.3        1.00 
      FP0226  APPLE                  0.0030    -1.1           3423       61994         5.5        1.00 
      FS0247  PEACH                  0.0075    -1.4           3756       28395        13.2        1.00 
      VO0445  PEPPERS, SWE           0.0009   -15.1            189       20270         0.9        1.00 
      VR0589  POTATO                 0.0002    -1.6            290       79893         0.4        1.00 
 
Food consumption data 
   Food & Processing    MeanConsum  DeltaC   MeanConsDays   NConsDays       NDays %ConsDays  ProcFact   
                           (g)     (%)            (g)                                 (%)           
MANDARIN, SE  canned/conserv 1.92    -0.2          70.86        2711      100000       2.7      0.40 
MANDARIN, SE  juicing        1.50     3.5          77.03        1949      100000       1.9      0.70 
MANDARIN, SE  unknown        5.37    -1.4          31.13       17259      100000       7.3      1.00 

Table 24: Summary of simulation, including processed foods 
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For processing, all tables as found in 4.1 are extended with additional information on the processed 
food. Note that the percentiles of the acute intake distribution after applying ‘processing factors’, see 
Table 25, are slightly higher than without processing (see Table 9) 
 
--------------------------------------------------------------------------- 
Random sampling is based on seed :        0 
Number of simulations (consumers):   100000  out of   6250 
CHLORPYRIPHOS microgr/kg bw/day)  consumption:    49418 out of 100000 
 
Compound:  CHLORPYRIPHOS 
 
--------------------------------------------------------------------------- 
     Percentiles, maximum and average intake 
--------------------------------------------------------------------------- 
 
   Percentage     Percentiles of CHLORPYRIPHOS  microgr/kg bw/day) 
 
        50.00        0.00000 
        90.00        0.22119 
        95.00        0.42000 
        99.00        1.18770 
        99.90        3.45401 
        99.99        6.71302 
         mean        0.08012 
      maximum       14.39752 
 

Table 25: Percentiles for the acute intake distribution applying processing 

10.2 Acute risk assessment: unit variability, Beta distribution 

In this example, output is shown for an acute risk assessment and unit variability for organo phosphate 
pesticide Chlorpyrifos. Table 26 lists the main options: 
 

Input form   

risk type acute 
uncertainty analysis no 
concentration model empirical 
Number of Monte Carlo simulations  100000 
unit variability model beta distribution 

random seed 0 
intake model only empirical estimates 
concentration data system defaults 
Additional system defaults 
Output system defaults 

Table 26: Input form options: unit variability 

Set, see left section of the Input form (see Figure 16), unit variable to Beta. Then, in the right section a 
‘Unit variability’ block appears as shown in Figure 70: 
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Figure 70: ‘Unit variability’ block if Beta distribution is chosen 

In Table 27 you find the main characteristics concerning this analysis taken from the ‘Additional 
output’ file. 
 

‘Additional output’ file  

Model 1 : Beta distribution of unit concentrations. 
Maximum possible unit concentration is NU times comp. sample concentration 
(NU = number of units in composite sample). 
Default values can be overruled by specifying NU values. 
                           unit weight <= 25:  1 
                     25 < unit weight <= 250:  7 
                           unit weight > 250:  5 
Estimated variability factors are p97.5/mean. 

Table 27: Information in ‘Additional output’ file 

 
In Table 28, the percentiles of the intake distribution are shown. Note that the percentiles are much 
higher (p99.99 = 13.95) than without unit variability (p99.99 = 7.358, see Table 9) and after applying 
processing (p99.99 = 6.71, see Table 25). 
 
--------------------------------------------------------------------------- 
Random sampling is based on seed :        0 
Number of simulations (consumers):   100000  out of   6250 
CHLORPYRIPHOS (microgr/kg bw/day)  consumption:    49404 out of 100000 
 
Compound:  CHLORPYRIPHOS 
 
--------------------------------------------------------------------------- 
     Percentiles, maximum and average intake 
--------------------------------------------------------------------------- 
 
   Percentage     Percentiles of CHLORPYRIPHOS  (microgr/kg bw/day) 
 
        50.00        0.00000 
        90.00        0.10089 
        95.00        0.38606 
        99.00        1.76710 
        99.90        5.87387 
        99.99       13.95083 
         mean        0.08390 
      maximum       28.09446 
 

Table 28: Percentiles for the acute intake distribution after applying unit variability 



 118 

10.3 Acute risk assessment: IESTI 

In this example, output is shown for an acute risk assessment and IESTI for organo phosphate 
pesticide Chlorpyrifos. Table 29 lists the main options: 
 

Input form   

risk type acute 
uncertainty analysis no 
Concentration model empirical 
number of Monte Carlo simulations  100000 
unit variability model no unit variability 
random seed 0 
intake model only empirical estimates 
Concentration data system defaults 
additional: 
estimation of IESTI 
standard body weight is  
compare IESTI with Monte Carlo-
percentile 
MC percentage for comparison with 
IESTI  
use own variability factors 
consumption days only 

 
yes 
60 
 
yes 
 
99 
No 
All days 

Output system defaults 

Table 29: Input form options: IESTI 

 
In Table 30 IESTI estimates are displayed together with the estimate expressed as percentage of the 
ARfD (%ARfD). Also a comparison is made with the MC-percentile per food for positive 
consumption days only (ConsPos) as well as all consumption days (AllDays). For Orange the IESTI 
estimate is 2.550 microgram/kg bw/day which is much higher than the MC-percentiles for positive 
consumption days only (0.99 microgram/kg bw/day) and slightly higher than the MC-percentiles for 
all consumption days (1.89 microgram/kg bw/day). 
 
---------------------------------------------------------------------------------------------- 
IESTI 
 
Compound:  CHLORPYRIPHOS 
 
---------------------------------------------------------------------------------------------- 
 
IESTI estimates (microgram/kg bw/day) 
%ofARfD: estimates expressed as % of Acute Reference Dose 
 
ConsPos: percentiles for positive intake days only (per food) 
AllDays: percentiles for all days (including days without intake, per food) 
LP: Large portion consumption (g/day) 
UW: Unit weight (g/day) 
HR: High residue = Largest value from database 
 
IESTI compared with Monte Carlo percentiles for positive intake days only and All Days 
 
                                                                            ConsPos    AllDays 
         Food         LP         UW         HR          IESTI    %ofARfD       p99         p99 
 TABLE-GRAPES         340        500      1.200        34.000     34.000       0.08       1.18 
 GRAPEFRUIT,          301        340      0.530        13.294     13.294       0.08       1.08 
 LEMON, SEE A          30        108      0.150         0.075      0.075       0.01       0.07 
 MANDARIN, SE         210        133      0.690         2.415      2.415       0.42       1.02 
 ORANGE, SWEE         340        160      0.450         2.550      2.550       0.99       1.89 
 APPLE                316        112      0.610         3.213      3.213       0.08       1.37 
 PEACH                230        110      0.270         1.035      1.035       0.00       0.14 
 PEPPERS, SWE         115        160      0.360         0.690      0.690       0.00       0.22 
 POTATO               420        216      0.060         0.420      0.420       0.00       0.61 
 

Table 30: IESTI estimates 
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10.4 Acute risk assessment: uncertainty  

In this example, output is shown for an acute risk assessment and an uncertainty analysis for organo 
phosphate pesticide Chlorpyrifos. Table 31 lists the main options: 
 

Input form   

risk type acute 
uncertainty analysis yes 

concentration model empirical 
number of Monte Carlo simulations  100000 
unit variability model no unit variability 
random seed 0 
intake model only empirical estimates 
number of resampled sets 100 
number of simulations per 
resampled set 

 
20000 

concentration data: system default 
Additional system defaults 
Output system defaults 

Table 31: Input form options: uncertainty 

 
In Table 32, the percentiles of the intake distribution for the specified percentages are displayed 
together with the 2.5, 25, 75, 97.5% points of the percentile uncertainty distribution. In this example, 
the 95% uncertainty interval for the p99.99 (7.90 microgram/kg bw/day) is (4.81, 9.78).  
 
--------------------------------------------------------------------------- 
Random sampling is based on seed :        0 
Number of simulations (consumers):   100000  out of   6250 
CHLORPYRIPHOS (microgr/kg bw/day)  consumption:    49339 out of 100000 
 
Compound:  CHLORPYRIPHOS 
 
-------------------------------------------------------------------------- 
     Percentiles, maximum and average intake 
-------------------------------------------------------------------------- 
 
   Percentage     Percentiles of CHLORPYRIPHOS  (microgr/kg bw/day) 
 
        50.00        0.00000 
        90.00        0.23686 
        95.00        0.44734 
        99.00        1.21234 
        99.90        3.28142 
        99.99        7.89895 
         mean        0.08358 
      maximum       15.42857 
 
 
 
                 Uncertainty of percentiles distribution 
                      2.5%          25%          75%        97.5% 
        50.00      0.00000      0.00000      0.00000      0.00020  
        90.00      0.21474      0.22829      0.24797      0.26665  
        95.00      0.40499      0.43125      0.46066      0.48991  
        99.00      1.08528      1.16305      1.27898      1.39271  
        99.90      2.70767      3.11917      3.60726      4.17651  
        99.99      4.80543      5.76208      7.53429      9.77615  
         Mean      0.07465      0.08065      0.08769      0.09282  
      Maximum      6.03799      8.14262     11.48968     18.31118  
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Table 32: Percentiles for the intake distribution and uncertainty 

 
The information of Table 32 is plotted in Figure 71. The 2.5 and 97.5% points are displayed by the 
endpoints of the small line segments, whereas the thick bar indicates the distance between the 25%- 
and 75%-points of the percentile uncertainty distribution. As seen, percentiles for high percentages 
have a large uncertainty interval. 
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Figure 71: Uncertainty analysis 

10.5 Acute risk assessment: diagnostics 

In this example, output is shown for an acute risk assessment and an uncertainty analysis focusing on 
the diagnostics for organo phosphate pesticide Chlorpyrifos. For input options and information in 
‘Additional output’ file, see Table 31 . 
 
Diagnostics are only available after running an acute risk analysis in combination with uncertainty 
analysis. The provided diagnostic tools focus on the stability of the percentiles, or, re-phrasing, 
quantify 1) the amount of MC-variability and, 2) the amount of variability due to resampling 
consumption and compound data. By quantifying both quantities, we are able to assess the influence 
both sources of variability have on the estimated value of the percentiles. 
The diagnostics are displayed in a number of graphs (as many as the number of requested percentiles 
see input screen). For each percentile a graph is available which can be used to draw inference about 
the optimal number of MC-simulations, the number of resampled sets and the number of simulations 
per resampled set. Recall that we run the analysis with 100.000 MC-simulations and 100 resampled 
sets with 20.000 simulations each.  
To make inference, we divide the total number of MC-simulations in 2 samples of 50.000 simulations 
each, 4 samples of 25.000 each, 8 samples of 12.500 each, …, etc. By doing so, we get n partitions of 
samples and in each partition we have 2n samples of size 100.000/2n. In each partition, we estimate the 
percentiles of the available samples and then the variance of the percentiles. So, in partition n = 1, the 
estimate of the variance is based on 2 percentiles derived from samples of size 50.000; in partition n = 
2 the estimate of the variance is based on 4 percentiles derived from samples of size 25.000, …, etc. 
The estimated variances of each partition are plotted against the number of MC-simulations per 
sample of each partition. We expect the variance to decrease as function of sample size, so for larger 
sample sizes MC-variability decreases. Therefore, through the observed variances a monotone 
decreasing spline function is fitted. For each variance the 90% confidence limits are calculated.  
The uncertainty analysis provides an estimate of the variance of the percentiles derived from the 100 
resampled sets of sample size 20.000.  
Now the fitted spline function is interpolated to estimate the amount of MC-variability at 20.000 
simulations and to calculate the contribution of MC-variability to the total resampling variability at 
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20.000 simulations. The fitted spline function can be used to estimate the MC-contribution to the total 
resampling variability for any arbitrary number of MC-simulations. 
 
In the left plot of Figure 72 diagnostics are displayed for percentage point 50%. We can skip this plot 
because the percentile is 0.0000 microgram/kg bw/day. For percentage point 90% in the right plot we 
have an estimate of the percentile (0.13733 microgram/kg bw/day) and we are able to make inferences 
about the stability of the estimate.  
On the x-axis the number of MC-simulations is displayed and on the y-axis the variance of the MC-
percentile. The estimated variances in each partition are shown as black dots, the fitted monotone 
decreasing spline function as a black line. For each variance, the 90% confidence interval is indicated 
by a vertical line segment. The red dotted line indicates the interpolated variance of the bootstrap 
percentiles as a function of the number of simulations in each bootstrap sample. Note the horizontal 
black line with the open red boxes at 20.000 simulations, which is the estimate of the variance of the 
resampled percentiles. The black dot at 200.000 simulations is the extrapolated value for the MC-
variability using the spline fit. At 20.000 simulations the MC-variability contributes 0.7% to the total 
resampling variability. For a theoretical resample of size 200.000 the MC-contribution would be 
0.0%.  
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Figure 72: Diagnostic graphs for percentage 50% and 90% 

 
In Figure 73, the diagnostics for percentage point 95% and 99% are displayed. The contribution of the 
MC-variability for p95 and p99 is 0.8% and 3.4%, respectively, indicating that these higher 
percentages have stable percentiles.  
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Figure 73: Diagnostic graphs for percentage 95% and 99% 

 
In Figure 74 the diagnostics for percentage point 99.9% and 99.99% are displayed. The contribution 
of the MC-variability for p99.9 and p99.99 is 40.0% and 33.2%, respectively, indicating that the last 
percentiles are unstable. The confidence interval at 50.000 MC-simulations is displayed as an arrow 
for graphical reasons and indicates that a cut off is used. The real confidence interval is much higher.  
Extrapolation to 200.000 simulations shows that MC-variability contributes 0.3% to the total 
resampling variability (p99.99 right plot). Note that in Figure 74 not all estimated variances are 
displayed. As the number of samples in a partition increases, sample size decreases. This restricts the 
number of available percentiles (maximum possible percentage: (100 –100/size)). 
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Figure 74: Diagnostic graphs for percentage 99.9% and 99.99% 

10.6 Acute risk assessment: betabinomial distribution 

In this example, output is shown for an acute risk assessment followed by a betabinomial/normal 
model to estimate age effects for organo phosphate pesticide Chlorpyrifos. The estimation of an age 
effect for an acute risk assessment is additional to the standard acute risk assessment (see 4.1 ). Table 
33 lists the main options: 
 

Input form   
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risk type acute 
uncertainty analysis no 
concentration model empirical 
number of Monte Carlo simulations  100000 
unit variability model no unit variability 
random seed 0 
intake model empirical estimates + 

betabinomial/normal 

concentration data system defaults 
additional system defaults 
intake model: 
age effect for intake frequency 
model   
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 
age effect for intake amount 
model   
transformation 
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 

 
yes 
 
polynomial 
backward 
0 
4 
0.01 
yes 
 
logarithmic 
polynomial 
backward 
0 
4 
0.01 

Output system defaults 

Table 33: Input form options: acute risk and betabinomial/normal  

In Table 34 you find the main characteristics concerning this analysis taken from the ‘Additional 
output’ file. The intake frequency function is estimated using a betabinomial model and a polynomial 
function with 4 degrees of freedom to model age effects. Backward selection is applied meaning that 
model selection is started with a spline of the highest degree. The model for the logarithmic 
transformed intake amounts, ln(intake), is based on ML and a polynomial function to model age 
effects. 
 
 ‘Additional output’ file  
EXPOSURE SECTION 
Acute risk assessment 
 BetaBinomial/Normal model   
  Intake frequency model is based on BetaBinomial model 
    No effect of cofactor included 
    Include effect of covariable (age) 
    Function of covariable          : polynomial 
       Minimum degrees of freedom   : 0 
       Maximum degrees of freedom   : 4 
       DF selection                 : backward 
       Testing at level             : 0.01 
  Model for intake amounts is based on ML 
    No effect of cofactor included 
    Include effect of covariable (age) 
    Function of covariable          : polynomial 
       Minimum degrees of freedom   : 0 
       Maximum degrees of freedom   : 4 
       DF selection                 : backward 
       Testing at level             : 0.01 
 
Intake Frequency: BetaBinomial model with covariable age (no cofactor) 
==================================================================================
======= 
 
* backward selection of degrees of freedom for polynomial model with Prob = 0.01 
 

http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
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   Df  Ncycle         Phi       _2Loglik      ResDf         Chi    ChiDf   ChiProb 
    4       4      0.3077      34456.284       6244        2.61        1     0.106 
    3       4      0.3078      34458.890       6245       34.61        1     0.000 
    2       4      0.3092      34493.500       6246           -        -         - 
 

• Degrees of freedom of polynomial according to backward deviance testing is 3 
 
Estimates of parameters (autoscaled covariable) 
----------------------------------------------- 
 
                     Parameter       estimate      s.e.      t(*) 
                      Constant       0.092192  0.014994      6.15 
                     age Lin        -0.147148  0.014977     -9.82 
                     age Quad        0.277016  0.013934     19.88 
                     age Cub        -0.077561  0.013678     -5.67 
 
 
            Overdispersion phi         0.3078   0.00436     70.58 
               _2Loglikelihood       34458.89 
            Degrees of freedom           6245 
 
 
 
Transformed Intake Amounts: ML model with covariable age (no cofactor) 
==================================================================================
======= 
Maximum likelihood (not REML) 
* backward selection of degrees of freedom for polynomial model with Prob = 0.01 
 
   Df Between      Within       _2Loglik      ResDf         Chi    ChiDf   ChiProb 
    4  2.1632     13.9313      58034.880       9775        3.38        1     0.066 
    3  2.1657     13.9312      58038.257       9776        2.96        1     0.085 
    2  2.1675     13.9323      58041.216       9777       32.59        1     0.000 
    1  2.1952     13.9216      58073.802       9778           -        -         - 
 
* Degrees of freedom of polynomial according to backward deviance testing is 2 
 
Estimates of parameters (autoscaled covariable) 
----------------------------------------------- 
                     Parameter       estimate      s.e.      t(*) 
                      Constant      -4.057710  0.025295   -160.41 
                     age Lin        -0.065550  0.025105     -2.61 
                     age Quad        0.152223  0.024517      6.21 
 
 
       Between person variance         2.1675                     
        Within person variance        13.9323                     
               _2LogLikelihood       58041.22 
            Degrees of freedom           9777 
 
Variance of logarithmic transformed intake distribution is: 4.19 
 
***** Acute intake percentiles/percentages are calculated from: 
--------------------------------------------------------------- 
            sex       age   Intake probability   Transformed intake amount 
              -         1               0.7401                     -3.6527 
              -         5               0.6722                     -3.7430 
              .         .                  .                           . 
              -        93               0.5514                     -3.1919 
              -        97               0.5451                     -3.0515 
 
 
Acute intake percentiles of population: 
 
         sex       age       p50       p90       p95       p99     p99.9    p99.99 
           -         1      0.02      0.26      0.55      2.30     10.47     48.33 
           -         5      0.01      0.21      0.46      1.96      9.37     30.29 
           .         .         .         .         .         .         .         .  
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           -        93      0.02      0.29      0.62      2.67     12.17     41.01 
           -        97      0.02      0.34      0.73      3.10     16.40     60.88 
 
Acute intake percentages of population lower than intake limit: 
 
            sex       age     q0.01     q0.02     q0.04     q0.06     q0.08 
              -         1     39.17     52.30     65.15     72.01     76.57 
              -         5     43.34     56.46     68.75     75.28     79.41 
              .         .         .         .         .         .         . 
              -        93     38.50     50.98     63.42     70.21     74.80 
              -        97     36.30     48.46     61.19     68.10     72.76 
 

Table 34: Information in ‘Additional output’ file 

 
As seen in Table 34, the age effect for the intake frequency is modelled with a polynomial with 3 
degrees of freedom. Overdispersion parameter phi is equal to 0.3078, representing between consumer 
variation.  
The ln(intake) amounts are modelled using ML, the fitted polynomial has 2 degrees of freedom. The 
variance of the ln(intake) distribution is 4.19. Find also the intake probabilities and intake amounts on 
the transformed scale for several ages (not all shown). 
In the left plot of Figure 75 the intake frequency is shown. For 50 age classes, the mean intake 
frequencies are displayed (black dots). The age effect is represented by the curved line. The red dotted 
line indicates the 95% confidence interval for the fitted age effect. The blue lines are the 2.5 and 
97.5% percentiles of the fitted betabinomial distribution and indicate that the probability of having an 
intake varies between 0 and 1 with a 0.95 probability.  
The right plot displays the ln(intake) distribution. The age effect is small. The black dots represent the 
mean ln(intake) per age class. To get some idea of the variation in the data, the standard deviation of 
the distribution is also shown by a vertical line segment with green boxes at the end.  
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Figure 75: Age dependent intake frequency and ln(intake) distribution 

 
In Figure 76, age dependent percentiles (derived from percentages) and percentages (derived from 
percentiles) are shown. The same information is found as tabular output (not shown).  
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Find in Table 35 a short summary of an acute risk assessment using age as explanatory variable. 
 
 

-----------------------------------------------------------------------------
Short term exposure (acute intake) 
 
Compound:  CHLORPYRIPHOS 
 
-----------------------------------------------------------------------------
 
Transformation to normality 
Logarithmic transformation 
-----------------------------------------------------------------------------
Anderson-Darling test for Normality 
Test statistic                           : 521.76 
p-value                                  : 0 
 
-----------------------------------------------------------------------------
Variability within and between individuals 
Variance components (transformed scale/unit variance) 
             within individuals          : 0.86 
            between individuals          : 0.14 
                          ratio          : 6.16 
 
Variance of the transformed distribution : 4.19 
----------------------------------------------------------------------------- 

Table 35: Technical information  

10.7 Acute risk assessment: binomial/lognormal with pooling 

Example 1 

In this example, output is shown for an acute risk assessment for organo phosphate pesticide 
Chlorpyrifos. Table 36 lists the main options: 
 

Input form   

risk type acute 
uncertainty analysis no 
concentration model binomial/lognormal (with pooling) 

number of Monte Carlo simulations  100000 
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unit variability model no unit variability 
random seed 0 
intake model only empirical estimates 
concentration data system defaults 
Additional system defaults 
Output system defaults 

Table 36: Input form options: binomial with pooling 

 
For information in the ‘Additional output’ file, tables and figures, see 4.1 . 
When specifying the binomial/lognormal distribution with pooling, a parametric form of modelling is 
used to simulate data and estimate the intake percentiles. For each food, the positives samples are 
taken to estimate the variance and mean on the lognormal scale. If pooling is requested, food groups 
need to be formed. Each food is characterised by a hierarchical food code. For CODEX codes, the 
first 2 characters in combination with factor Allowed define a group used in pooling. Factor Allowed 
indicates whether a chemical substance is allowed on a food or not. If the code is a subtype (e.g. X$y, 
the supertype is taken to form foodgroups (e.g. X). 
Table 37 illustrates the pooling procedure. There are 6 food groups (ProdGr): 5 groups with a single 
food and one group with 4 foods: group FC contains foods Lemon, Orange, Mandarin and Grapefruit. 
Within a foodgroup variances and means of foods are pooled. 
In the example, the original mean (Mean) and sigma (StdDev) are displayed together with the number 
of observations (nos). In columns Mu and Sigma, you find the result of pooling: parameters ȝ and σ of 
the lognormal distribution; the pooled number of degrees of freedom is in column Df.  
In group FC, standard deviations are 0.94, 0.26, 0.65 and 0.66. A test of homogeneity of variances is 
not significant so the pooled standard deviation becomes 0.68. A test of homogeneity of means is 
significant so means are not pooled. For Potato no standard deviation is estimated because only one 
positive sample is available. In a second step, standard deviations of foods with less than 10 degrees 
of freedom are replaced by the overall variance if the test of homogeneity is not significant. For these 
foods, the pooled or original standard deviation is replaced by the value 0.75. Note, that for Peach 
(StdDev = 0.33, n = 4) the standard deviation is replaced by the overall standard deviation, but for 
Lemon (Sigma = 0.68, StdDev = 0.26) no replacement of sigma occurs: the test on homogeneity of 
variance is not significant due to the high degrees of freedom of the pooled estimate (Df  = 151). AD 
is the value of the Anderson-Darling test statistic for Normality and ER indicates if the statistic is 
significant or not. 
 
---------------------------------------------------------------------------------- 
Compound: CHLORPYRIFOS 
---------------------------------------------------------------------------------- 
Summary of calculations and input of a PARAMETRIC SIMULATION 
>0        : number of detects 
nos       : total number of measurements, detects and non-detects 
Frpos     : fraction of detects 
Mu        : parameter mu of the lognormal distribution 
Mean      : original means per food before pooling 
Sigma     : parameter sigma of the lognormal distribution 
StdDev    : original st.dev. per food before pooling 
AD        : Anderson-Darling statistic 
ER        : significance level of AD-statistic: 
            ns = hypothesis of Normality not rejected 
             s = hypothesis of Normality rejected 
Df        : degrees of freedom of pooled sigma 
Group     : combination of foodgroup and allowed 
ProdGr    : foodgroup 
Allwd     : code if compound is allowed on food (1) or not (0) 
Food      : foodlabels 
--------------------------------------------------------------------------------- 
  >0  nos  Frpos     Mu   Mean Sigma StdDev    AD   ER   Df Group ProdGr Allwd  Food 
  54  501   0.11  -2.35  -2.35  0.96   0.96  1.12    s   53    1      FB   1  TABLE-GRAPES 
  13   41   0.32  -2.02  -2.02  0.68   0.94  0.84    s  151    2      FC   1  GRAPEFRUIT, 
   4   39   0.10  -2.84  -2.84  0.68   0.26  0.20   ns  151    2      FC   1  LEMON, SEE A 
  44  105   0.42  -2.13  -2.13  0.68   0.65  0.19   ns  151    2      FC   1  MANDARIN, SE 
  94  221   0.43  -2.38  -2.38  0.68   0.66  0.34   ns  151    2      FC   1  ORANGE, SWEE 
  10  241   0.04  -3.20  -3.20  0.27   0.27  0.61    s    9    3      FP   1  APPLE 
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   4   62   0.06  -3.26  -3.26  0.75   0.33  0.16   ns  217    4      FS   1  PEACH 
   2  111   0.02  -1.77  -1.77  0.75   1.06 -0.81   ns  217    5      VO   1  PEPPERS, SWE 
   1   40   0.03  -2.81  -2.81  0.75      .     .    .  217    6      VR   1  POTATO 
 
 

Table 37: Pooling information 

 
In Table 38 the percentiles for a parametric model are displayed. Note that the p99.99 changed from 
6.69 to 7.06 microgram/kg bw/day. 
 
Random sampling is based on seed :        0 
Number of simulations (consumers):   100000  out of   6250 
-------------------------------------------------------------------------- 
CHLORPYRIFOS (microgr/kg bw/day)  consumption:   100000 out of 100000 
 
  
 Compound:  CHLORPYRIFOS 
-------------------------------------------------------------------------- 
     Percentiles, maximum and average intake 
 
   Percentage     Percentiles of CHLORPYRIFOS  (microgram/kg bw/day) 
        50.00        0.00000 
        90.00        0.20379 
        95.00        0.40437 
        99.00        1.15487 
        99.90        3.26754 
        99.99        7.05740 
         mean        0.07323 
     maximum       12.97748 

Table 38: Percentiles for the acute intake distribution using the binomial/lognormal with 

pooling 

Example 2 

The variances and means of foods are pooled within a food group. Food groups are formed based on 
the first two characters in combination with factor Allowed (see example, factor Levels (= food code) 
and Allowed). Factor Allowed indicates whether a chemical compound is allowed on a product or not.  
Foodgroup 10101 contains foods Bean and Sperzieboon. Foodgroup 10201 is split into two subgroups 
(according to factor Allowed): one group with Chicory, Endive, Cabbage lettuce and Curly lettuce 
and a group with Roodlof and Spinach. On the last two foods the use of a chemical compound is not 
allowed.  
In the example, the original mean and sigma are displayed together with the number of observations. 
The last three columns show the parameters ȝ and σ of the lognormal distribution together with the 
degrees of freedom after pooling. For Bean and Sperzieboon, a pooled ȝ (= -1.67) and σ (= 1.31) are 
used. Chicory, Endive, Cabbage lettuce and Curly lettuce only sigma is pooled (σ = 1.47), the original 
means are maintained. For Roodlof (1 observation) the overall sigma (= 1.36) is used to estimated the 
variance. 
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Original Automatically pooling

Labels Levels Allowed Sigma Mean Nobs Sigma mean Nobs

             BEAN 10101 1 1.60 -1.17 8 1.31 -1.67 12

      SPERZIEBOON 10101 1 0.75 -2.33 6 1.31 -1.67 12

          CHICORY 10201 1 1.38 -2.69 4 1.47 -2.69 382

          ROODLOF 10201 0    * -2.3 1 1.36 -2.3 729

           ENDIVE 10201 1 1.52 -0.91 92 1.47 -0.91 382

  CABBAGE LETTUCE 10201 1 1.46 -1.44 286 1.47 -1.44 382

    CURLY LETTUCE 10201 1 1.08 -2.14 4 1.47 -2.14 382

          SPINACH 10201 0 1.18 -0.57 10 1.36 -0.57 729

  BRUSSELS SPROUT 10301 0 1.14 -2.7 2 1.36 -2.7 729

  CHINESE CABBAGE 10301 1 1.62 -2.32 21 1.62 -2.32 20

  OXHEART/CONICAL 10301 0    * -2.3 1 1.36 -2.3 729

    ONION (SMALL) 10301 1 0.08 -1.66 2 0.08 -1.66 1

           FENNEL 10301 1 0.16 -2.38 3 0.16 -2.38 2

           POTATO 10401 0 0.62 0.19 2 0.59 0.19 50

    WINTER CARROT 10401 0 0.62 -2.55 14 0.59 -2.55 50

           CARROT 10401 0 0.54 -2.71 36 0.59 -2.71 50

           RADISH 10401 1 1.52 -2.91 6 1.36 -2.91 729

         CELERIAC 10401 0 1.31 -2.07 2 0.59 -2.07 50

            GRAPE 10501 0 1.14 -1.06 25 1.14 -1.06 24

       STRAWBERRY 10501 1 1.14 -1.57 169 1.14 -1.57 168

        RASPBERRY 10501 1 1.73 -1.04 9 1.36 -1.04 729

       BLACKBERRY 10501 1 1.15 -0.89 17 1.15 -0.89 16

       BLUE BERRY 10501 1 1.83 -1.24 3 1.36 -1.24 729

          CURRANT 10501 1 1.87 -0.62 30 1.87 -0.62 29

 OTHER FRUIT, NUT 10601 0    * -1.51 1 1.36 -1.51 729  

10.8 Chronic risk assessment: discrete/semi-parametric (ISUF) 

In this example output is shown for a chronic risk assessment for aspartaam. In 4.2 the same data are 
analyzed with another model. The summaries of the data before modeling can there be found. Table 
39 lists the main options: 
 

Input form   

Risk type chronic 
uncertainty analysis no 
concentration model empirical 
intake model discrete/semi-parametric (ISUF) 
concentration data system defaults 
intake model: 
transformation 
spline fit 
number of simulations to estimate 
frequency distribution  
number of bins for discretisation 

 
power 
yes 
10 
 
20 

Output system defaults 

Table 39: Input form options: discrete/semi-parametric (Nusser) 

 
In Table 40 you find the main characteristics concerning this analysis taken from the ‘Additional 
output’ file. 
 

‘Additional output’ file  

Number of products 1 
Acute reference dose (ARfD) * 
Acceptable daily intake (ADI) 5 
Number of detects 113 
Number of non-detects 0 
No of consumers 6250 
Population characteristics,  

minimum age 
 
1 
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maximum age 97 
minimum weight 8 
maximum weight 150 
Sex female, male 

Total no of consumption days 5136 
Replace all non-detects  
Multiplication factor for LOR 0.5 
INTAKE SECTION 
Chronic Risk Assessment 
 Discrete/semi-parametric (Nusser) 
    Power transformation 
    followed by spline transformation 
     No. of iterations to estimate theta: 5000 
     No. of binomial proportions (M): 20 

Table 40: Information in ‘Additional output’ file 

Find in Figure 77 the untransformed intake distribution (left plot). The right plot shows the 
distribution after a power transformation (with exponent 0.148).  
 

0 10000 20000 30000

Daily  intake microgr/kg bw/day)

aspartaam

distribution of positive daily intakes (41.1%)

1 2 3 4 5

Daily  intake after 0.148th power transformation microgr/kg bw/day)

aspartaam

distribution of power transformed positive daily intakes (41.1%)

Figure 77: Untransformed and power transformed intake distribution 

The Nusser method additionally fits a spline function to the power transformed values as a function of 
the normal Blom scores, see left plot Figure 78. The result of a power and spline transformation of the 
positive intakes is shown in the right plot. 
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Figure 78: Transformation plot and power and spline transformed intakes 

 
The fit seems adequate, which is confirmed by the QQ plot shown in Figure 79. The Anderson-
Darling test on the transformed non-zero daily intakes is not significant. 
 

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

P
re

d
ic

te
d

 n
o

rm
al

-s
co

re
s

Normal-scores

estimated individual intake frequency

Normal QQ-plot of transformed daily intakes

after an adequate transformation to normality, the fitted values (red dots) should

approximately follow a straight line (solid line)

Anderson-Darling test: statistic = 0.20 (not significant at 85% confidence level)

 

Figure 79: Normal probability plot 

 
In Table 41 you find details on the spline functions (11 knots) and the Anderson-Darling test result 
(0.20), which shows no significant deviation from normality for the transformed values (p-value = 
0.90). In the same output section you also find a test whether there is evidence for heterogeneity of 
variance between consumers, MA4=5.8447, p-value=0.0000. 
Based on the daily intake the variance components are estimated, reported as within consumers is 0.30 
and between consumers is 0.70. Therefore in this case the day-to-day variation in aspartaam intake is 
much lower than the variation between individual consumers.  
 
--------------------------------------------------------------------------- 
Long term exposure (usual intake) 
 
Compound:  aspartaam 
 
--------------------------------------------------------------------------- 
 
Transformation to normality 
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Power transformation                     : 0.148 
Number of knots spline function          : 11 
--------------------------------------------------------------------------- 
Anderson-Darling test for Normality 
Test statistic                           : 0.20 
p-value                                  : 0.9 
 

Heterogeneity of variance between individuals 
 
Test statistic (MA4)                     : 5.8221   (3 for homogeneous 
variances) 
p-value                                  : 0.0000 
--------------------------------------------------------------------------- 
Variability within and between individuals 
Variance components (transformed scale/unit variance) 
             within individuals          : 0.30 
            between individuals          : 0.70 
                          ratio          : 0.43 
 
Intake frequency 
 
Estimated fraction non-consumers (theta_0): 0.2818 
 

Table 41: Technical information on usual intake 

 
The next step is to estimate the intake frequency distribution. The estimated fraction of non-
consumers theta_0 (consumers with zero usual intake) is estimated to be 0.281. In output file theta.txt 
(which you get after downloading results) you find the full results, see Table 42. So the fraction of 
consumers that always eats foods with aspartaam (p=1.00) is estimated to be 0.0601. 
 
           p       theta 
        0.00  0.28183499  (= theta0) 
        0.05  0.03651911 
        0.10  0.03631187 
        0.15  0.03429980 
        0.20  0.03298592 
        0.25  0.02907445 
        0.30  0.02736419 
        0.35  0.02595573 
        0.40  0.02525151 
        0.45  0.02505030 
        0.50  0.02535211 
        0.55  0.02625755 
        0.60  0.02766600 
        0.65  0.02987928 
        0.70  0.03279678 
        0.75  0.03712274 
        0.80  0.04195171 
        0.85  0.04708249 
        0.90  0.05191147 
        0.95  0.05694165 
        1.00  0.06006036 

Table 42: Estimates of the intake frequency distribution, theta 
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Graphical results of the values from Table 42 are shown in Figure 80.  
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Figure 80: Intake frequency distribution 

 
Finally three cumulative distributions are estimated: for intake days only, for intakers only, and for the 
total population, see the left plot of Figure 81. For for intake days only and for intakers only the 
distributions are also shown as probability densities in the right plot. 
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--------------------------------------------------------------------------- 
Long term exposure (usual intake) 
 
Compound:  aspartaam 
 
--------------------------------------------------------------------------- 
 
          Percentage               Total 
                              population 
               50.00            109.6090 
               90.00            847.0583 
               95.00           1269.0260 



 134 

               99.00           2447.1316 
               99.90           4078.5759 
               99.99           5166.2093 
 

Table 43: Percentiles for usual intake distribution: entire population 

 
In Table 44 you find information on selected percentiles for the other types of distributions. 
 
Short term exposure 
          Percentage              Intake            Intakers 
                               days only                only 
               50.00            487.8314            224.2399 
               90.00           1674.2954           1042.5254 
               95.00           2280.0644           1489.2372 
               99.00           3946.3718           2699.3570 
               99.90           7087.3211           4350.4755 
               99.99          10282.0186           5166.2093 
 

Table 44: Technical information on usual intake: percentiles for usual intake distribution, 

positives only and consumers only 

10.9 Chronic risk assessment: betabinomial/normal with covariable age 

and uncertainty 

In this example output is shown for a chronic risk assessment for aspartaam modeling the effect of age 
on the usual intake. Table 45 lists the main options: 
 

Input form   

risk type chronic 
uncertainty analysis yes 
concentration model empirical 
Number of MC simulations 10000 
intake model betabinomial/normal 
concentration data system defaults 
INTAKE FREQUENCY MODEL: 
age effect 
function to model age effect   
minimum degrees of freedom 
maximum degrees of freedom 
testing method   
testing at level 
INTAKE AMOUNT MODEL: 
transformation 
age effect   
function to model effect   
minimum degrees of freedom 
maximum degrees of freedom 
testing method   
testing at level 

 
yes 
polynomial 
0 
4 
backward 
0.01 
yes 
logarithm 
yes 
polynomial 
0 
4 
backward 
0.01 

Output system defaults 

Table 45: Input form options: betabinomial/normal with covariable age and uncertainty 

 
In Table 46 you find the main characteristics concerning this analysis taken from the ‘Additional 
output’ file.  
The intake frequency function is estimated with a betabinomial model using a polynomial function to 
model age effects. Backward selection is applied meaning that model selection is started with a 
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polynomial of degree 4. The logarithmically transformed intake amounts are modeled using ML and a 
polynomial to describe age effects.  
 

‘Additional output’ file  

 

Chronic risk assessment 
 BetaBinomial/Normal model   
  Intake frequency model is based on BetaBinomial model 
    No effect of cofactor included 
    Include effect of covariable (age) 
    Function of covariable          : polynomial 
       Minimum degrees of freedom   : 0 
       Maximum degrees of freedom   : 4 
       DF selection                 : backward 
       Testing at level             : 0.01 
  Model for intake amounts is based on ML 
    No effect of cofactor included 
    Transformation                  : Logarithmic 
    Include effect of covariable (age) 
    Function of covariable          : polynomial 
       Minimum degrees of freedom   : 0 
       Maximum degrees of freedom   : 4 
       DF selection                 : backward 
       Testing at level             : 0.01 
 
 

Intake Frequency: BetaBinomial model with covariable age (no cofactor) 
=============================================================================== 
 
* backward selection of degrees of freedom for polynomial model with Prob = 
0.01 
 
   Df  Ncycle    Phi       _2Loglik       ResDf       Chi    ChiDf     ChiProb 
    4       4  .5106      11949.208        6244     27.41        1       0.000 
    3       6  .5121      11976.616        6245         -        -           - 
 
* Degrees of freedom of polynomial according to backward deviance testing is 4 
 
Estimates of parameters (autoscaled covariable) 
----------------------------------------------- 
 
                     Parameter       estimate      s.e.      t(*) 
                      Constant      -0.758153  0.053550    -14.16 
                     age Lin        -0.970010  0.082574    -11.75 
                     age Quad       -0.021940  0.097746     -0.22 
                     age Cub        -0.305835  0.089282     -3.43 
                     age Quart      -0.304492  0.060303     -5.05 
 
 
            Overdispersion phi         0.5106   0.01171     43.61 
               _2Loglikelihood       11949.21 
            Degrees of freedom           6244 
 
 
 
Transformed Intake Amounts: ML model with covariable age (no cofactor) 
=============================================================================== 
 
Maximum likelihood (not REML) 
* backward selection of degrees of freedom for polynomial model with Prob = .01 
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   Df Between      Within     _2Loglik     ResDf       Chi    ChiDf     ChiProb 
    4  1.1825      0.5379    16133.771      5130      0.55       1       0.457 
    3  1.1827      0.5379    16134.325      5131     19.00       1       0.000 
    2  1.1927      0.5375    16153.323      5132         -       -           - 
* Degrees of freedom of polynomial according to backward deviance testing is 3 
 
Estimates of parameters (autoscaled covariable) 
----------------------------------------------- 
                     Parameter       estimate      s.e.      t(*) 
                      Constant       5.939241  0.021963    270.42 
                     age Lin        -0.185661  0.022033     -8.43 
                     age Quad        0.161915  0.020330      7.96 
                     age Cub        -0.086084  0.019717     -4.37 
 
       Between person variance         1.1827                     
        Within person variance         0.5379                     
               _2LogLikelihood       16134.33 
            Degrees of freedom           5131 
 

 
***** Usual intake percentiles/percentages are calculated from: 
--------------------------------------------------------------- 
            sex       age   Intake probability   Transformed intake amount 
              -         1               0.6996                      6.6524 
              -         5               0.7055                      6.3967 
              -         9               0.6881                      6.1879 
              -        13               0.6524                      6.0219 
              -        17               0.6025                      5.8946 
              -        21               0.5435                      5.8017 
              -        25               0.4813                      5.7391 
              -        29               0.4218                      5.7027 
              -        33               0.3697                      5.6882 
              -        37               0.3273                      5.6916 
              -        41               0.2952                      5.7085 
              -        45               0.2727                      5.7350 
              -        49               0.2586                      5.7668 
              -        53               0.2510                      5.7998 
              -        57               0.2481                      5.8297 
              -        61               0.2473                      5.8525 
              -        65               0.2457                      5.8640 
              -        69               0.2397                      5.8599 
              -        73               0.2255                      5.8362 
              -        77               0.1998                      5.7887 
              -        81               0.1616                      5.7132 
              -        85               0.1147                      5.6056 
              -        89               0.0680                      5.4616 
              -        93               0.0320                      5.2772 
              -        97               0.0114                      5.0481 
 

Table 46: Information in ‘Additional output’ file 

 
As seen in Table 46, an age effect is found for the intake frequency. A polynomial with 4 degrees of 
freedom is fitted and overdispersion parameter phi is equal to 0.5106. Parameter phi represents 
between consumer variation. So each consumer has its own probability of having an intake. This 
probability is sampled from a betabinomial distribution with age dependent probabilities and 
dispersion factor phi. For the intake amount model a polynomial model with 3 degrees of freedom is 
fitted. Find in the output, the estimated intake probabilities and transformed intake amounts dependent 
on age  
Click icon ‘Plots’ to get the next screen (see Figure 82). 



 137 

 

Figure 82: Diversity of possible plots 

The first two plots are shown in Figure 83. 
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Figure 83: Age dependent intake frequency (left) and intake amount (right) 

 
In the left plot of Figure 83 the intake frequency is shown. For 50 age classes, the mean intake 
frequencies are displayed (black dots). The fitted age effect is plotted through the dots as a black line. 
As seen, the probability of having an intake decreases with age. The red dotted line indicates the 95% 
confidence interval for the fitted age effect. Note the wider intervals at the edges of the plot showing 
that for very old and young consumers less information is available. The blue lines are the 2.5 and 
97.5% percentiles of the fitted betabinomial distribution: the sampled intake probability of consumers 
according to the betabinomial are within these lines and may vary from about 0.04 till about 1 for 
young people and 0 till about 0.1 for old people. 



 138 

The right plot of Figure 83 displays the ln(intake) distribution. The age effect is plotted as a black line 
through the observed mean ln(intake) amounts per age class. The components of variance for the 
between consumers and within consumers variation are 1.18 and 0.54, respectively (on the 
logarithmically transformed scale). The standard deviation of the between and within consumer 
variation are indicated by the vertical blue and green line segments. 
From these models the usual intake is calculated. Click ‘Display output’ to get summaries of the 
analysis.  
In Table 47, age dependent percentiles of the usual intake are shown together with uncertainty limits 
based on resampling. 
 
Usual intake percentiles of total population for percentiles (p_): 
 
            sex       age       p50       p90       p95       p99     p99.9    p99.99 
              -         1    646.68   3046.04   4649.36  10163.81  24096.67  51706.86 
              -         5    505.59   2382.62   3670.83   8001.49  18413.50  33718.23 
              -         9    394.50   1908.54   2907.32   6327.66  14923.00  24587.06 
              .         .         .         .         .         .         .         . 
              .         .         .         .         .         .         .         . 
              -        93      0.00     15.30     77.61    421.97   1523.45   3870.07 
              -        97      0.00      0.03      3.75    139.71    686.38   1992.09 
 
 
             
                Uncertainty of percentiles distribution based on 100 resampled sets 
    p       sex       age 
 est:         -         1    646.68   3046.04   4649.36  10163.81  24096.67  51706.86 
 2.5%         -         1    453.14   2109.81   3193.76   6905.88  15574.14  31639.97 
  25%         -         1    555.70   2558.83   3828.65   8304.43  19041.04  40613.89 
  75%         -         1    631.42   2936.67   4479.25   9865.74  23408.42  52559.19 
97.5%         -         1    692.20   3115.41   4843.41  11113.77  28112.13  68942.51 
 
 est:         -         5    505.59   2382.62   3670.83   8001.49  18413.50  33718.23 
 2.5%         -         5    386.87   1851.10   2804.74   5971.28  13399.11  26905.62 
  25%         -         5    449.80   2129.26   3237.93   6949.38  15491.97  35066.43 
  75%         -         5    499.12   2431.88   3767.18   8330.75  19167.11  47158.12 
97.5%         -         5    527.81   2612.19   4072.87   9485.99  23902.51  59468.72 
 
 est:         -         9    394.50   1908.54   2907.32   6327.66  14923.00  24587.06 
 2.5%         -         9    318.16   1569.25   2363.32   5067.06  11047.47  18723.74 
  25%         -         9    364.98   1757.08   2668.94   5768.92  12871.17  22382.79 
  75%         -         9    400.94   2019.04   3122.20   6957.87  16240.96  28205.90 
97.5%         -         9    420.63   2142.14   3373.49   7867.73  19130.75  33821.71 
 
    .         .         .         .         .         .         .         .         . 
    .         .         .         .         .         .         .         .         . 
 
 est:         -        93      0.00     15.30     77.61    421.97   1523.45   3870.07 
 2.5%         -        93      4.24    273.58    492.58   1294.96   3931.73   8931.78 
  25%         -        93     25.69    769.90   1367.70   3633.35   9695.44  19557.33 
  75%         -        93     62.67   1112.89   1959.62   5092.72  13736.59  30358.94 
97.5%         -        93    127.01   1699.63   2976.02   7730.14  20340.48  46220.44 
 
 est:         -        97      0.00      0.03      3.75    139.71    686.38   1992.09 
 2.5%         -        97      3.27    260.96    463.10   1238.96   3397.27   7698.74 
  25%         -        97     36.28    928.28   1652.30   4332.58  11612.30  22339.64 
  75%         -        97    102.59   1461.53   2534.35   6527.55  17633.98  37805.35 
97.5%         -        97    216.36   2316.63   4036.64  10322.23  27333.32  57025.29 
 
  

Table 47: Percentiles of usual intakes and uncertainty intervals 

 
In Table 48 age dependent percentages of consumers lower than specified limits of usual intake are 
shown also with uncertainty limits based on resampling. 
 
Usual intake percentages of total population lower than intake limit (q_): 
 
            sex       age     q0.01     q0.02     q0.04     q0.06     q0.08 
              -         1      0.03      0.03      0.05      0.06      0.08 
              -         5      0.02      0.03      0.05      0.05      0.08 
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              -         9      0.02      0.04      0.07      0.09      0.10 
              .         .         .         .         .         .         .     
              .         .         .         .         .         .         .     
              -        93     71.78     73.32     74.91     75.85     76.56 
              -        97     89.10     89.77     90.41     90.81     91.09 
 
 
               Uncertainty distribution of intake percentages of total population lower than 
intake limit (q_):  
                 based on 100 resampled sets 
    q       sex       age 
 est:         -         1      0.03      0.03      0.05      0.06      0.08 
 2.5%         -         1      0.00      0.00      0.01      0.01      0.02 
  25%         -         1      0.01      0.01      0.02      0.02      0.03 
  75%         -         1      0.01      0.02      0.03      0.04      0.05 
97.5%         -         1      0.03      0.03      0.05      0.06      0.08 
 
 est:         -         5      0.02      0.03      0.05      0.05      0.08 
 2.5%         -         5      0.01      0.01      0.02      0.03      0.04 
  25%         -         5      0.01      0.02      0.03      0.05      0.06 
  75%         -         5      0.02      0.04      0.06      0.07      0.09 
97.5%         -         5      0.04      0.06      0.09      0.12      0.14 
 
 est:         -         9      0.02      0.04      0.07      0.09      0.10 
 2.5%         -         9      0.01      0.03      0.05      0.07      0.08 
  25%         -         9      0.03      0.04      0.07      0.10      0.12 
  75%         -         9      0.05      0.08      0.11      0.15      0.18 
97.5%         -         9      0.07      0.10      0.16      0.20      0.24 
 
    .         .         .         .         .         .         .         .     
    .         .         .         .         .         .         .         .     
  
 est:         -        93     71.78     73.32     74.91     75.85     76.56 
 2.5%         -        93      2.21      2.80      3.49      4.00      4.40 
  25%         -        93      5.31      6.31      7.51      8.35      9.02 
  75%         -        93     10.60     12.09     13.83     15.04     15.98 
97.5%         -        93     21.01     23.26     25.74     27.37     28.47 
 
 est:         -        97     89.10     89.77     90.41     90.81     91.09 
 2.5%         -        97      1.04      1.37      1.81      2.11      2.36 
  25%         -        97      3.67      4.46      5.41      6.03      6.54 
  75%         -        97      9.44     10.87     12.47     13.51     14.32 
97.5%         -        97     22.44     24.77     27.31     28.90     30.09 
 
 

Table 48: Percentages of consumers lower than specified limits and uncertainty intervals 

 
Figure 84 shows the age dependent percentiles and percentage for the usual intake distribution. 
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Figure 84: Age dependent percentiles derived from percentages and percentages derived from 

percentiles 

 
 
In Table 49, a report of technical information on the analysis is shown. 
 
 

--------------------------------------------------------------------------- 
Long term exposure (usual intake) 
 
Compound:  aspartaam 
 
--------------------------------------------------------------------------- 
 
Transformation to normality 
Logarithmic transformation 
--------------------------------------------------------------------------- 
Anderson-Darling test for Normality 
Test statistic                           : 22.67 
p-value                                  : 0 
 
--------------------------------------------------------------------------- 
Variability within and between individuals 
Variance components (transformed scale/unit variance) 
             within individuals          : 0.31 
            between individuals          : 0.69 
                          ratio          : 0.45 
 
--------------------------------------------------------------------------- 
 

Table 49: Technical information on usual intake 

 

10.10 Chronic risk assessment: betabinomial/normal with covariable age 

and cofactor sex  

In this example output is shown for a chronic risk assessment for aspartaam modeling the effect of age 
and sex. Table 50 lists the main options: 
 

Input form   

risk type chronic 
uncertainty analysis yes 
Random seed 0 
concentration model empirical 
number of MC simulations 100000 
intake model betabinomial/normal with age and sex 
concentration data system defaults 
cofactor 
covariable 
interaction 
INTAKE FREQUENCY MODEL 
sex effect 
age effect 
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 

sex 
age 
no 
 
yes 
yes 
polynomial 
backward 
0 
4 
0.01 
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INTAKE AMOUNT MODEL 
transformation 
sex effect 
age effect   
function to model effect   
testing method   
minimum degrees of freedom 
maximum degrees of freedom 
testing at level 

 
logarithmic 
yes 
yes 
polynomial 
backward 
0 
4 
0.01 

Output system defaults 

Table 50: Input form options: betabinomial/normal with covariable age and cofactor sex 

 
In Table 51 you find the main characteristics concerning this analysis taken from the ‘Additional 
output’ file. The intake frequency function is estimated with a betabinomial model using a polynomial 
function with 4 degrees of freedom to model the age effect. Backward selection is applied meaning 
that model selection is started with a spline of the highest degree. To model the transformed intake 
amounts a polynomial with 3 degrees of freedom is used. There is a clear sex effect for the intake 
frequency model, whereas the sex effect for the intake amount model has a P-value of 6.6%. 
 

‘Additional output’ file  

 
Intake Frequency: BetaBinomial model with cofactor sex and covariable age (no 
interaction) 
=============================================================================
 
* backward selection of degrees of freedom for polynomial model with Prob = 
0.01 
 
   Df  Ncycle      Phi    _2Loglik   ResDf      Chi       ChiDf     ChiProb 
    4       4   0.5092   11927.137    6243       27.96        1       0.000 
    3       6   0.5108   11955.100    6244           -        -           - 
 
* Degrees of freedom of polynomial according to backward deviance testing is 
4 
 
Estimates of parameters (autoscaled covariable) 
----------------------------------------------- 
 
                     Parameter       estimate      s.e.      t(*) 
                      Constant      -0.664664  0.056905    -11.68 
                     age Lin        -0.986971  0.082685    -11.94 
                     age Quad       -0.032632  0.097706     -0.33 
                     age Cub        -0.315594  0.089219     -3.54 
                     age Quart      -0.306695  0.060141     -5.10 
                      sex male      -0.224418  0.047878     -4.69 
 
Parameters for factors are differences compared with the reference level: 
         Factor   Reference level 
            sex            female 
 
 
            Overdispersion phi         0.5092   0.01173     43.40 
               _2Loglikelihood       11927.14 
            Degrees of freedom           6243 
 
 
 
Transformed Intake Amounts: ML model with cofactor sex and covariable age (no 
interaction) 
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=============================================================================
 
Maximum likelihood (not REML) 
* backward selection of degrees of freedom for polynomial model with Prob = 
0.01 
 
   Df Between      Within   _2Loglik    ResDf       Chi     ChiDf     ChiProb
    4  1.1811      0.5378   6130.454     5129      0.49         1       0.485
    3  1.1813      0.5378   6130.943     5130     19.41         1       0.000
    2  1.1915      0.5374   6150.348     5131         -         -           -
 
* Degrees of freedom of polynomial according to backward deviance testing is 
3 
 
Estimates of parameters (autoscaled covariable) 
----------------------------------------------- 
                     Parameter       estimate      s.e.      t(*) 
                      Constant       5.975393  0.029456    202.86 
                     age Lin        -0.188744  0.022086     -8.55 
                     age Quad        0.162650  0.020324      8.00 
                     age Cub        -0.086991  0.019714     -4.41 
                      sex male      -0.081538  0.044323     -1.84 
 
Parameters for factors are differences compared with the reference level: 
         Factor   Reference level 
            sex            female 
 
       Between person variance         1.1813                     
        Within person variance         0.5378                     
               _2LogLikelihood       16130.94 
            Degrees of freedom           5130 
 
 
***** Usual intake percentiles/percentages are calculated from: 
--------------------------------------------------------------- 
            sex       age   Intake probability   Transformed intake amount 
         female         1               0.7237                      6.6959 
           male         1               0.6767                      6.6144 
         female         5               0.7288                      6.4379 
           male         5               0.6823                      6.3564 
         female         9               0.7117                      6.2272 
           male         9               0.6636                      6.1457 
              .         .                    .                           . 
              .         .                    .                           . 
         female        93               0.0326                      5.2954 
           male        93               0.0262                      5.2139 
         female        97               0.0113                      5.0625 
           male        97               0.0090                      4.9810 
 

Table 51: Information in ‘Additional output’ file 

 
Click on icon ‘Plots’ to display the next screen (see Figure 85). 
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Figure 85: Diversity of possible plots if covariable and cofactor present and no uncertainty 

 
Find in the left plot of Figure 86 for the intake frequency distribution the polynomial functions of age 
for both levels of sex. In the right plot, find for the transformed intake amounts the polynomial 
functions of age for both levels of sex. 
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Figure 86: Age dependent percentiles derived from percentages 

The intake frequency model and intake amount model are used to derive the usual intake. Click on 
‘Display output’ in Figure 85 to get the result of the analysis. In Table 52 the age dependent 
percentiles of the usual intake are shown for each level of sex. 
 
Usual intake percentiles of population: 
 
        sex       age       p50       p90       p95       p99     p99.9    p99.99 
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     female         1    703.16   3242.11   4941.88  10929.49  25370.44  50474.40 
       male         1    593.79   2870.60   4420.77   9810.18  22715.09  40497.57 
     female         5    547.95   2550.08   3866.46   8336.34  19202.33  33808.96 
       male         5    458.52   2220.18   3403.86   7426.94  17353.50  39425.23 
     female         9    429.53   2038.84   3072.94   6727.03  15705.71  33215.09 
       male         9    365.71   1768.00   2705.13   5887.64  13970.10  27149.02 
          .         .         .         .         .         .         .         . 
          .         .         .         .         .         .         .         . 
     female        93      0.00     15.31     81.25    429.84   1531.09   3698.93 
       male        93      0.00      6.72     52.85    334.93   1253.93   3634.92 
     female        97      0.00      0.03      4.11    139.18    718.62   2044.27 
       male        97      0.00      0.00      1.30    107.30    664.78   1928.50 

 

Table 52: Percentiles of usual intakes 

 
In Table 53 age dependent percentages of consumers lower than specified limits of usual intake are 
shown for each level of sex. 
 
Usual intake percentages of population lower than intake limit: 
 
            sex       age     q0.01     q0.02     q0.04     q0.06     q0.08 
         female         1      0.02      0.02      0.03      0.05      0.05 
           male         1      0.03      0.05      0.07      0.09      0.11 
         female         5      0.01      0.02      0.02      0.04      0.05 
           male         5      0.03      0.04      0.07      0.09      0.11 
         female         9      0.02      0.03      0.05      0.06      0.08 
           male         9      0.04      0.06      0.09      0.11      0.14 
               .        .         .         .         .         .         . 
               .        .         .         .         .         .         . 
         female        93     71.61     73.14     74.79     75.71     76.40 
           male        93     76.69     78.01     79.35     80.11     80.68 
         female        97     88.94     89.60     90.30     90.72     91.01 
           male        97     91.01     91.59     92.18     92.49     92.72 

 

Table 53: Percentages of consumers lower than specified limits 

 
Figure 87 shows the age dependent percentiles for the usual intake distribution for both levels of sex.  
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Figure 87: Age dependent percentiles for females (left) and males (right) 
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Figure 88 shows the age dependent percentages of consumers lower than the specified limits for both 
levels of sex.  
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Figure 88: Age dependent percentages female consumers (left) and percentages male consumers 

(right) lower than the specified limits 
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11  APPENDIX C: Errors in displaying the page and scripting 

errors 
Occasionally, ASP-scripts crash due to inconsistencies found in tables, as a consequence of wrong 
column names (see 9.1 ), and combinations of levels during subset selection that lead to empty 
subsets.  
 
In general, the internet explorer error message is: 

 
or an ASP debug-scripting-error is displayed. 
 
When this occurs: 

• try to reach the MCRA main menu (see Figure 2), 

• go to manage input/output,  

• move your mouse to directory ‘IN’ or ‘OUT’ or any other directory and  left click,  

• click the ‘Clear history’-button (see Figure 4).  
 

If you cannot reach the MCRA main menu: 

• close the internet explorer, 

• login to the website again,  

• go to manage input/output in the MCRA main menu (see Figure 2),  

• move your mouse to directory ‘IN’ or ‘OUT’ or any other directory and  left click,  

• clear your history first by clicking the ‘Clear history’-button (see Figure 4). 

 
 

Links 
for correct link insert cursor in link and press Shift+F9:  
Acute risk type 

 


