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1 Foreword

This manual describes a stochastic (or Monte Carlo) model for dietary risk assessment of chemical
compounds based on monitoring data concerning the quality of foods and agricultural products. Intake
(exposure) assessment is an important step in risk assessment of chemical compounds, such as
agricultural chemicals (pesticides, veterinary drugs), toxins (e.g. mycotoxins) and environmental
contaminants (e.g. dioxins). Occasionally, we use the term residue when we refer to compound and
the term individual when we refer to consumer. The use of multiple names is avoided as much as
possible.

The methods for probabilistic modelling described here are implemented in the program Monte Carlo
Risk Assessment (MCRA). MCRA is a computational tool for dietary risk assessment. MCRA can
calculate intake distributions for both short-term (acute) and long-term (chronic) intakes. Basically, it
simulates daily consumptions by sampling a food consumption database and combines these with a
random sample from either a compound database (empirical distribution) or a parametric distribution
of compound concentrations. The result is a full distribution of intakes, rather than traditional
deterministic methods which only provide a point estimate. Percentiles of the intake distribution can
be used to assess risks by relating them to e.g. an acute reference dose (ARfD). In a chronic risk
assessment, MCRA calculates the distribution of the usual intakes over consumers based on the
average concentration and the empirical distribution of intake between consumers and between
different intake days of the same consumers. Percentiles of this usual intake distribution can then be
related to e.g. the acceptable daily intake (ADI). Uncertainty of percentiles can be established by
resampling methods. MCRA allows including processing factors (e.g. the effect of cooking on the
concentration) and variability factors (to correct for the fact that monitoring data are obtained from
composite samples, whereas consumers may eat individual units). Analyses can be done for a total
population or for a subpopulation (e.g. children, males or females or consumption-days only). The
effects of concentration below analytical reporting limits (LOR) can be assessed. Large portion
consumption and the highest compound or median compound in case of bulking or blending in the
composite sample is used in IESTI (International Estimated Short Term Intake) calculations.

The current release of MCRA is written in Microsoft Visual C# .NET 2005. Release 5 and earlier
versions were written in the statistical package GenStat (2005). MCRA is internet-based and can be
used by registered users at http:/mcra.rikilt.wur.nl. It consists of a basic program to do the
computations and of additional database selection possibilities implemented in HTML and Active
Server Pages (ASP). MCRA runs with Component One Chart (1999) which offers the possibility to
manipulate graphical output after it has been obtained.

An earlier version of the MCRA program, as well as an implementation of the Monte Carlo method in
@Risk (1996), have been described in van der Voet et al. (1999), and further elaboration was given in
de Boer & van der Voet (2000, 2001) and van der Voet ef al. (2001).

This manual gives a complete description and justification of the statistical methods used in the
program MCRA and offers an introduction to assist with the practical application of MCRA in dietary
risk assessment. The documentation describes MCRA Release 6. It covers the current release 6.0
(release 6 version 0) and all future updates starting with the same release number. Major updates of
the program, encompassing new or improved facilities will be released with an increased release
number and a new manual.

MCRA is a result of an ongoing co-operation between RIKILT and Biometris since 1998. RIKILT co-
ordinates the Dutch KAP programme (Quality of Agricultural Products) where results of monitoring
programs for chemical compounds in food are gathered in a national database. RIKILT also has a
recipe database to link food codes from the Dutch food consumption table to primary agricultural
products. Biometris contributes statistical models and programs for quantitative risk analysis.

Since 2005, the program is extended in collaboration with RIVM to include models similar to those
available in the STEM (Statistical Exposure Modelling) software.


http://mcra.rikilt.wur.nl/

2 Getting started with MCRA

2.1 Introduction

The MCRA system (Monte Carlo Risk Assessment) can be used for assessment of risks due to the

intake of compounds on foods. MCRA provides the following options:

e Acute probabilistic risk assessment: MCRA will calculate the intake distribution (mg or
microgram compound per kg body weight) from input data on consumption and compound
concentrations in food.

e In addition, covariable and/or cofactor dependent percentiles and uncertainty intervals may be
estimated using simulated acute intakes as input data.

e Percentiles: the intake distribution can be characterised by percentiles, i.e. compound
concentration levels exceeded with only a small specified probability (for example the 99"
percentile p99 is exceeded only in 1% of the cases).

e Uncertainty due to small samples: resampling of Monte Carlo (MC) variation, of consumers and
of compound concentrations to assess the uncertainty of the percentiles in the form of an
approximate confidence interval.

e Diagnostics on the amount of MC-variation and the amount of variability due to resampling
consumption and compound concentration data.

e Calculation of point estimates (IESTI) and comparison with MC-results.

e Decomposition of foods into ingredients using the composition, e.g. convert pizza consumption to
consumption of wheat, tomato, cheese, etc.

e Decomposition of foods into marketshares, e.g. for apple marketshares are specified for Jonagold,
Granny Smith and Golden Delicious.

e Parametric or empirical modelling of concentrations: MCRA can resample the compound
concentration data directly (empirical model), or it can sample from a binomial-lognormal model
fitted to the concentration data (parametric model). Note: consumption data are always re-
sampled empirically from the consumer data set.

e Modelling of processing effects: sometimes it is known that concentrations are reduced by food
processing, e.g. cooking, and frying. MCRA can incorporate processing factors as fixed effects or
by sampling from a processing factor distribution. The latter possibility requires the specification
of a nominal and an upper value for the processing factor.

e Modelling of unit variability: compound concentrations are often measured in large composite
samples, thus hiding part of the variability that exists between individual units. MCRA has
extensive possibilities to model unit variability e.g. sampling from a Beta, Bernoulli or Lognormal
distribution.

e Modelling of non-detects levels: compound concentrations are often only known above a certain
limit, the Limit Of Reporting (LOR). In a worst-case analysis, all non-detect measurements may
be replaced by the LOR value.

e Subset selection: extensive possibilities to select data on age, weight or sex of consumers, day of
consumption, consumed and derived foods, year, country and sampling type of concentration
data.

¢ Insertion of worst case values for foods without concentration measurement values.

e Calculate intake distribution for consumption-days only

e  Chronic risk assessment: MCRA calculates the usual intake distribution when the total number of
intake days per consumer is 2 or more. In MCRA, basically, two methods are implemented: the
first method (parametric) is called the betabinomial/normal method. The betabinomial distribution
is used to model the intake frequency and the normal distribution is used to model logarithmically
or power transformed intake amounts. Both distributions are numerically integrated to obtain the
usual intake distribution for the entire population. In an extended version of this method, the
frequencies and the amounts can also be related to a covariable and/or cofactor to estimate
covariable- and cofactor-dependent percentiles and uncertainty intervals. The second method
(discrete/semi-parametric) follows an approach proposed by Nusser et al. (1996, 1997) and Dodd
(1996). The chronic intake distribution is characterised by percentiles and uncertainty intervals on



these percentiles. Following Dodd et al. (2006) we refer to this method as the ISUF (lowa State
University Foods) model.

2.2 Registration

To use MCRA, navigate the web browser to http://mecra.rikilt.wur.nl. The opening screen gives some
general information, as well as links to fixed versions of the manual of the latest release. Find the
latest developments and most recent information in the On Line Manual.

As a potential new user, first fill in the registration form. Click registration form to get the form
displayed in Figure 1. Here, specify your name, organisation, address and email address. Choose a
username (no spaces allowed) and a password for use of the MCRA system. Click the ‘OK’ -button to
send the request to the MCRA webmaster at RIKILT, and you will get a response by email as soon as
possible.

: Iﬁt}e%;?ster Apply to get access to the MCRA web application
Fill in this form and submit it to apply.
Within 3 working days you will receive an e-mail message

whether you will be granted access. All fields are required.

Please: do not use spaces in the username and do not
use 'in any field.

Username | |

Password | |

Confirm password | |

E-mail address |

Full name |

Organisation | |

Department | |

Postal address | |

Figure 1: Registration form

Registered users enter the website by clicking Login to MCRA for registered users on the home page.
Specify username and password, and the first screen of the MCRA website is shown: Main Menu.

2.3 MCRA Main menu

In Figure 2, options within the Main menu are shown:


http://mcra.rikilt.wur.nl/
http://mcra.rikilt.wur.nl/mcra/

MCRA: Monte Carlo Risk Assessment

Stochastic modelling of chemical intake from food

Main menu

« Manage input/output
« MCRAGO HEW

+ MCRA 6.0 (field trial data and Dutch consumption data) MEW
+ Demos

+ Older versions

s Registered user information

s Logout from MCRA website

» Help

Far more information see the;
On Line Manual of Release B, [ast update: 117172006 .
On Line Manual of Release B, Printversion date: 110172006,

Cfficial documentation

Figure 2: MCRA Main Menu

e Click ‘MCRA 6.0’ to start preparations needed to do an MCRA analysis.

e C(lick ‘Manage input/output’ to upload (and download) your own data (see 2.5 ) or to
download output from a former MCRA analysis.

e Click ‘Older versions’ to run old releases of the program (older versions are not supported).

e Click ‘MCRA 6.0 (field trial data and Dutch consumption data)’ to run MCRA with features
to edit your own compound concentration data.

e Click ‘Registered user information’ to view which information about you is stored in the user
database.

e Click ‘Help’ for explanation about options in the Main menu.

e Click ‘Logout from MCRA website’ to leave the MCRA website. Your personal data files,
latest output files and the latest input options remain stored for later use.

2.4 Data needed

What data are needed to run MCRA? All data for MCRA are stored in Microsoft Access database
tables according to a predefined format. To use your own data, prepare your database off-line and
upload it to your personal user area on the MCRA website. The ‘MCRA 6.0 (field trial data and Dutch
consumption data)’ option in the Main menu (see 2.3 ) offers some possibilities to edit data on-line.
However, on-line editing is restricted to compound concentration values, unit variability, processing
factors, acute reference dose (ARfD) and average daily intake (ADI) (see Chapter 7 ).

In Chapter 9 , a full description of the format is given how data should be saved in a MS Access
databases. Basically, input data for MCRA originate from two sources: food consumption surveys and
monitoring programs on compound concentration data. Often, additional tables are needed to link
consumption data to compound concentration data or to implement model options like unit variability.
In Figure 3, a short outline is presented how tables are linked to each other: consumption data are
linked directly to compound concentration data or in an indirect way, through the use of food
composition data, food marketshare data, processing data or by the use of a supertype algorithm.
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Measured foods in table:

- ConcentrationValues

- ConcentrationSummaryStatistics
- ConcentrationDiscreteValues

- ConcentrationWorstCaseValues

Consumed foods in table:
- FoodConsumption

Foods in table:

- Processing

- FoodComposition

- FoodMarketshare

- supertype algorithm

Figure 3: Links between consumption and compound concentration data

The MCRA system has a central database with example data. You may run example analyses without
having data yourself. However, MCRA is primarily designed to work with user databases, or with a
mixture of user data and centrally supplied data. For example, provide your own data on compound
concentrations and combine these with the centrally supplied consumption data. Be careful when
using tables from different databases: the codes of foods of the centrally supplied data and your own
data should be consistent with each other.

Consumption data are consumed portions of food (consumed at different days) of consumers. To get
standardized intakes, in any case the weight of each consumer should be supplied. Other
characteristics of the consumers, like age and/or sex, may be used in further analyses. The second type
of data, compound concentration data, are the amounts of compound found on monitoring samples of
food. The third category, additional tables, provides information that links consumption data to
compound concentration data or store information for more sophisticated analyses like unit variability
(see Figure 3).

Food composition data specifies the composition of foods. So, speaking about pizza, the composition
specifies proportions for e.g. wheat, tomato, cheese etc. Food marketshare data specifies the
proportion of subtypes, so for apple, marketshares are e.g. Jonagold, Granny Smith, Golden Delicious
etc. Processing data specify the unprocessed food, the processed food and the corresponding
processing factors, e.g. for grapes raisins are specified. The supertype of a food is, if needed,
automatically determined. So the supertype of e.g. Granny Smith is apple.

As a registered MCRA user you have complete control over the file management in your personal
area by starting ‘Manage input/output’ in the Main menu (see 2.5 ).

2.5 Manage input/output

The ‘Manage input/output’ option in the Main menu brings you to a screen where you can upload
your data files (see Figure 4). Each user has a personal data area with two subdirectories named ‘IN’
and ‘OUT’. The ‘IN’-directory is used to upload your own MS Access databases. Databases are
uploaded directly or in zipped form. Other options in this menu are e.g. zip, rename or delete files.
MS Access databases and zip-files can also be downloaded. Note: never delete subdirectories ‘IN’ and
‘ouT’.

11



Listing of files folder b oerin

Help

back to main menu Mew falder

5 hoer 2 folder(=], Rename folder
ﬁ in

] 0_bfrOS01 24 mdb - 22292 5 kB 102572005 1:43:12 PM. Empty folder

L O_bfr050125 mel - 225239 kB 1/28/2005 1:458:41 PM.

50 day TEF mdb - 147 5 kB 9/7/2004 10:29:10 AM. Zip folder
{ﬁ out
\;»‘ averconcocomres dat - 0,4 kB 3232005 11:23:02 AM.
“# ayerconcoomres him - 3,7 KB 3232005 11:23:02 AM, Unload afile
2% pootstrap et - 04 KB 3232005 11:23:02 AM. Allfiletypes are allawed to upload
2% bootstrap Hm - 2,8 kB 3232005 11:23:02 AM.
% consprobdiste dat - 0,1 KB 32342005 11:22: 43 Ah. Clear histary

“E# consprobdistr htm - 0,1 kB 3/23/2005 11:22:34 AM. (D Stz e i fellier Tiosi e EleEee

\;-»‘ cumusaldst - 01 kB 372302005 11:22:49 AWM.

Figure 4: Manage input/output

Output from MCRA is written to the personal ‘OUT’-directory. To download output for off-line
viewing do the following. Go to the central menu (see Figure 7), click the ‘View-output’-button and
click DownloadOutput (see Figure 5). Output files are downloaded in a zipped format. The download
includes a file ‘viewoutput.htm’ which gives the same options to study output as available on the
website.

Occasionally, after pasting ComponentOne Charts into Word the chart is not displayed (at all) and
instead, an icon appears. To our experience, pasting charts from the clipboard encounters no
difficulties when the Word document is opened first, then press the 'Copy to Clipboard'-button and
paste the contents of the clipboard into the Word document.

Occasionally, system faults occur due to errors like incorrect database contents, queries giving empty
subsets, subset selections combining inconsistent levels or scripting errors. The best way to proceed is
to log out and enter the website again (login). Then, click the ‘Manage input/output’ link in the main
menu, click your personal directory link or the ‘IN’ or ‘OUT’-subdirectory links (a number of buttons
appear) and click the ‘Clear history’-button: all system files (files created by MCRA, but not visible)
are deleted from the personal directory. Files on the ‘IN’ or ‘OUT’-subdirectory are not deleted (see
alsoch. 11).

Preparing to download ...

You will get a dialog window asking what to do with a file named
MCRAresultsxzip (where xis a personal code). Choose "Save as”. After
downloading unzip this file, and start viewoutput.htm in Internet Explarer.
» RMote 1: Depending on your browser settings you may first he asked if
you want to apen ar save the file getdownloadresults j
dialog window, choose Open file from current locatio
s Mote 20 Ifyou getthe message File Download "Sop
wour computer... Would vou like to open the file or saw Do you want to open or save this file?
computer' (MCRAresultsxzipd, choose Save,

Mame: MCRAresults2.zip

Ifyour download does not start autormatically, click he @ Type: WinZip File, 355 KB
From:  mcra.rikil, wur,nl

Open ] [ Save ] [ Cancel

potentially harm pour computer. IF pow do nat trust the source, do not

@ ‘While files from the Internet can be useful, this file type can
opet o zave this software, What's the rigk Y

Figure 5: Download output for off-line viewing
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2.6 Starting the MCRA program

To start MCRA, click the ‘MCRA 6.0 option in the Main menu (see Figure 2). Then, depending on
whether you are a new user or not, the screen in Figure 6 or Figure 7 is shown. Each activity is started
from the MCRA central menu. After finishing the activity, the user returns to the MCRA central menu
to start a new activity.
New users are automatically brought to the MCRA central menu in Figure 6. Click the ‘go’-button to
start selection of data.

MCRA 6.0 central menu

Overview

histary is cleared

start of data selection qo

& Yourlastjobis succesfully completed

& Serveris readyto accept a joh.

wiew output

hackto main menu

Release G.0

Figure 6: MCRA central menu, start of data selection

In all subsequent cases, the menu in Figure 7 is shown.

MCRA 6.0 central menu

Overview

data selected on: 62072007 11:50:14 AM
consumption survey.  DMFCS-3

compound:  CHLORPYRIFOS

selection of data o | show | clear |

compound and survey selection oo
to overviewy of conversion oo

subset selection oo | show | clear |
MCRA Input form oo

e Yourlastjobis succesfully completed

e Serveris readyto accept a joh.

view output

hackto main menu

Relzase 6.0

Figure 7: MCRA central menu
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First, select the data. In Figure 6, there are no further options. When a selection already exist, continue
with the same selections as before by clicking the MCRA-input-form ‘go’-button (see Figure 7). For
selecting new data, click the selection-of-data ‘clear’-button and enter the screen in Figure 6. Click the
to-overview-of-conversion ‘go’-button to enter an overview of the latest food conversion.

2.6.1 Selection of the tables

Select tables from remote data servers or supply own data by clicking the selection-of-data ‘go’ or
‘clear’-button in the MCRA central menu (see Figure 7). The screen in Figure 8 displays a list of data
servers that are sharing data with you (according to your user credentials). Select one or more data
servers and click the ‘go’-button. In Figure 8, data server ‘Biometris’ is checked.

MCRA Monte Carlo Risk Assessment

Selection of dataservers

» |nthe list helow you find dataservers that are sharing data with yau.

#« Select one ormore of the servers whose data you wish to use for a MCRA analysis.

select server I Italy
I~ Denmark
M Biometris
I Czech Repuhlic
I Denmark to come
I Sweden
I Rikilt (ML)
I~ Rikilt fremote ML

I~ vour own databases

click go | clear info

hackto central menu
hack to main menu

Releaze 6.0

Figure 8: Selection of data servers

In Figure 9 all databases that are available to you are shown. From here select databases for further
use in the MCRA analysis. Click the compound-and-survey-selection ‘go’-button for selection of a
new compound or survey if data are retrieved on an earlier occasion.

As mentioned before, the coding used in various tables should be consistent. Therefore, the safest
way to select data is using data from one and only one source. If not, convince yourself that data
coming from different sources are consistent and suited for your purposes.

On each of these sources, find some information by clicking the ‘info’-button and, next screen (not
shown), by clicking the buttons with country names.
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MCRA: Monte Carlo Risk Assessment

Selection of databases

e |nthe list below you find servers and databases.

» Select one or more databases that you wish to use for a MCRA analysis.

select databases from list:

click

hackto central menu
hackto main menu

Release 6.0

Biometris

IV walidation.mdh

¥ McraPes_ML.mdb

™ UKcarbapple.mdhb

¥ dutch pesticides.mdhb

T

clear

info

Figure 9: Selection of databases

Figure 10 displays the selected databases and shows which tables are available. Select whole
databases at once (check ‘All Tables’) or make combinations of tables from different databases as

done in Figure 10.

MCRA: Monte Carlo Risk Assessment

Table selection for MCRA analysis

Select data tables by checking the boxes helow, then click the select-tables 'go’ button
Do not select more than one table with the same name.

Food
con

sump Inddiwi
Database: tion  Food  dual
validation.mdh g
MeraPes_MLmdb o W W
dutch - } .

pesticides.mdhb

[ Use alternative foodnames foodname2

back to main menu

Release 6.0

Com tian mary  crete
pound  Country  walues  stat. values
™ ™ ™ ™ ™
v v v =

|— -

clear all seftings clear

Concen
tra

Cone.

Sum

Cone.
Dis

Food
com
posi
tion

v
-

Figure 10: Table selection for MCRA analysis

Food
hiarket

share

v

Food

proper  cuhural

ties
i~
r~

Agri

uze

-

v

Proces
=ing
type
v

-

Proces
sing
-
-

v

“Jaria
bility
Prod

-

i~

“waria

bility

Comp
Prod

“aria
bility
Proc Comp
Prod

-

Cone.
worst
case

walues

v

All
Tables

-
-
-

Scroll the mouse over the checkboxes and tablenames are displayed in red, green or grey textboxes.
e [t is compulsory to select all tables for which red textboxes appear (Foodconsumption, Foods,
Individual, Compounds and Country).
e It is compulsory to select one of the tables containing compound concentration data
(ConcentrationValues, ConcentrationSummaryStatistics and ConcentrationDiscreteValues).
These tables have their name displayed in green textboxes (see also 3.2.1).
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e All tables with grey textboxes are optional (Foodproperties, Processing, Processingtype,
ConcentrationWorstCaseValues, AgriculturalUse, VariabilityProd, VariabilityCompProd,
VariabilityProcCompProd).

Make sure to select all compulsory tables otherwise the menu keeps returning with warnings about not
selecting the required tables. Make also sure that each type of table is represented once.

To use an alternative language for labelling foods, check ‘Use alternative foodnames (foodname?2))’.
Check your tabels and click the ‘go’-button..

2.6.2 Selection of food consumption survey and of compound

After selecting tables, the screen of Figure 11 is shown. Checkboxes for ‘allow marketshares not
summing to 100% (step 4)’ and ‘allow worst-case concentrations (step 7)’ are only shown when table
FoodMarketshare and ConcentrationWorstCaseValues are selected. Here, table
ConcentrationWorstCaseValues is not selected (checkbox not shown). When checkbox ‘allow
marketshares not summing to 100% (step 4)’ is not checked, all derived foods not summing up to
100% are ignored in the analysis.

Select a survey name from the scroll-down menu. MCRA works on single compounds. Select a
compound name from the scroll-down menu (see Figure 11).

MCRA: Monte Carlo Risk Assessment

Selected tables for MCRA

You selected the following CENTRAL files and tables:
walidation mdb Foodecampaosition

walidation. mdb Foodmarketshare
validation.mdh Foodpropedies

validation.mdh Processingtype

walidation.mdb Concentrationworstcazevalues
mcraPes_ML.mdb Foodconsumption
McraPes_ML.mdh Food

McraPes_ ML mdhb Individual
McraPes_ML.mdh Compound
McraPes_ML.mdh Country

McraPes_ ML mdh Concentrationvalues

dutch pesticides.mdh Agriculturaluse

dutch pesticides.mdh Processing

dutch pesticides. mdh Variabilityprod

dutch pesticides. mdh Variabilitycompprod
dutch pesticides.mdhb Variabilityproccompprod

Codes for consumed food will be converted. Conversion options:
I allow conversion to supertypes (step &)
I allow worstease concentrations (step 73

. ) covariable
choose a covariable andior cofactor: ag: cofactor | sex v

The database comtains survey: DMNFCS-3

The database comtains 319 compounds, make a
selection:

click after making your choice o

CHLORFYRIFOS v

Figure 11: Selection of food consumption survey and compound
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MCRA performs a check whether all columns are available in the selected tables. If not, a report of
errors is produced, see Figure 12

Check of columnnames
Agriculturaluse: column food not found
Frocessing: column compound not found
column foodprocessed not found
column foodunprocessed not found
column prochom not found
column procupp not found
Yariabilityprod: column food not found
Yariabilitycompprod: column food not found
Yariabilityproccompprod: calumn food not found
column proctype not found

hack to selection oftables for MCRA
hack to main menu

Felease 5.0
Figure 12: Error report on missing columns

In all examples, the centrally supplied database ‘Validation.mdb’ is used.

2.6.3 Selection of foods
After table selection, information on the number of consumed and of derived foods is displayed.

For consumed foods, three situations may occur:

1. on some foods only positive concentration values are measured,
2. on some foods only non-detects are found,

3. on some foods only worst-case values are found.

Further output is:
4. on some derived foods no information is found,
5. on some consumed foods no information is found.

Now, three options are available (see Figure 13):
1. continue with only foods for which positive concentration measurements are available,
2. continue with foods for which concentration data are available i.e. positive concentrations
and/or non-detects,
3. continue with all foods i.e. also foods for which worst-case values are found (not shown).
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MCRA: Monte Carlo Risk Assessment

Results of conversion of foodcodes

Food consumption survey:.  DNFCS-3
Compound:  CHLORPYRIFOS

Mumber of consumed foods: 1193
=* 1193 consumed foods are converted to 556 foodcodes =

e for 23 foods positive concentration values are available. show

o Tor 67 foods measurements have heen made hut only nondetects were found. Include these foods in the

analysis if you want to replace them with the limit of reporting (Lor). RO

o for 0 foods only worstease values are availahle. show

& for 33 derived foods no information is found. show

REEEE

e for 433 consumed foods no information is found. show

selected consumption and compound tables show

* Continue with 23 foods {with positive concentrations)

" Continue with 23 + 67 = 90 foods {measured=positivesinondetects)

press after making your choice go

hackto select another compaund and sumey
hack to zelection of tables for MCRA
hackto main menu

Release 5.0

Figure 13: Food selection for MCRA analysis

Check one of the radio buttons and click the ‘go’-button to enter the MCRA central menu (see Figure
7). Click the MCRA-input-form ‘go’-button to enter the MCRA options menu treated in Chapter 3 .

Information about subset selection of the consumer population and foods is found in Chapter 6 .
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3 Specifying MCRA options and running a job

3.1 Overview

In this chapter, all options of the input form are discussed with references to paragraphs in Chapter 5
for more theoretical background.

Click the MCRA-input-form ‘go’-button of the central menu (see Figure 7). When MCRA is entered
for the first time, the screen in Figure 14 (default options) is entered.

MCRA input form new Monte Carlo Risk Assessment
Type of analysis @
risktype @ acute " chronic (optional) : i
L Choose default option set curent [
; e e O MNofification ¢ o
uncetainty analysis ¥es na save user defaults by E-mail? yes ne

Acute risk model Concentration data

concentration model | empinical v change options Processing and non-detects

number of Monte Carlo simulations /100000 Additional
unit variahility model | no unit variability w change options IESTI

randarn seed 10 . .
Uncertainty analysis

intake model | only empiical estimates v

berof e sets 10D change nptinns Resample options
nurnber of resampled sets
nurnber of simulations per resampled set 20000 OLItpllt

change options Graphics and tables

hack to central menu

Release 5.0

Figure 14: MCRA input form.

The input form is divided into a top, left and right section in which model options are specified:

In the top section, choose the risk type, acute or chronic, and whether to perform an
uncertainty analysis.

In the left section, a number of options related to the choices made in the top section are
specified. For an acute risk assessment, three more specifications are made concerning 1) the
concentration model; 2) the unit variability model for the concentrations; 3) and the intake
model which may be extended with an analysis to relate the acute intake to a covariable (e.g.
age) and/or cofactor (e.g. sex). For a chronic risk assessment, two models are specified 1) the
concentration model; 2) and the intake model. Note that the unit variability model is not
relevant for chronic risks.

The right part of the screen displays a number of special option blocks which depend on the
choices made in the top and left section. For an acute risk model at least 3 option blocks are
displayed 1) Concentration data; 2) Additional; 3) and Output. For a chronic risk model at
least 3 option blocks appear 1) Concentration data; 2) Intake model; 3) and Output. In Figure
14 the option block Uncertainty analysis is shown because in the top section uncertainty
analysis is checked. Click a change-options-button to reveal the options (see Figure 15,
default options).

After clicking any (radio) button or any item in a scroll-down menu, the screen is rebuilt to implement
the choice. After changing a value in a text box, leave the field (move the mouse/replace pointer) to
implement the value.

Each description (like ‘risk type’, ‘uncertainty analysis’, ‘concentration model’ etc. in Figure 14) has
its own mouse-over function revealing a blue screen-tip with short information on the topic. By
double-clicking the description name, the On Line Manual is opened for more information.

19



Save your settings by clicking the save-user-defaults-button in the top section.

The scroll-down menu Choose-default-option-setting has 4 settings: current, previous, system and
user.

‘current’ is shown when one of the input options is changed.

‘previous’ recalls all program settings from the last performed MCRA analysis.

‘system’ sets all default settings.

‘user’ implements all user defaults.

When no MCRA analysis has been performed in the past, setting ‘previous’, "user’ and ‘system’ are
identical.

Concentration data

close optiohs | Processing and non-detects
replace nondetects by (fraction off LOR | no replacement of nondetectz w
multiplication constant for LOR [0S
processing factors | no proceszing w
Additional
close options | IESTI
estimation of IESTI  © yes * no
standard body weight is |80
campare IESTIwith MonteCarlo-percentile T yes * no

MC percentage for comparisan with IESTI 29
own variability factors 7 yes ¥ no

Consumption days only: for M, select @ alldays ¢ consumption days only (at least 1 food consumed)

Uncertainty analysis
cloge options | Resample options

resample consumptions ™ ves © no
resample concentrations ™ ves © no

resample processing factors ¢ yes ™ no

Output
close options | Graphics and tables

percentages |50 90959999.959.99

exposure limits |0.01 0.020.04 0.06 0.08

percentage for summandgraph of right tail of intake distribution

I

or intake value instead of percentage

percentage for drill-down (972

Figure 15: Right section after clicking the ‘change options'-buttons in the input form.

Click the ‘submit MCRA job’-button in the top section to start MCRA (see 3.6 )
3.2 Acute risk type

Specify risk type is acute and find the specifications in the left section of the screen (see Figure 16,
default options). Scroll-down menus for the concentration model (see 3.2.1 ), the unit variability
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model (see 3.2.3 ) and the intake model (see 3.2.5 ) are shown together with some numerical
specifications.

Acute risk model

concentration model | empinical L

nurmber of Monte Carlo simulations 100000
unit variahility model | na wnit variability w

random seed Y

intake madel | only empincal estimates W

nurmber of resarmpled sets 100

number of simulations per resampled set 10000
Figure 16: Left section of the MCRA input form if risk type is acute

Number of Monte Carlo simulations

Days of consumption are randomly sampled from the consumer database. Each time a consumption
day is sampled, it contributes to the probability distribution of intakes. Each individual contribution is
called a simulation. In Figure 16, the total number of MC-simulations is 100,000.

Random seed
The MC-simulation uses a pseudo-random number generator that is initialised by setting the seed. To
get time-based values, set seed to zero. For repeatable sequences, set the seed to an integer number.

Number of resampled sets
Specify the number of resampled sets to assess the uncertainty distrubution. In Figure 16, the
specified number is 100.

Number of simulations per resampled set
Specify the number of simulations per resampled set. In Figure 16, the specified number of
simulations per resampled set is 10,000.

3.2.1 Concentration model options

Settings are:
e empirical (only shown for full data) [default for full data]
e binomial/normal (no pooling)
¢ binomial/normal with pooling

Compound concentration data are present as full data (a list of compound concentrations is available),
summary data (only some summary statistics, for example means, percentiles or maxima are
available) or histogram data (only numbers of observations classified in intervals are available). Select
the type of concentration data in the selection of tables menu in 2.6.1 .

In the probabilistic model, a distribution of compound concentration data is used to sample from. A
choice is made between a parametric and a non-parametric (empirical) approach. Compound
concentration data may be used as such (empirical modelling, only with full data) or fitted by
binomial/normal distributions e.g. parametric modelling, based on full data, summary data or
histogram data.

Parametric modelling becomes important in data-scarce situations. The normal distribution with
parameters ¢ and o has been selected as being both theoretically sensible and practically useful
(Shimizu & Crow 1988, Van der Voet ef al. 1999). The non-parametric approach requires more data
to obtain a satisfying representation of the full distribution.
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Summarizing, for concentration data we have:

Type of concentration data full data summary data histogram data
Option settings in concentration model
Non-parametric: empirical X - -

Parametric: binomial/normal
(with or without pooling)

Table 1: Possible combinations of option settings with type of concentration data.

See also: How to deal with limited information on compound concentration data

3.2.1.1 Empirical

In the non-parametric approach, choose ‘empirical’: concentration values are sampled at random from
the available compound concentration data and combined with food consumption data to generate the
intake distribution of intake values.

See also: Distributional assumptions

3.2.1.2 Binomial/normal (no pooling)

In the parametric approach, compound concentration values per food are sampled from parametric
distributions based on full, histogram or summary data. Parameters y and ¢ of the normal distribution
are estimated using the log-transformed non-zero compound concentrations (full data) or condensed
data (summary or histogram data). Choose this setting only, when enough data are available to
estimate u’s and ¢’s for all foods.

Estimation of the variance and/or mean may fail because compound concentration data on specific
foods are sparse or even missing. In case of missing parameters, a warning message is printed. Re-run
MCRA with setting ‘binomial/normal with pooling’.

A related question is the reliability of estimates based on a few degrees of freedom. To overcome
these problems, basically, compound concentration data on other foods are used to give sufficient data
to base estimates upon. Foods are classified into groups of similar foods and missing or unreliable
parameters are estimated using all compound concentration data in a group. This process of using
concentration data on similar foods to base estimates for 4 and ¢ upon is called pooling (see also
5.3.1.1.3)

See also: Distributional assumptions

3.2.1.3 Binomial/normal with pooling

Specifying pooling means that foods are automatically assigned into groups and pooled. The
identification of groups is based on the CODEX system (see 9.2 ), using the first 2 characters of the
code. When the code contains information on supertypes e.g. indicated by the presence of symbol ‘$’,
then the supertype is used to form groups. Foods with equal first 2 characters or equal supertypes are
placed into the same group.

Pooling is performed in a two step procedure following the next scheme:
1. Test homogeneity of variances within the groups
if variances are homogeneous,
pool variances.
test homogeneity of means within the groups
if means are homogeneous,
pool means.
2. Test homogeneity of variances of foods with df < 10 against overall-variance
if variances are homogeneous,
replace variances with overall-variance.
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Results of step 1 and 2 are (sub) groups with:

a) pooled variances and pooled means,

b) pooled variances and the original (unpooled, heterogene) means,
c) the original (unpooled, heterogene) variances and original means.

An example of pooling is given in 10.7 .
See also: Distributional assumptions

3.2.2 Concentration data options

Find in the right section of the input form, option block Concentration data (see Figure 17, default
options). Specify settings for missing data and non-detects and processing effects.

Concentration data

close options | Processing and non-detects

replace nondetects by (fraction of) LOR | no replacement of nondetects W

multiplication constant far LOR |92

processing factors | no processing A

Figure 17: Option block Concentration data

3.2.2.1 Replacement of non-detects

Settings are:
e no replacement of non-detects [default]
e replace all non-detects
e replace non-detects based on crop treated

In many cases of compound risk assessment (e.g. pesticides) the majority of the monitoring
measurements are non-detects, i.e. no quantitative measurement is reported. Only values higher than
the Limit Of Reporting (LOR) are reported. When a compound enters the food chain only via crop
treatment and the percentage crop treated is (approximately) known, this knowledge is used to infer
that some of the monitoring measurements should be real zeroes, contributing nothing to the intake,
whereas other non-detects in the monitoring data could have any value below the limit of reporting.
Non-detects (all non-detects or a specified fraction) are replaced with 0 or the LOR multiplied by a
multiplication constant. If percent crop treated data are available (see table AgriculturalUse, 9.5.9 ),
then replacement by LOR is restricted to an appropriate fraction of the non-detects by specifying
‘Replace non-detects based on crop treated’.

See also: Modelling of missing data and replacement of non-detects

3.2.2.2 Modelling processing effects

Settings are:
® no processing [default]
e processing (fixed factors)
e processing (distribution based)

Concentrations in the consumed food may be different from the monitoring compound due to
processing such as peeling, washing and cooking. Usually, processing lowers the concentration in the
consumed food compared to the concentration in the unprocessed food. The effect of processing is
modelled by multiplying the monitoring compound by a factor f; which will typically be between 0
and 1. Occasionally, the processing factor may also be > 1, e.g. for drying. Often, processing factors
may be variable across situations. This variability may be entered into the model by specifying two
values:
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frnom»> the nominal value, typically some sort of central value;
e and, fi,, an upper 95% confidence limit.

Distribution based processing factors require both values whereas for fixed factors only fi som OF fiupp
needs to be specified (when both are specified, the highest value will be used; worst case scenario).
No processing implies that f; = 1.

To use processing factors f; , choose processing (fixed factors) or processing (distribution based).
Processing factors are read from table ‘Processing’ (fi .om = procnom, fi,,,, = procupp) and processing
codes and labels from table ‘ProcessingType’. Note that specifying no processing is a worst case
scenario (f = fiupp = 1).

The program multiplies concentrations with fixed processing factors (in which case the conservative
value fi - fiuyp 1s used), or with random values sampled from a normal distribution with parameters u
and o. The mean and standard deviation are based on transformed values of f; ,,, and fi ,om. The type of
transformation for each processing type is specified in the last column of table ProcessingType.
Choose disttype = 1 for a logistic-normal distribution or disttype = 2 for a lognormal distribution. To
process simultaneously some foods using fixed factors and others distribution based, choose
‘processing (distribution based)’. Now, fixed factors f; are obtained by providing only f,,, whereas
random factors f; are sampled when both f ., and f .., are given.

It is not necessary to fill out a complete list of processing factors for all foods. Missing values of f; .om
and fy ., are, by default, replaced by the value 1.

See also: Modelling of processing effects

3.2.3 Unit variability model options

Settings are:
¢ 1o unit variability [default]
e beta distribution
¢ lognormal distribution
¢ bernoulli distribution

Monitoring measurements are typically made on homogenised composite samples. Each sample is

composed of nuy units with nominal unit weight wuy each. The weight of a composite sample is often

larger than a daily consumer portion. This implies that the mean level of the monitoring compound

may be a fair estimate of the mean level of the food, but the variability of the monitoring

measurements is certainly not appropriate to estimate the variance. Therefore, acute risks may be

higher than would follow from a direct use of the composite sample data. This problem has been

addressed by modelling unit variability.

In MCRA, the following three models for unit variability are available:

1. Beta model, requires knowledge of the number of units in a composite sample, and of the
variability between units (realistic or conservative estimates);

2. Lognormal model requires only knowledge of the variability between units (realistic or
conservative estimates).

3. Bernoulli model, requires only knowledge of the number of units in a composite sample (results
are always conservative);

See also: Modelling of unit variability

3.2.3.1 Estimated parameters for unit variability

When parameters for unit variability based on empirical studies are available, these are used to
simulate concentrations for a unit, assuming a parametric form for the unit-to-unit variability within a
batch e.g. the beta or lognormal distribution.

Table 2 describes the four options when a parametric form for unit variability is specified.
Compounds are simulated for a new unit in the batch using a lognormal distribution or for a unit
belonging to the composite sample leading to the use of the beta distribution.

24



Simulate for new unit in batch Simulate for unit belonging to
composite sample

(lognormal distribution) (beta distribution)

Estimates of unit e no censoring at cmy e no censoring at cmy
variability are e 1o upper limit to the unit e unit values never higher than
realistic (R) concentration nu, -cm,
Estimates of unit e unit values will be left-censored e unit values will be left-censored at
variability are at cmy cmy,
conservative (C) e 1o upper limit to the unit e unit values never higher than

concentration nu, -cm,

Table 2: Choices for estimated variability factors. cm; = value of composite sample
concentration, nu; = number of units in composite sample.

See also: Approaches to unit variability in probabilistic modelling: specifying distributions

3.2.3.2 Beta distribution

Find in the right section of the input form, option block Unit variability: Beta distribution (see Figure
18, default options).

Unit variability: Beta distribution
cloge options | Beata

default number of units in composite sample when:

unit weight == 25 |1
25 = unitweight == 250 |7
5

unitweight = 250
frarn table VariahilitytProc)(CompiProd use & variahility factor " coefficient of variation
estimates are ™ realistic estimates ¢ conservative estimates
unitwariability is compoundiprocessing dependent ™ na " yes

unitvariability is compound dependent ™ no " yas

Figure 18: Option block Unit variability: Beta distribution

The parameter for unit variability is specified as a variability factor v or as a coefficient of variation cv
of the unit values in the composite sample. Variability factors v (97.5" percentile divided by mean),
coefficient of variation cv (standard deviation divided by mean) and number of units nu in the
composite sample are retrieved from table VariabilityProd when unit variability is independent of the
compound and processing type. If the variability factor is dependent on compound and/or processing
type, data are expected in tables VariabilityCompProd or VariabilityProcCompProd, respectively.

The following variability factors v are recommended:
o for large crops (wuy > 250g) value v=>75;
o for medium crops (wuy 25- 250g) v="7;
o for small crops (wu; <25g) v=1 (FAO/WHO, 1997).
e and for foods which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree,
v=1.

The latter information is specified in field bulkingblending of table ProcessingType (see 9.4.4 ). If the

parameter for variability is missing, zero variability is assumed, and the unit concentrations are equal
to the sampled composite sample concentrations.
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Specify whether the supplied values for variability are realistic or conservative estimates. In the latter
case, unit values are left-censored at the value of the mean (composite sample concentration). If there
are no user-defined values for the number of units in the composite sample these are taken using a
default scheme of nominal unit weights. This scheme follows in principle the definition of FAO/WHO
(1997), as illustrated in Figure 18, but can be modified by the user.

See also: Beta model for unit variability

3.2.3.3 Lognormal distribution

Find in the right section of the input form, option block Unit variability: Lognormal distribution (see
Figure 19, default options).

Unit variability: Lognormal distribution
close options | Lognormal

frorm table YariahilityProc)iCompiPrad use ™ variability factar " coefiicient of variation
estimates are ™ realigtic estimates ¢ conservative estimates
unit variahility iz compoundfprocessing dependent ™ no ™ yeg

unitvariability is compound dependent ™ no ™ yas

Figure 19: Option block: Unit variability: Lognormal distribution

In Figure 19 a parametric form for the unit-to-unit variability is specified. Concentrations are
simulated for new units in the batch leading to the lognormal distribution.
The parameter for unit variability is specified as a variability factor v or a coefficient of variation cv.

The conversion of a variability factor into parameters of the lognormal distribution requires an exact
definition of what is meant. Here, the variability factor is defined as the 97.5™ percentile of the
concentration in the individual measurements divided by the corresponding mean concentration seen
in the composite sample. Specify whether estimates are realistic or conservative.

In the conservative approach, unit concentrations of the composite sample are left-censored at the
value of the monitoring compound. The realistic approach implies that the unit value may be lower
than the value of the monitoring compound.

See also: Lognormal model for unit variability

3.2.3.4 Bernoulli distribution

Find in the right section of the input form, option block Unit variability: Bernoulli distribution, (see
Figure 20, default options).

Unit variability: Bernoulli distribution

close options | Bernoulli
default number of units in composite sample when:

unitweight == 25 |1
25 = unitweight == 250 |7
=

unitweight = 250
unit variahility is compoundiprocessing dependent ™ no O yes

unit variahility is compound dependent ™ no © yes

Figure 20: Option block Unit variability: Bernoulli distribution
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In practice, measurements on individual units to obtain a measure for unit variability are not very
common. Therefore, the number of units nu, in the composite sample is used to define the parameter
for unit variability (see van der Voet et al. 2001). When the number of units nu; in the composite
sample is missing, the nominal unit weight wuy is used to calculate the parameter for unit variability.
The following variability factors v are recommended:

o for large crops (wuy > 250g) value v=>75;

o for medium crops (wuy 25- 250g) v="7;

o for small crops (wu; <25g) v=1 (FAO/WHO, 1997).

e and for foods which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree,

v=1.

The latter information is specified in field bulkingblending of table Processing (see 9.4.4 ). The
number of units within a consumption is calculated and for each unit a Bernoulli distribution is used
to sample the monitoring compound with probability (v-1)/v or a multiple v of it with probability 1/v
(see Figure 20).

See also: Bernoulli model for unit variability

3.2.4 Additional options concerning IESTI and consumption days

Find in the right section of the input form, option block Additional options that handles IESTI and
consumption days only (see Figure 21, default options).

Additional
close options | IESTI
estimation of IESTI  © yes * no
standard hody weight is |50
compare IESTIwith MonteCarlo-percentile {7 yes * no

MC percentage far carmparison with IESTI |29
own variability factars ¢ yes * no

Consumption days only: far MG, select ™ alldays T consumption davs only iat least 1 food consumed)

Figure 21: Option block Additional in the third section of the MCRA input form screen

The IESTI (International Estimated Short-Term Intake) is a prediction of the short-term intake of a
compound on the basis of the assumptions of high daily food consumption per consumer and highest
compounds and, in case of blending and bulking, the median compound from supervised trials. The
IESTI is expressed in microgram/kg body weight/day and estimated per food.

IESTI estimates are requested when estimation of IESTTI is set to yes. Standard unit variability factors
and a standard body weight of 60 kg are specified. The IESTI is compared with estimates of a
specified percentile (per food) of the MC-simulation.

In the output (not shown) two kinds of estimates of the MC-percentile are given: one for “All days”
and one for “Consumption days only”. Be aware that specification of option ‘consumption days only’
may alter the interpretation (and estimate) of the percentile for “All days”. In the latter case the
estimate refers to a smaller subset containing consumption days only. However, note that still not
every food is eaten on every consumption day. The interpretation and estimate of the percentile for
“Consumption days only” is not affected by setting option ‘consumption days only’.

The IESTI calculations correspond to the definition of FAO/WHO (2002) that may be considered as
the deterministic counterpart of the probabilistic approach used in MCRA.

In 10.3 output of IESTI calculations are shown.

See also: Additional: Comparison of probabilistic with deterministic estimates of acute risk
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3.2.5 Intake model options

Settings are:
e only empirical estimates [default]
e empirical estimates and betabinomial/normal

3.2.5.1 Only empirical estimates
This is a straightforward acute risk analysis.

3.2.5.2 Empirical estimates and betabinomial/normal
Find in the right section of the input form, option block Intake model (see Figure 22, default options).

Intake model

close options | Betabinomial for Frequency and Normal for transfoermed Amount

interaction between sex and age @™ no ™ yes
Intake frequency model {BB)

sex effect  ©* ves " ho
age effect ™ yes " ho
function  © spline (MOT READY) & polynomial
minimum degrees of freedom | 0w
maximum degrees of freedom | 4 |
testing method  * backward " farward

testing at level |0.07

Intake amount model (N)

transfarmation befare modeling ™ power " lagarithmic
sex effect ™ yes " no
age effect ™ yes " no

function © spline (NOT READYY ™ palynomial
minimum dedrees of freedom |0

maximum dedgrees of freedom | 4 |«

testing method @ baclkward " forward

testing at level |00

Figure 22: Option block Intake model in the right section of the MCRA input form screen

Note that estimation of a covariable and/or cofactor dependent acute intake distribution is additional
to the standard analysis. The simulated intake values of an acute analysis are used as input. Then the
analysis proceeds:

e the betabinomial distribution is used to model the intake frequency. Frequencies may be
related to a covariable using a spline or polynomial function and/or to a cofactor;

e non-zero intakes are transformed using a logarithmic or power transformation. The normal
distribution is used to model the transformed intake amounts and a spline or polynomial
function may be used to describe the effect of a covariable;

e Dboth distributions are numerically integrated to obtain the acute intake distribution.
Covariable- and cofactor-dependent percentiles can be derived from the corresponding acute
intake distributions.

See also: Empirical estimates and betabinomial/normal

Intake frequency model
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The intake frequency function models the probability of consumers of having an intake. Depending on
the consumption pattern, we have regular, less regular and incidental consumers. So each consumer
has his own probability of having an intake. For many foods, there may be a relation with age (or sex
or, if available, other demographic data): the probability of having an intake may be related to e.g. the
age of the consumer. The betabinomial distribution is very suited to sample consumer probabilities
using e.g. age and/or sex as explanatory variables.

In Figure 22, decide on modelling the effect of a covariable. Choose a spline function or a
polynomial. A smoothing spline is a complicated function, constructed from segments of cubic
polynomials with constraints to ensure smoothness. A polynomial function is based on orthogonal
linear, quadratic, cubic or quartic curves. The degree of smoothness of the spline or polynomial
function is controlled by increasing or decreasing the degrees of freedom. A spline with the maximum
degrees of freedom is less smooth than a spline with the minimal degrees of freedom. Decide on the
method of testing: backward selection means that testing starts with a spline or polynomial of the
highest degree. In each elimination round the number of degrees of freedom is decreased one at a
time, and the process is stopped when the resulting decrease in fit is significant at the specified
significance level as judged on the basis of a deviance test. Forward selection means that the
evaluation of the degree of the spline or polynomial is started with a function of the lowest degree. In
all evaluations the testing level is 0.01.

See also: Modelling the intake frequency distribution

Intake amount model

Choose whether the non-zero intakes are transformed by a logarithmic or power transformation and
whether the amounts should be related to e.g. age and/or sex. The transformed amounts are analysed
with maximum likelihood using a spline or polynomial function to describe the effect of a covariable.
The analysis provides covariable- and cofactor-dependent mean intakes and the standard deviation of
the transformed intake distribution, see Figure 22.

See also: Modelling transformed intake amounts

Estimation of covariable- and/or cofactor-dependent percentiles

For each combination of levels of the covariable and cofactor the acute intake distribution is obtained
by numerical integration. The parametric intake frequency and intake amount model are used to
derive distributions of intake frequency and intake amount values through the use of MC-sampling.
For each level of the covariable and cofactor, the corresponding distributions are multiplied, and an
acute intake distribution is obtained which represents the acute intake for that specific combination of
levels of the explanatory variable(s). The number of MC simulations is specified in the MCRA input
form, see Figure 16.

See also: Estimating the acute intake distribution

3.3 Chronic risk type

Specify in the top section (see Figure 14) risk type is chronic and uncertainty. Specifications in the
left section (see Figure 23, default options) are:

Chronic risk model
concentration model | empinical W

intake model | betabinomial/nommal [BEM] b

number of Mante Carla simulations 100000

randorm seed

]
number of resarmpled sets 100

nurmber of simulations per resampled set (10000
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Figure 23: Left section of the MCRA input form if type of analysis is Chronic

In dietary risk assessment, usual intake is defined as the long-run average of daily intakes of a dietary
component by an individual consumer. In the MCRA program, for chronic risk assessment, the intake
is calculated as the consumption on each day of each consumer multiplied by the average value of the
compound concentration levels (non-detects and detects) divided by body weight and, if specified,
applying processing and/or replacing zeros with the LOR (based on percent crop treated). Note, unit
variability is not relevant in chronic risk assessment. Compound data for a chronic risk assessment
may be present as full, summary or histogram data. For full data, a choice can be made between a
parametric and a non-parametric (empirical) approach. For summary or histogram data a parametric
approach is obligatory. Note, option ‘consumption-days only’ is not relevant for chronic risks and
chronic risk assessment is only performed when the total number of days per consumer is 2 or more.
See also: Chronic risk assessment

Number of Monte Carlo simulations

The usual intake distribution is obtained by a numerical integration procedure. Specify the number of
MC-simulations to estimate the distribution. In Figure 16, the total number of MC-simulations is
100,000.

Random seed

The numerical integration is based on MC-simulation and requires a pseudo-random number
generator that is initialised by setting the seed. To get time-based values, set seed to zero. For
repeatable sequences, set the seed to an integer number. See 3.2

Number of resampled sets

Specify the number of resampled sets to assess the uncertainty. Settings are the same as for the acute
risk model. See 3.2

Number of simulations per resampled set
Specify the number of simulations per resampled set. In Figure 16, the specified number of
simulations per resampled set is 10,000.

3.3.1 Concentration model options

Settings are:
e empirical [default] (see 3.2.1.1)
¢ binomial/normal (no pooling) (see 3.2.1.2)
¢ binomial/normal with pooling ( see 3.2.1.3)

For options of Concentration data (see 3.2.2 )

3.3.2 Intake model options

Settings are:
e betabinomial/normal (BBN) [default]
e discrete/semi-parametric ISUF)

The covariable and/or cofactor are selected in the screen shown in Figure 11.

3.3.2.1 Betabinomial/normal (BBN)
Find in the right section of the input form, option block Intake model (Figure 24, default options).
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Intake model

close options | Betabinomial for Frequency and Normal for transformed Amount

interaction hetween sex and age ™ no " ves
Intake frequency model {BB)

sax effect ™ yes " no
age effect ™ yes " ho
function  © spline (NOT READYY @ polynamial
minimum dedrees of freedaom |0«
maximum dedrees of freedom | 4 |+

testing method ™ backward " farward

testing at level |0.07

Intake amount model (N}

transfarmation befare modeling ™ power " logarithmic
sex effect ™ wes " no
age effect ™ yes " no

function  © spline (MOT READY) @ polynamial
minimum degrees of freedom |0 |

maximurm degrees of freedom |4

testing method ™ backward " farward

testing at level |00

Figure 24: Option block Intake model if intake model is betabinomial/normal (BBN)

For a chronic risk assessment, the intake is calculated as the consumption on each day of each
consumer multiplied by the average value of the compound concentration levels divided by body
weight (see 3.3 ). Apply the betabinomial/normal model:

o the betabinomial distribution is used to model the intake frequency. A spline or polynomial
function are available to describe the effect of a covariable. Choose whether an interaction is
included when both cofactor and covariable effect are modelled.

e non-zero intakes are transformed to normality and a maximum likelihood algorithm is used to
estimate the effects of explanatory variables and the standard deviation parameter of the usual
intake distribution (variance between individuals).

e both distributions are numerically integrated to obtain the usual intake distribution. For each
combination of levels of the explanatory variables, an intake frequency distribution and a
transformed intake amount dsitribution is simulated through MC-sampling. Both distributions
are multiplied to obtain the usual intake distribution. The number of MC-simulations is
specified in the MCRA input form, see Figure 23. Covariable- and cofactor-dependent
percentiles can be derived from the corresponding usual intake distributions.

Note that the interaction option refers to both models (no separate modelling).
See also: Betabinomial/normal

Intake frequency model

The intake frequency model describes the probability of having an intake. Depending on the
consumption pattern, we have regular, less regular and incidental consumers, each consumer has his
own intake frequency.

For many foods, there may be a relation with explanatory variables like e.g. age and/or sex. The
betabinomial distribution is very suited to model the intake frequency as function of explanatory
variables.
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In Figure 24, choose whether to model e.g. age and/or sex effects. Choose a spline or a polynomial
function. A smoothing spline is a complicated function, constructed from segments of cubic
polynomials with constraints to ensure smoothness. A polynomial function is based on orthogonal
linear, quadratic, cubic or quartic curves. The degree of smoothness of the spline or polynomial
function is controlled by increasing or decreasing the degrees of freedom. A spline with the maximum
degrees of freedom is less smooth than a spline with the minimal degrees of freedom. Decide on the
method of testing: backward selection means that testing starts with a spline or polynomial of the
highest degree. In each elimination round the number of degrees of freedom is decreased one at a
time, and the process is stopped when the resulting decrease in fit is significant at the specified
significance level as judged on the basis of a deviance test. Forward selection means that the
evaluation of the degree of the spline or polynomial is started with a function of the lowest degree.
Choose your testing level. If both cofactor and covariable are included, decide on modelling the
interaction. For a polynomial, the interaction means that curves are no longer parallel and intercepts
may differ.

See also: Modelling the intake frequency distribution

See also: Intake frequency model with covariable and/or cofactor

Intake amount model

The non-zero intake amounts are transformed to approximately normality by a logarithmic or power
transformation. The transformed amounts are analysed with maximum likelihood using a spline or
polynomial function to model the effect of a covariable. The analysis provides mean intakes of the
transformed intake distribution dependent on explanatory variables. The total variance of the non-zero
transformed intake amounts is divided into a between individuals and a between days within
individuals a variance component. The between-individuals component is the basis for the estimation
of the distribution of the usual intake.

See also: Modelling the positive intake amounts

See also: Intake amount model with covariable and/or cofactor

Estimation of the usual intake distribution by numerical integration

The e.g. age and/or sex dependent usual intake distribution is derived by a numerical integration. The
parametric intake frequency model and parametric intake amount model are used to derive for each
combination of levels of age and sex, a distribution of intake frequency values and intake amount
values. This is done by MC-sampling. By multiplying both distributions, a distribution is obtained
which represents the usual daily intake for a specific combination of levels of age and/or sex. The
number of MC simulations is specified in the MCRA input form, see Figure 16.

See also: Estimating usual intake distributions

3.3.2.2 Discrete/semi-parametric (ISUF)
Find in the right section of the input form option block Intake model (see Figure 25, default options).

Intake model

close options | Discrete/semi-parametric {ISUF)

transformation befare madeling ™ power © logarithmic
spline fit ™ yes " ho

number of iterations to estimate frequency distribution

1

nurmber of bhins for discretisation

Figure 25: Option block Intake model if intake model setting is discrete/semi-parametric (ISUF)

For a chronic risk assessment the intake is calculated as the consumption on each day of each
consumer multiplied by the average value of the compound concentration values divided by body
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weight (see 3.3 ). Before estimating the chronic percentiles of the distribution applying the
discrete/semi-parametric (ISUF, Iowa State University Foods) model, non-normal intake data are
transformed to approximate normality following an approach proposed by Nusser et al. (1996, 1997)
and Dodd (1996).

See also: Discrete/semi-parametric (ISUF)

Transformation: power or logarithmic
Specify a power or logarithmic transformation. Usually, a power transformation is satisfactory.
See also: Power or log transformation

Spline fit or not

The transformation to normality is improved by fitting a spline to the transformed intakes. A
smoothing spline is a complicated function, constructed from segments of cubic polynomials with
constraints to ensure smoothness.

See also: Spline fit

Number of iterations to estimate the intake frequency distribution

The intake frequency distribution is estimated in an iterative process. Specify the number (x 1000);
here 5 is specified, giving a total of 5000 iterations, see Figure 25:

See also: Back transformation and estimation of usual intake

Number of bins for discretisation

The intake frequency is estimated on a discretised probability grid. Here, the resolution of the grid is
equal to 20. So, the probability mass is discretised at a grid ranging from 0 to 1 with step length equal
to 0.05.

See also: Back transformation and estimation of usual intake

3.4 Uncertainty analysis

Specify in the top section (see Figure 14) an uncertainty analysis.
See also: Uncertainty of risk assessments: resampling data

3.4.1 Uncertainty analysis options for acute risks

Find in the right section of the input form, option block Uncertainty analysis (see Figure 26, default
options).

Uncertainty analysis
clase options | Resample options

resample consumptions ™ yes © no
resample concentrations ™ yes T no

resample processing factors © wes ™ no

Figure 26: Option block Uncertainty analysis if an acute (or chronic BBN) risk model is chosen

The uncertainty of output statistics (e.g. mean or percentiles of the intake distribution) is assessed by
resampling datasets (consumptions, concentrations) or distributions (processing factors). Resampling
can be applied on the level of fresh MC-samples, on the level of consumers and on the level of the
compound concentration data. To examine the uncertainty due to MC-variability in each analysis
only, specify ‘no’ for all three options. Then data are resampled from the original data. Apply
resample consumptions and resample concentration data: from each dataset, data are resampled (with
replacement) to construct a so-called bootstrap sample. Setting resample procesing factors to yes will
generate new processing factors from a parametric uncertainty distribution. Parameters of this
uncertainty distribution have to be entered in the Processing table (see 9.4.5 ). From the resampled

33



data sets and parameters an intake distribution is simulated. Each resampled set provides a mean,
maximum and percentiles according to the specified percentages and all replicates together contain
the information to make inferences from the data, e.g. to establish the uncertainty of mean, maximum
and percentiles.

The number of resampled sets and the number of simulations per set is specified in the left section of
the MCRA input form (see Figure 16). Here, 100 resampled sets are specified and each set is
resampled 10,000 times. The number of values within a set restricts which percentiles are displayed.
Here, the highest possible percentage for which uncertainty information can be calculated is the
99.99™ percentile, for a set containing 1000 simulations this is the 99.9™ percentile.

3.4.2 Uncertainty analysis options for chronic risks: betabinomial/normal (BBN)
Options are the same as for an uncertainty analysis for acute risks, described in 3.4.1 .

3.4.3 Uncertainty analysis options for chronic risks: discrete/semi-parametric (ISUF)

Find in the right section of the input form, option block Uncertainty analysis (see Figure 27, default
options).

Uncertainty analysis

close options | Resample and re-estimation options

resample consumptions ™ yes © no

resample concentrations ® ves © no

resample processing factars ¢ yes ™ no

re-estimate consumption frequency distribution ¢ ves ™ no
re-estimate pawer transfarmation ¢ yes ™ na

re-estimate number of knots for spline © wes ™ na

Figure 27: Option block Uncertainty analysis if chronic risk model ISUF is chosen

Uncertainty is assessed by resampling the consumption and compound concentration data. Option ‘re-
estimate consumption frequency distribution’ is only relevant when consumptions are resampled.
Note that estimation of the frequency distribution is time consuming. Options ‘re-estimate power
transformation’ and ‘re-estimate number of knots for spline’ are used in the transformation to
normality of the intake distribution.

3.5 Output

Depending on the type of analysis there are different output option blocks to specify graphics and
tables.

3.5.1 Output options for acute risks: only empirical estimates
In Figure 28 (default options), percentages and exposure limits are specified separated by a space.
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Output
close aptions | Graphics and tables

percentages |50 90 9599 99.593.99

exposure limits |9/01 0.020.04 0.06 0.08

percentage far summarndaraph of right tail of intake distribution

1

or intake value instead of percentage

percentage for drill-down 972
Figure 28: Option block Output if an acute risk model is chosen with only empirical estimates

The next option specifies the percentage that is used for summarising the contribution of foods to the
right tail of the intake distribution and to display a graph of the upper tail. A percentage may be
specified, but specifying an intake value in the option below overrules the percentage. The drill-down
percentage is used to select the nine consumers around the percentile of the intake distribution that
corresponds to the specified percentage. For these consumers the age and weight are displayed, the
intake, the consumption and the compound concentration contents found on each consumption. To
display information of consumers with the highest intake, specify percentage 100.

3.5.2 Output options for acute risks: empirical estimates + betabinomial/normal (BBN)

The upper part of Figure 29 (default options), see 3.5.1 . In the lower part, options related to the
covariable are shown, here age. The minimum and maximum age are retrieved from the database, but
are overruled by specifying own values. The step length is automatically determined but can be
overruled. Default, approximately 20 steps are taken and the calculated step length is rounded to the
nearest integer. To get predictions for specific ages, specify your extra age’s space separated. Extra
ages may lay outside the specified range determined by the minimum and maximum age.

Output
close options | Graphics and tables

exposure limits 0.01 0.020.04 0.060.08

percentages |50 90 9593 99.993.39

percentage far summangdgraph of right tail of intake distribution |99
or intake walue instead of percentage

percentage for drill-down

tabular results from minimum age

with steps of

to maxirnurm age |97

T T

gxtra values of age

Figure 29: Option block Output if an acute risk model is chosen with empirical estimates +
betabinomial/normal (BBN)

3.5.3 Output options for chronic risks: betabinomial/normal (BBN)
See Figure 30 (default options) and 3.5.1 and 3.5.2.
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Output
close options | Graphics and tables

exposure limits 001 0.020.040.05 0.0

percentages |5080959993319333

tabular results from minimum age |1

with steps of 14
to maximurn age |97
extra values of age |’

Figure 30: Option block Output if chronic risk model betabinomial/normal (BBN) is chosen

The last 4 options are only relevant when a covariable is modelled (see Figure 24).

3.5.4 Output options for chronic risks: discrete/semi-parametric (ISUF)
See Figure 31 (default options) and 3.5.1 .

Output
close options | Graphics and tables

percentages |50 90 9599 89.999.89

Figure 31: Option block Output if chronic risk model discrete/semi-parametric (ISUF) is chosen

3.6 Running an MCRA job

Click the ‘MCRA-submit-job’-button in the top section to run a MCRA analysis. Check the radio
button if you wish to be notified when the analysis is completed. After submitting the form, enter the
MCRA central menu (see Figure 32).

3.7 Checking the processing time

After a submit, all model specifications are passed to the server and the analysis is initiated. First, all
data are exported to system files located on the user directory. Export of data takes is only done when
data are changed, that is after selection of new tables or subset selection.

Click the ‘show progress’-button to view the progress of the analysis (see Figure 32). Here, also
information is given about the estimated CPU time. Performing a risk assessment may be time
consuming when data files are large and/or the number of simulations is high. Click the ‘update
window’-button to refresh the screen. Click the ‘kill job’-button to end a job (with a fatal error status,
not shown).
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MCRA 6.0 central menu

Overview
data selected on:  6/20/2007 1:31:08 PM
consumption survey:  DNFCS-3
compound: CHLORPYRIPHOS

selection of data g0 | show tlear |

compound and survey selection go

to overview of conversion gao
subset selection o | show clear |

MZRA input form 4o
e Yourjob is currently running onwarkstation 1. By pressing shov progress the elapsed and total expected

processing time is displayed.

<3 http:Hmcra.biometris.nl - Che... g@g

. Kill job Computational churds (uncertainty) 9100
Estinated cpu time (hims) elapsed f total;

o Semaris husy.

M 0048 08D

brack to main menu

Releaze 6.0 —

&l ® Internzt

Figure 32: Central menu, show progress

After completion (click the ‘update window’ button) a new button ‘view output’ appears (see Figure
7). Click the ‘view output’-button to get the screen in Figure 34 (see 4.1 ).

37



4 Example output

Click the ‘view output’-button in Figure 7. Depending on the type of analysis, several output windows
may appear (for example Figure 34 and Figure 39).

In 4.1 , the output is shown of an acute risk analysis. In 4.2 an example is given of a chronic risk
analysis. Other examples can be found in Ch. 10 . For downloading results for off-line viewing, see
2.5.

4.1 Acute risk assessment: basic analysis

This example shows output of an acute risk assessment for organo phosphate pesticide Chlorpyrifos
which has neurotoxic effects. The Dutch Validation database from RIKILT (NL) is used. Select ‘All
tables’, survey ‘DNFCS-3’ and compound ‘CHLORPYRIFOS’. Then, after selection of (see 6.2 ):
Table grapes, Grapefruit, Lemon, Mandarin, Orange, Apple, Peach, Peppers and Potato, the input
form is reached (see Figure 33).

MCRA input form rew Monte Carlo Risk Assessment
Type of analysis @
risktpe ™ acute " thronic (optionaly = -
Choose default option set: cuent (¥, submit MCRA job
8] o Motification ¢~ o
uncerainty analysis Yes no T WEE G by Evtnail Ves no
Acute risk model Concentration data
concentration model | empirical & tlose options Processing and non-detects
nurber of Wonte Catlo simulations  [100000 replace nondetects by (fraction off LOR | no replacement of nondetects ~
unit variability model | no unit variability N rultiplication constant for LOR 05
random seed |9 processing factors | no processing v
intake model | only empirical estimates v Additional
close options
back to central menu IESTI
estimation of IESTI yes ® na
Release 6.0
sleas= standard body weight is |59
compare |[ESTI with MonteCarlo-percentile © yes % no

MC percentage for comparison with IEST) 198
own variahility factors ¢ yes “ no
Consumption days only: for MG, select @ alldays © consumption days only (atleast 1 food consumed)
Output
close options Graphics and tables
percentages [5090959999.99399
expasure limits 001 0.020.04 0.06 0.08
percentage for summardgraph of right tail of intake distribution 95
or intake value instead of percentage *

percentage for drill-down 975

Figure 33: MCRA input form for an acute risk analysis

Table 3 lists the main options:

Input form

risk type acute

uncertainty analysis no

concentration model empirical

number of Monte Carlo simulations 100000

unit variability model no unit variability
random seed 0

intake model only empirical estimates
concentration data system defaults
Additional system defaults
output:

percentage for summary/graph 95

Table 3: Input form options: basic acute risk analysis
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Click the ‘submit MCRA job’ in Figure 33 to start the analysis. When the analysis is finished, view

your results using the ‘view output’-button in the central menu. This gives Figure 34:

UPFER]

I’ERCE1

TILES

_-lIIII
MEANS

|||IIIII T .
e B e LY

Display Output

ta Input Farm

to Central Menu

o hdain henu

Download Qutput for Off line Wiewing
Info Charts

MCEA analysis at: 200672007 16:56:47

Compound : CHLOEPYEIPHOS
Concentration model - Empirical
Intakee medel : behorend bij acute
Intakee frequency meodel
Cevariable  no

Cefactor  ne

Intakee amount medel

Cevariable  no

Cofactor @ no

Display results of:

Summary of databases of food consumption and compound concentrations
Summary of simulated consurmptions and compound concantrations
Summary of upper tail of intakes

Surnrmary of total distribution of intakes

FPercantiles of daily intakes

Consumptions: characteristics of nine consumers

Concentrations: characteristics of nine consumers

Intakes: characteristics of nine consumers

Technical information on usual intakes

Additional output

Figure 34: View output window for an acute risk analysis

Choose ‘Additional output’ and click the ‘Submit’-button in Figure 34. In Table 4 you find the main

characteristics concerning this analysis taken from the ‘Additional output’ file.

‘Additional output’ file

Survey name DNFCS-3
Compound code CHLORPYRIFOS
Number of foods 9
Acute reference dose (ARLD) 100
Acceptable daily intake (ADI) 10
Number of detects 655
Number of non-detects 3267
No of consumers 6250
Population characteristics,

minimum age 1

maximum age 97

minimum weight 8

maximum weight 150

Sex female, male
Total no of consumption days 12132

Table 4: Information taken from the ‘Additional output’ file

Choose ‘Summary of databases of food consumption and compound concentrations’ and click the
‘Submit’-button in Figure 34: a summary is given from the data stored in your databases (see Table
5). The upper part of the table displays all information concerning consumption data and the lower
part all information concerning compound concentrations. For each food you will find the code and
label.
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In the upper part the average consumption over all consumers and all days (MeanConsum) together
with the average consumption on consumption days only (MeanConsDays) is given. In addition, the
number of consumption days (NconsDays) and total number of days (Ndays) are displayed, also
expressed as percentage consumption days (%ConsDays). So, there are 12500 days (2 days for 6250
consumers). Grapefruit is consumed on 1785 days (14.3%). The average consumption of Grapefruit
on these days is 4.06 x 12500/1785 =28.5 g.

Summary of databases of consumptions and compound concentrations with respect to:

Compound: CHLORPYRIPHOS

Code : food code

Food : food label

MeanConsum : average consumption, all consumers, all days
MeanConsDays : average consumption, consumption days only

NConsDays : number of consumption days in the data set

NDays : total number of days

%ConsDays : percentage consumption days

MeanConcen : mean concentration of all samples

MeanPosConc : mean concentration of samples with positive concentrations
NSamplPos : number of samples with positive concentrations

NSamples : total number of samples with concentration measurements
$SamplPos : percentage samples with positive concentrations

FOOD CONSUMPTION DATA

Code Food MeanConsum MeanConsDays NConsDays NDays %ConsDays
(9) (9) (%)

FB1235 TABLE-GRAPES 13.23 34.2 4836 12500 38.7
FC0203 GRAPEFRUIT, 4.06 28.5 1785 12500 14.3
FC0204 LEMON, SEE A 1.54 4.2 4589 12500 36.7
FC0206 MANDARIN, SE 8.83 41.2 2677 12500 21.4
FC0208 ORANGE, SWEE 57.06 99.6 7163 12500 57.3
FP0226 APPLE 61.50 99.4 7737 12500 61.9
FS0247 PEACH 2.08 7.3 3538 12500 28.3
V00445 PEPPERS, SWE 3.33 16.5 2533 12500 20.3
VR0589 POTATO 138.52 173.1 10005 12500 80.0

COMPOUND CONCENTRATION DATA

Code Food MeanConcen MeanPosConc NSamplPos NSamples $SamplPos
(mg/kg) (mg/kg) (%)
FB1235 TABLE-GRAPES 0.0159 0.1178 136 1007 13.5
FC0203 GRAPEFRUIT, 0.0693 0.1591 47 108 43.5
FC0204 LEMON, SEE A 0.0128 0.0575 16 72 22.2
FC0206 MANDARIN, SE 0.1073 0.1467 166 227 73.1
FC0208 ORANGE, SWEE 0.0522 0.1078 222 459 48.4
FP0226 APPLE 0.0030 0.0554 37 680 5.4
FS0247 PEACH 0.0076 0.0562 21 156 13.5
V00445 PEPPERS, SWE 0.0011 0.1156 9 942 1.0
VR0589 POTATO 0.0002 0.0600 1 271 0.4

number of detects = 655 3922 = total
number of samples

the number of non-detects = 3267 ( 3922 - 655 )

Table 5: Summary of the database, consumptions and compounds
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The lower part of Table 5 displays information concerning compound concentrations on each food.
The mean concentrations of all samples (MeanConcen) and of positives only (MeanPosConc) are
calculated. The number of positives (NSamplPos) and the total number of concentration
measurements (NSamples) are given as well as the percentage of positive concentrations
(%SamplPos). In this example for Grapefruit 47 positive concentrations are found out of 108 samples
(43.5%). The mean concentration of the positive samples is 0.0693 x 108/47 = 0.1591 mg/kg.

Choose ‘Summary of simulated intakes’. In Figure 34 you find essentially the same kind of
information but all statistics are calculated using simulated data (see Table 6). The simulation is
performed by sampling N (in Table 6 100,000) times a consumption pattern from the food
consumption database (with replacement). For each consumed food a concentration value is sampled
from the distribution of concentrations of that food. Multiplying consumption and concentration gives
the intake per food. Summing up the intakes over foods divided by the body weight gives the total
intake of the compound (here CHLORPYRIFOS) expressed in microgram per kg body weight per
day. For both consumption and concentration find additional statistics DeltaC and DeltaR. These
statistics displays the difference expressed as percentage between the mean (MeanConsum and
MeanConcen, respectively) of the simulated data and the mean of the data as found in your database,
respectively. The better the simulation mimics the database, the lower the percentages indicating the
deviation between simulated and input data.

Summary of simulations of consumptions and compound concentrations with respect to:

Compound: CHLORPYRIPHOS

Code : food code
Food : food label
MeanConsum : average consumption, all consumers, all days
DeltaC : difference (%) compared to average consumption
in database
MeanConsDays : average consumption, consumption days only
NConsDays : number of consumption days in the data set
NDays : total number of days
%ConsDays : percentage consumption days
MeanConcen : mean concentration in simulations with positive amount consumed
DeltaR : difference (%) compared to average concentration
in database
NSamplPos : number of positive concentrations in simulations with positive
amount consumed
NSamples : total number of concentration measurements

(detects and non-detects) in simulations with positive
amount consumed.

$SamplPos : percentage positive concentrations

ProcFact : mean processing factor

Food consumption data

Code Food MeanConsum DeltaC MeanConsDays NConsDays NDays %ConsDays
(9) (%) (9) (%)

FB1235 TABLE-GRAPES 13.14 -0.7 33.93 38713 100000 38.7
FC0203 GRAPEFRUIT, 4.02 -1.2 28.54 14075 100000 14.1
FC0204 LEMON, SEE A 1.48 -4.0 4.04 36635 100000 36.6
FC0206 MANDARIN, SE 8.99 1.9 41.86 21484 100000 21.5
FC0208 ORANGE, SWEE 57.08 0.0 99.53 57345 100000 57.3
FP0226 APPLE 61.56 0.1 99.53 61853 100000 61.9
FS0247 PEACH 2.12 2.3 7.54 28146 100000 28.1
V00445 PEPPERS, SWE 3.39 1.7 16.62 20392 100000 20.4
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VR0589 POTATO 38.03 -0.4 172.74 79907 100000 79.9

Compound concentration data

Code Food MeanConc DeltaR NSamplPos NSamples %SamplPos ProcFact
mg/kg (%) (%)

FB1235 TABLE-GRAPES 0.0154 -3.3 5229 38713 13.5 1.00
FC0203 GRAPEFRUIT, 0.0684 -1.3 6058 14075 43.0 1.00
FC0204 LEMON, SEE A 0.0127 -0.3 8147 36635 22.2 1.00
FC0206 MANDARIN, SE 0.1069 -0.3 15705 21484 73.1 1.00
FC0208 ORANGE, SWEE 0.0520 -0.4 27701 57345 48.3 1.00
FP0226 APPLE 0.0030 -1.8 3376 61853 5.5 1.00
FS0247 PEACH 0.0076 0.1 3828 28146 13.6 1.00
V00445 PEPPERS, SWE 0.0010 -6.5 186 20392 0.9 1.00
VR0589 POTATO 0.0002 7.8 318 79907 0.4 1.00

Table 6: Summary of simulated intakes

In the left part of Figure 34, a number of icons are displayed. Click the icon ‘Total’ to display a
histogram of the simulated total intakes (see the left plot in Figure 35). Click the icon ‘Upper’ to
display the upper tail of the intake distribution (see the right plot of Figure 35). The specified
percentage for the upper tail is 5%, corresponding with an intake of 0.44 microgram/kg bw/day. The
acute reference dose (ARfD) for Chlorpyrifos is equal to 100 microgram/kg bw/day.

CHLORPYRIPHOS CHLORPYRIPHOS

total intake distribution upper intake distribution
positive intake (49.4%) upper tail is 5.0% (0.44) (microgr/kg bw/day)
ARD:100 ARfD:100

0.00000001 0.000001 0.0001 0.01 1 100 0.1 1 10 100
Intake (microgrikg bw/day) Intake (microgr/kg bw/day)

Figure 35: Total intake distribution and upper tail (5%)

The part of the intake distribution exceeding the ARD is displayed in red (not happening in Figure
35).

Choose ‘Summary of total distribution of intakes’ and see Table 7. Here the contributions are
expressed as percentages (RelContr) of each food to the total intake distribution. A pie chart (see
Figure 36) of the foods with the 9 largest contributions is displayed by clicking the icon ‘Pie’ in
Figure 34. Also the mean, median and the percentiles of the 2.5% and 97.5% (p2.5% and p97.5%)
point of the total intake distribution per food are given in Table 7. The last column (%Zeros) shows
the number of zero intakes per food. If %Zeros is greater than 97.5% the p97.5% is lower than the
mean!

Let’s take Orange as an example. It contributes 61.8% to the total intake distribution and its average
concentration is 0.052 microgram/kg bw/day. The p2.5%, median, p97.5% and %Zeros of the total
intake distribution of Orange are: 0.000, 0.000, 0.542 microgram/kg bw/day and 72.3% respectively.
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Summary of the characteristics of the total intake distribution

Compound: CHLORPYRIPHOS

[

Contribution (%) per food to the total distribution,
RelContr: relative contribution (%) per food

p2.5% : 2.5% perc. of intake distr. per food(microgram/kg bw/day)
Mean : mean of intake distr.per food(microgram/kg bw/day)
Median : median of intake distr.per food(microgram/kg bw/day)
p97.5% : 97.5% perc. of intake distr. per food(microgram/kg bw/day)
%Zeros : percentage zeros per food
Food RelContr Mean Median P2.5% p97.5% %Zeros
% (microgr/ (microgr/ (microgr/ (microgr/ %
kg bw/day) kg bw/day) kg bw/day) kg bw/day)
TABLE-GRAPES 4.4 0.004 0.000 0.000 0.014 94.8
GRAPEFRUIT, 5.3 0.004 0.000 0.000 0.008 93.9
LEMON, SEE A 0.4 0.000 0.000 0.000 0.002 91.9
MANDARIN, SE 22.1 0.019 0.000 0.000 0.215 84.3
ORANGE, SWEE 61.8 0.052 0.000 0.000 0.542 72.3
APPLE 4.8 0.004 0.000 0.000 0.004 96.6
PEACH 0.4 0.000 0.000 0.000 0.001 96.2
PEPPERS, SWE 0.1 0.000 0.000 0.000 0.000 99.8
POTATO 0.7 0.001 0.000 0.000 0.000 99.7

Table 7: Contribution to the total intake distribution

Choose ‘Summary of upper tail of intakes’ and see Table 8. Find the contributions expressed as
percentages (RelContr) of each food to the upper tail according to the specified percentage (here 5%).
A pie chart (right plot of Figure 36) of the foods with the 9 largest contributions to the upper 5% of
the intake distribution is displayed by clicking the icon ‘Pie’ in Figure 34. Also the mean, median and
the percentiles of the 2.5% and 97.5% (p2.5% and p97.5%) point of the upper 1% of the intake
distribution per food are given in Table 8. The table shows the same statistics for that part of the
intakes per food that correspond with the upper 5% of the intake distribution. See also Figure 37,
where the mean intake for each food in the upper tail is graphically displayed. The last column
(%Zeros) shows the number of zero intakes per food.

Let’s take Orange as an example. It contributes 68.5% to the upper 5% of the intakes and its average
concentration is 0.670 microgram/kg bw/day. The p2.5%, median, p97.5% and %Zeros of the upper
5% of the intakes are: 0.000, 0.542, 2.624 microgram/kg bw/day and 22.3% respectively.

Summary of characteristics of the upper intake distribution

Compound: CHLORPYRIPHOS

Characteristics per food of the upper 5.0% of the distribution,
corresponding with a total intake higher than 0.4438 (microgram/kg bw/day)

)

RelContr: relative contribution (%) per food

p2.5% : 2.5% perc. of intake distr. per food(microgram/kg bw/day)
Mean : mean of intake distr.per food(microgram/kg bw/day)
Median : median of intake distr.per food(microgram/kg bw/day)
p97.5% : 97.5% perc. of intake distr. per food(microgram/kg bw/day)
%Zeros : percentage zeros per food
Food RelContr Mean Median p2.5% p97.5% %Zeros
% (microgr/ (microgr/ (microgr/ (microgr/ %
kg bw/day) kg bw/day) kg bw/day) kg bw/day)
TABLE-GRAPES 3.8 0.037 0.000 0.000 0.537 90.0
GRAPEFRUIT, 5.8 0.057 0.000 0.000 0.723 86.7
LEMON, SEE A 0.1 0.001 0.000 0.000 0.004 90.0
MANDARIN, SE 16.9 0.165 0.000 0.000 1.174 65.8
ORANGE, SWEE 68.5 0.670 0.542 0.000 2.624 22.3
APPLE 4.5 0.044 0.000 0.000 0.553 92.5
PEACH 0.1 0.001 0.000 0.000 0.001 95.6
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PEPPERS, SWE
POTATO

0.000 0.000 0.000 0.000 99.7
0.003 0.000 0.000 0.000 99.3

o O
w o

Table 8: Contribution to the upper tail (1%) of the intake distribution

In Figure 36, find a graphical display of the figures in Table 7 and Table 8.

CHLORPYRIPHOS CHLORPYRIPHOS

characteristics of the total intake distribution characteristics of the upper 5.0% of the intake distribution

statistics of largest contributions upper quantile corresponding with intake 0.44 (microgr/kg bw/day)
statistics of largest contributions

TABLE-GRAPES

PEPPER O thers
Al

ORANGE, SWEE|
ORANGE, S WEE]|

GRAPEFRUIT,

‘GRAPEFRUIT, l*

MANDARIN, SE

MANDARIN, SE|

61.84% 68.5%

Figure 36: Relative contribution of foods to the total intake distribution and upper tail (5%)

Scroll the mouse over the pie chart to find the contribution of each food. Here, the relative
contribution for Orange is displayed.

Choose ‘Percentiles of daily intakes’ and see Table 9. The percentiles of the acute intake distribution
for the percentages specified in the first line of the Output options in the MCRA input form (see
Figure 33) are shown. In this example, 0.01% of the population has an intake higher than 7.35849
microgram/kg bw/day. Also the mean and maximum are given.

Random sampling is based on seed : 0
Number of simulations (consumers): 100000 out of 6250
CHLORPYRIPHOS (microgr/kg bw/day) consumption: 49412 out of 100000

Compound: CHLORPYRIPHOS

Percentiles, maximum and average intake

Percentage Percentiles of CHLORPYRIPHOS (microgr/kg bw/day)
50.00 0.00000
90.00 0.23915
95.00 0.44365
99.00 1.21429
99.90 3.41250
99.99 7.35849
mean 0.08382
maximum 10.77044

Table 9: Percentiles for the acute intake distribution
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In the left plot of Figure 37 find a graphical display of the figures in Table 9. The right plot of Figure
37 shows the mean intake per food in the upper tail (the third column of Table §).

CHLORPYRIPHOS CHLORPYRIPHOS
percentiles intake distribution mean intake per food in upper tail of intake distribution
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Figure 37: Percentiles and mean intake per food of the acute intake distribution

Choose ‘Consumptions: characteristics of nine consumers’, ‘Concentrations: characteristics of nine
consumers’ or ‘Intakes: characteristics of nine consumers’. Summaries are displayed in Table 10,
Table 11 and Table 12. A drill down of nine consumers according to a specified percentage (here
97.5%) is displayed: the sampled consumption, compound concentration and intake (as well as the
consumer number, weight, age and Total for the intake in Table 12). So for consumer number 323461
(52 kg, 61 years), the total intake is 0.715 microgram/kg bw/day. This consumer consumed 2 foods
(Potatoes 100.0 gr, Orange 120.0 gr). Only on Orange a compound was found (0.310 mg/kg), so the
total intake for this consumer is 120.0 x 0.310/52 = 0.715 microgram/kg bw/day.

Drilldown consumption

Compound: CHLORPYRIPHOS

Drill down: consumption (g/day) per food of the 9 consumers
around the specified percentage (97.50%) for the intake distribution

-4 -3 -2 -1 0 +1 +2 +3 +4
Food
TABLE-GRAPES . 0.5 . 8.4 1.0
GRAPEFRUIT, . . 75.2 0.8
LEMON, SEE A . 0.6 3.0 . . . .
MANDARIN, SE 110.0 83.0 . 29.0 1.5 . 43.6 290.0 55.0
ORANGE, SWEE 3.3 60.3 120.3 206.8 321.1 120.0 260.0 .
APPLE 303.3 0.4 434.0 1.7 125.4
PEACH 3.3 0.2 0.8 4.0
PEPPERS, SWE . 2.8 . . . .
POTATO 207.1 7.7 90.0 2.6 251.5 100.0 210.0 20.0

Table 10: Drill down of consumers for the acute intake distribution: consumptions

Drilldown concentrations

Compound: CHLORPYRIPHOS

Drill down: compound concentrations (mg/kg) per food of the 9 consumers
around the specified percentage (97.50%) for the intake distribution
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-4 -3 -2 -1 0 +1 +2 +3 +4

Food

TABLE-GRAPES . 0.040 . 0.000 0.000

GRAPEFRUIT, . . 0.300 0.000

LEMON, SEE A . . 0.000 0.000 0.000 . . . .
MANDARIN, SE 0.320 0.130 . 0.100 0.090 . 0.200 0.180 0.260
ORANGE, SWEE 0.200 0.070 0.210 0.100 0.160 0.310 0.170

APPLE 0.040 0.000 0.030 0.000 0.000 . . .

PEACH 0.000 0.030 0.040 . . . . 0.000
PEPPERS, SWE . . . 0.000 . . . .

POTATO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 11: Drill down of consumers for the acute intake distribution:concentrations

Drilldown intake
Compound: CHLORPYRIPHOS

Drill down: the 9 consumers around the specified percentage (97.50%) for the intake
distribution (microgr/kg bw/day)

-4 -3 -2 -1 0 +1 +2 +3 +4
Individual 95243 361383 705152 263774 375142 323461 709242 328622 322893
Body Weight 67 21 85 33 72 52 74 73 20
age 21 7 79 7 23 61 41 38 6
Total 0.716 0.716 0.716 0.716 0.715 0.715 0.715 0.715 0.715
Food
TABLE-GRAPES . 0.001 . 0.000 0.000
GRAPEFRUIT, . . 0.265 0.000 .
LEMON, SEE A . . 0.000 0.000 0.000 . . . .
MANDARIN, SE 0.525 0.514 . 0.088 0.002 . 0.118 0.715 0.715
ORANGE, SWEE 0.010 0.201 0.297 0.627 0.714 0.715 0.597 . .
APPLE 0.181 0.000 0.153 0.000 0.000 . . .
PEACH 0.000 0.000 0.001 . . . . 0.000
PEPPERS, SWE . . . 0.000 . . . .
POTATO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 12: Drill down of consumers for the acute intake distribution: intake

4.2 Chronic risk assessment: betabinomial/normal (BBN)

In this example, output is shown for a chronic risk assessment for aspartaam. This database is not
centrally supplied. This example is also used in 10.8 10.9 and 10.10 .
Find in Figure 38 the MCRA input form:
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MCRA input form e Monte Carlo Risk Assessment
Type of analysis ¢

risktype ™ acute " chronic (optionaly - -
Chooge default option set ounent |, submit MCRA job
o o Motification &
uncertainty analysis YBs no T UEE GRS oy E- il yes no
Acute risk model Concentration data
concentration model | empirical v clnse ptions Processing and non-detects
number of Monte Carlo simulations  [100000 replace nondetects by (fraction of) LOR | no replacement of nondetects v
unitvariability rnodel | nounit variabiity v multiplication constantfor Lor 05
random seed [0 processing factors | no processing b
intake model | orly empirical estimates hd A
— Additional
close options
back to central menu L=l
estimation of IESTI © yes & no
Release 6.0
slease standard body weight is |50
compare |[ESTI with ManteCarlo-percentile © yes & no
MC percentage for comparisan with [ESTI |92
own wariahility factors " yes & no

Consumption days only: for MC, select @ all days ¢ consumption days only (atleast 1 food consumed)

Qutput
close options Graphics and tables
percentages ’m
exposure limits [0010.02004005008
percentage for summaryfgranh of right tail of intake distribution A
or intake valus instead of percentage |

percentage for drill-down 975

Figure 38: MCRA input form for chronic risk analysis betabinomial/normal

Table 13 lists the main options:

Input form

risk type chronic

uncertainty analysis no

concentration model empirical

number of MC simulations 100000

intake model betabinomial/normal without covariable
and cofactor

concentration data system defaults

Output Percentages at percentiles:

40 500 2000 40000

Table 13: Input form options: betabinomial/normal without covariable and cofactor

Click the ‘submit MCRA job’ to start the analysis. View your results using the ‘view output’-button in
the central menu to get the screen of Figure 39:
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Display Output

ta Input Farm

to Central Menu

to fain Menu

Download Output for OF line Wiewing
Info Charts

Figure 39: View output window for chronic risk analysis betabinomial/normal

MWCEA analysis at 22/6/2007 124112

Compound : aspartaam

Concentration model : Empirical

Intake model
Intake frequency : BetaBinomial distributed
Intake amount : Normal distnbuted after In transformation

Intake frequency model:

Covanable - no

Cofactor - no

Intalte amount model

Covariable : no

Cofactor (no

Display results of:

Surmrmary of intake frequency (before maodelling)

Surnrary of intake amounts (before modelling)

Surmrmary of intakes per day

Percentiles of usual intakes

Percentages of population lower than specified critical values
Technical information on usual intakes

Additional output

Summary of databases of food consumption and compound concentrations

Submit

Click the icon ‘Intake’ to display the empirical distribution of the non-zero daily intake values,
calculated as daily intake values divided by body weight (see left plot Figure 40). Note the spike near
0 (zero intakes are already excluded here). The distribution is skewed. A logarithmic transformation is

chosen to approximate normality.

Click the icon ‘Transf Intake’ to display the logarithmic transformed intake distribution (see right plot
Figure 40). There is a better symmetry, but clearly the non-normal character of the data is not
removed by a simple logarithmic transformation. Compare this figure also with the power
transformed distribution in the right plot of Figure 78.

aspartaam
distribution of positive daily intakes (41.1%)

aspartaam

distribution of logarithmic transformed positive daily intakes (41.1%)

0 10000 20000
Daily intake microgr/kg bw/day)

30000 0 1 2 3 4 5 6

Daily intake after In transformation

Figure 40: Untransformed and In transformed intake distribution

The Dutch National Food Consumption Survey is used, which has 6250 consumers x 2 days is 12500

days in total.
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Choose ‘Summary of databases of food consumption and compound concentrations’ to get Table 14.
Aspartaam measurements were made in 113 samples. All of them had a positive value.

Summary of databases of consumptions and compound concentrations with respect to:

Compound: aspartaam

Compound: aspartaam

Code : food code

Food : food label

MeanConsum : average consumption, all consumers, all days
MeanConsDays : average consumption, consumption days only

NConsDays : number of consumption days in the data set

NDays : total number of days

%ConsDays : percentage consumption days

MeanConcen : mean concentration of all samples

MeanPosConc : mean concentration of samples with positive concentrations
NSamplPos : number of samples with positive concentrations

NSamples : total number of samples with concentration measurements
$SamplPos : percentage samples with positive concentrations

Food consumption data

Code Food MeanConsum MeanConsDays NConsDays NDays %ConsDays
(9) (9) (%)
1002 IJs consumpt 0.02 110.0 2 12500 0.0
1135 Siroop limon 0.09 19.3 61 12500 0.5
1463 Dubbeldrank 4.13 270.2 191 12500 1.5
1521 Limonadevruc 4.07 371.7 137 12500 1.1
1522 Frisdranklig 10.79 385.4 350 12500 2.8
1523 Frisdranklig 22.56 470.7 599 12500 4.8
1591 Zoetstoftabl 0.20 7.1 357 12500 2.9
1596 Zoetstofpoed 0.10 5.2 227 12500 1.8
1813 Yakult drank 0.23 66.5 43 12500 0.3
1833 Yoghurt mage 0.35 196.3 22 12500 0.2
1834 Yoghurtdrank 0.34 305.6 14 12500 0.1
305 Kwark magere 1.18 109.5 135 12500 1.1
400 Frisdrank 38.96 362.9 1342 12500 10.7
417 Limonade vru 19.65 309.4 794 12500 6.4
447 Kauwgom z su 0.06 3.1 253 12500 2.0
463 Siroop vruch 4.99 56.4 1107 12500 8.9
657 Yoghurtdrank 24.46 294.6 1038 12500 8.3
Compound concentration data
Code Food MeanConcen MeanPosConc NSamplPos NSamples $SamplPos
(mg/kg) (mg/kg) (%)
1002 IJs consumpt 238.4000 238.4000 5 5 100.0
1135 Siroop limon 42.0000 42.0000 2 2 100.0
1463 Dubbeldrank 68.7500 68.7500 4 4 100.0
1521 Limonadevruc 139.9286 139.9286 14 14 100.0
1522 Frisdranklig 265.5000 265.5000 4 4 100.0
1523 Frisdranklig 214.2222 214.2222 18 18 100.0
1591 Zoetstoftabl 12033.3333 12033.3333 6 6 100.0
1596 Zoetstofpoed 30333.3333 30333.3333 6 6 100.0
1813 Yakult drank 164.0000 164.0000 2 2 100.0
1833 Yoghurt mage 91.7500 91.7500 8 8 100.0
1834 Yoghurtdrank 92.0000 92.0000 6 6 100.0
305 Kwark magere 96.0000 96.0000 2 2 100.0
400 Frisdrank 51.8000 51.8000 5 5 100.0
417 Limonade vru 65.3571 65.3571 14 14 100.0
447 Kauwgom z su 704.2500 704.2500 4 4 100.0
463 Siroop vruch 68.3333 68.3333 6 6 100.0
657 Yoghurtdrank 69.1429 69.1429 7 7 100.0
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113 113 = total
number of samples

number of detects

number of non-detects = 0 ( 113 - 113 )

Table 14: Summary of the database, consumptions and compounds

On average, everyone consumes e.g. 39 g of Frisdrank per day. This is an average consumption of
362.9 g on 1342 consumption days and 0 g on 12500 - 1342 = 11158 non-consumption days. The
average concentration of the 5 positive aspartaam samples of Frisdrank is 51.8 mg/kg.

Choose ‘Summary of intake frequency (before modelling)’ and see Table 15.

Summary of intake frequencies (before modeling) with respect to:

Compound: aspartaam

Number and percentage of consumers with positive intakes

nPosDays %3PosDays nConsumers %Consumers

0 0.0 3034 48.5

1 50.0 1296 20.7

2 100.0 1920 30.7

All Positive $Positive

intakes intakes intakes

Number of observations 12500 5136 41.1
Number of consumers 6250 3216 51.5

For a graphical presentation of the distribution of the positive intakes:
click the first icon from the top

For a graphical presentation of the distribution of the transformed
positive intakes:
click the second icon from the top

Table 15: Summary of intake frequency

Choose ‘Summary of intake amounts (before modelling)’ and see Table 16.

Summary of daily intakes (before modeling) with respect to:

Compound: aspartaam

Summary of all intake data (zeros included)

Number of observations = 12500
Mean = 344,204

Median = 0.000

Minimum = 0.000

Maximum = 29446.326

Lower quartile = 0.000

Upper quartile = 315.822

Summary of positive intake data (without zeros)
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Number of observations

Mean = 837.

Median = 454,
Minimum =

Maximum = 29446.

Lower quartile = 183.

Upper quartile = 1055.

1.

5136
723
944
120
326
425
158

For a graphical presentation of the distribution of the positive intakes:

click the first icon from the top

For a graphical presentation of the distribution of the transformed

positive intakes:
click the second icon from the top

Table 16: Summary statistics of the calculated

daily intake amounts

In Table 17 you find the main characteristics concerning this analysis. The intake frequency function
is estimated with a betabinomial model. The intake probability is 0.411 and the overdispersion
parameter is 0.572. The model for the logarithmically transformed intake amounts is based on ML.
The estimate of the ‘between person’ variance is 1.25 and of the ‘within person’ variance 0.54.

‘Additional output’ file
Number of foods 1
Acute reference dose (ARfD) *
Acceptable daily intake (ADI) 5
Number of detects 113
Number of non-detects 0
No of consumers 6250
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150
Sex female, male
Total no of consumption days 5136
Replace all non-detects
Multiplication factor for LOR 0.5

Intake Frequency: BetaBinomial model

(no cofactor and no covariable)

Estimates of parameters (autoscaled covariable)
Parameter estimate s.e. t(*)
Constant -0.360296 0.022751 -15.84
Overdispersion phi 0.5717 0.01053 54.30
_2Loglikelihood 12995.52
Degrees of freedom 6248

Transformed Intake Amounts: ML model

(no cofactor and no covariable)
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Estimates of parameters (autoscaled covariable)
Parameter estimate s.e. t(*)
Constant 5.929186 0.022446 264.15
Between person variance 1.2526
Within person variance 0.5390
_2LogLikelihood 16281.80
Degrees of freedom 5134

*x**% Usual intake percentiles/percentages are calculated from:

Transformed intake amount
5.9292

Intake probability
0.4109

Table 17: Information in ‘Additional output’ file

Click the icon ‘Plots’ in Figure 39 to display the screen of Figure 41. Here 3 more plots can be
chosen: the density of the Beta distribution of the Frequency model, the cumulative distribution of the

Amount model and the cumulative usual intake, see Figure 42.
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Figure 41: Display of more plots
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Figure 42: Density of the intake frequency distribution, cumulative distribution of the amount
and usual intake

Find in Figure 43 a Normal QQ-plot to see the result of the transformation to normality and a plot
which reveals any correlation between the frequency of consumption and the amount consumed. The
left Box-Cox diagram shows the data of consumers having an intake on 1 out of 2 days, the second
diagram shows consumers having intakes on 2 out of 2 days.
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estimated individual intake frequency aspartaam

Normal QQ-plot of transformed daily intakes intake frequency vs amount
after an adequate transformation to normality, the fitted values (red dots) should 2.5,25,75,97.5% points
approximately follow a straight line (solid line)

Anderson-Darling test: statistic = 22.67 (significant at 85% confidence level) oo

1000

Intake microgr/kg bwi/day)

100

10

Normal-scores days

Figure 43: Normal QQ-plot and Box-Cox plots for intake frequency versus intake amounts

Choose ‘Percentiles of usual intakes’ to get percentiles of the usual intake distribution for the entire
population are shown (see Table 18).

Long term exposure (usual intake)
Based on the BetaBinomial frequency distribution and transformed (to
normality) distributed amounts

Compound: aspartaam

Usual intake percentiles of total population for percentiles (p ):

sex age p50 p90 P95 P99 p99.9 p99.99
- - 112.30 958.86 1579.97 3795.26 10007.78 24961.30

See also technical information for more details

Table 18: Percentiles of the usual intake distribution

Choose ‘Percentages of consumers lower than specified limits of usual intake’ to get Table 19.

Long term exposure (usual intake)
Based on the BetaBinomial frequency distribution and transformed (to
normality) distributed amounts

Compound: aspartaam

Usual intake percentages of total population lower than intake limit (g ):

sex age g40.0 g500.0 gz2000.0 g40000.0
- - 34.68 79.83 496.60 99.99
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See also technical information for more details

Table 19: Percentages of Consumers lower than specified Limits of Usual Intake

4.3 Help on Charts

To view ComponentOne Charts, an ActiveX-aware browser is needed. Users can manipulate the chart
they view by right-clicking the chart, which brings up the Property Editor (see Figure 44). Some more
information is available under the link InfoCharts on the View Output screen. ComponentOne Chart
graphs can be printed, or copied to the clipboard, for later inclusion in documents. Occasionally, after
pasting ComponentOne Charts into Word the chart is not displayed (at all) and instead, an icon
appears. To our experience, pasting charts from the clipboard encounters no difficulties when the
Word document is opened first, then press the 'Copy to Clipboard'-button and paste the contents of the
clipboard into the Word document.

Tabular output is available in separate ASCII output text files in the output directory. Alternatively,
text can be copied and pasted from the ‘view output’ window into another document. In order to
obtain a proper lay-out the function Paste Special from the Edit menu should be used, selecting
“Unformatted text”.

ComponentOne Chart is comprised of a 2D Control (ActiveX) for use in Windows applications. The
control is stored in a so-called Cabinet-file, Olectra. CAB. A licence pack file Olectra.LPK is needed
to register the control. To be able to view a ComponentOne Chart, the cabinet file and license pack
have to be downloaded. Depending on the security level of your Internet Explorer, you may get the
chart. You can change the security settings by doing the following:

o In Internet Explorer select {Tools | Internet Options} and choose the "Security" tab.

o Then select the Web zone "Internet" or "Local Internet"” depending on whether you view the
MCRA charts on the internet or local disk. Click the "Custom Level" button, and use the
following settings (you may not see all of these settings):

Automatic prompting for ActiveX Controls: Enable

Binary and script behaviors: Enable

Download signed ActiveX controls: Prompt

Download unsigned ActiveX controls: Prompt

Initialize and script ActiveX controls not marked as safe: Disable
Run ActiveX controls and plug-ins: Enable

Script ActiveX controls marked safe for scripting: Enable

Nk

To be sure those changes to the charts (after re-running the program) are displayed by the browser,
you may need to do the following. Click:

1. Tools.

2. Internet Options.

3. General.

4. Settings.

5. Check: every visit to the page.

6. OK

7. OK
The setting for "Download unsigned ActiveX controls" is probably the most critical one. The first
time you display an MCRA chart, you will get the Security Warning displayed here about installing
OLECTRA.CAB. Click "Install" and you are done.

On some computers another version of the "Chart" ActiveX component might be installed, giving
spurious error messages and/or no graphs when viewing this website. You then have to delete the file
"olch2x7.0cx" from the "WINDOWS\system32" directory, and restart the website. This will copy the
correct version of "olch2x7.ocx" to the "WINDOW S S\system32" directory.
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In Internet Explorer 6, after selecting an icon to display a chart in the View Output Menu, you may
see an "active contents" security warning in the Internet Explorer Information Bar on top of your
screen. Click on the warning, select Allow Blocked Contents and choose YES in the Security
Warning displayed on the right.

4.3.1 To display the Property Editor
Click the right mouse button over any part of the chart and select properties of the pop-up menu.

Select the tab that corresponds to the element of the chart that you want to edit.
Click the ‘OK’ or ‘Cancel’-button to close the Property Editor (see Figure 44).
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Figure 44: Property editor

Interacting with Chart

You can interact with the chart as it is running to examine data more closely or visually isolate a part
of the chart. The interactions described here affect the chart displayed inside the ChartArea; other
chart elements like the header are not affected. ComponentOne Chart provides users with 2 different
mechanisms for zooming the chart: Graphics zoom and Axis zoom. Performing a Graphics zoom
enlarges the selected area of a chart, while not necessarily showing the axes. Performing an Axis
zoom changes the minimum and maximum data values to those selected, and redraws only that data
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with axes. Scaling, moving, or graphics zooming the chart sets the PlotArea margin properties, so the
chart will not automatically control margins anymore when other chart properties change.

To Scale the Chart:
1. Press CTRL, and hold down both mouse buttons (or middle button on 3-button mouse).
2. Move the mouse down to increase chart size, or move the mouse up to decrease chart size.

To Move the Chart:
1. Press SHIFT, and hold down both mouse buttons (or the middle button on 3-button mouse).
2. Move the mouse to change the positioning of the chart inside the ChartArea.

To Graphics Zoom an Area of the Chart:
1. Press CTRL, and hold down left mouse button.
2. Drag mouse to select zoom area and release the mouse button.

To Axis Zoom the Chart:
1. Press SHIFT, and hold down left mouse button.
2. Drag the mouse to select the zoom area and release the mouse button.

To Rotate the Chart (Bar/pie charts displaying 3D effect only):

1. Hold down both mouse buttons (or middle button on 3-button mouse).

2. Move mouse up or down to change the 3D inclination.

3. On bar charts, you can also move mouse left or right to change the 3D rotation angle.

To Reset to Automatic Scale and Position:

Press the “r” key to remove all scaling, moving, and zooming effects; chart regains control of
PlotArea margins.

57



S Model description

5.1 Basic model

Food consumption data may arise from different sources. Typically, national food consumption
surveys or monitoring programs provide information on food intake in the general population. For
example, from the Dutch Food Consumption Survey (1997) food consumption patterns (x; ,...,x,),
body weight (w) and age (a) are available for 6250 consumers on 2 consecutive days.

When concentrations are not measured on consumed foods, a composition database is necessary to
convert the amounts of food as consumed (e.g. pizza) to amounts of foods (x;,...,x,) which are used in
the model. Van Dooren ef al. (1995) provide such a conversion for the Dutch situation.

Compound concentration data may be available from different sources. In some countries national
monitoring databases exist, which are useful for the risk assessment of chemical compounds already
in use. For example the Dutch KAP database (van Klaveren 1999) stores annually more than 200,000
records of measurements originating from food monitoring programs for meat, fish, dairy products,
vegetables and fruit.

This chapter describes the stochastic (or Monte Carlo) models behind the MCRA program. These
models assess acute (short-term) or chronic (long-term) risks due to the intake of chemical
compounds from food by combining food consumption survey data and compound concentration data
from e.g. monitoring programs.

The model for acute risk, as opposed to the model for chronic risk, allows for effects of food
processing between monitoring and ingestion, it can model unit variability either from available data
or using default assumptions, and it uses information on Limit of Reporting (LOR) and percent crop
treated to check whether non-detects present a source of uncertainty.

The basic model for the intake of a special compound in an acute risk analysis is:

P
injk Cijk
k=l

w.

1

Vi

where y;; is the intake by consumer i on day j (in microgram chemical compound per kg body weight),
X; is the consumption by consumer i on day j of food & (in g), c; is the concentration of that chemical
compound in food k eaten by consumer i on day j (in mg/kg, ‘ppm’), and w; is the body weight of
consumer I (in kg). Finally, p is the number of foods accounted for in the model. Note that the
definition of ‘food’ is flexible: it may represent a Raw Agricultural Commodity (RAC), e.g. ‘apple’,
but it may also specify subdivisions, e.g. ‘apple, peeled’ or ‘apple, imported’.

In the stochastic model for the intake in an acute risk the quantities x;;, w; and c; are assumed to arise
from probability distributions describing the variability for food consumption and weight,
p(xy,...x,,w), and for compound concentrations in each food, pi(c). In principle, these probability
distributions may be parametric (e.g. completely defined by the specification of some parameter
values) or empirical (e.g. only implicitly defined by the availability of a representative sample). Given
these probability distributions (or estimates thereof) MC-simulations can be used to generate an
estimate of the probability distribution p(y;) to assess acute risks by intake of the compound (see 5.3 ).

The basic model for the intake in a chronic risk analysis is:

P
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where y;; is the intake by consumer i on day j (in microgram chemical compound per kg body weight),
X; 1s the consumption by consumer i on day j of food k (in g), ¢, is the average concentration of the
chemical compound in food & (in mg/kg, ‘ppm’), and w; is the body weight of consumer i (in kg).
Finally, p is the number of foods accounted for in the model.

Depending on the problem, MC-samples may be drawn from the complete data base, from a day- or
age-restricted subset or from consumption-days only. In some cases there is insufficient information
for specific subgroups in the population. For example, in a study on infants (age up to 12 months), a
separately constructed food consumption database has been used (Boon et al. 2003).

When dietary components are consumed on a nearly daily basis, intake values y; may be used to
estimate the probability distribution p(y;) for chronic risk assessment purposes (see 5.4 ).

5.2 How to deal with limited information on compound concentration data

In the probabilistic model, a distribution of food consumption data as well as a distribution of
compound data are used. For both components of the model, a choice can be made between a non-
parametric (see 5.2.1 ) or a parametric (see 5.3.1.1.2 and 5.3.1.1.3 ) approach. In a parametric
approach the data are modelled with an appropriate distributional form (e.g. lognormal with
parameters ¢ and p). In a non-parametric approach the empirical distribution is used to sample from
directly. Obviously the latter approach requires more data to obtain a satisfying representation of the
full distribution. Therefore, parametric modelling becomes important in data-scarce situations (see
5.2.1).

Occasionally limited information emerge not as a consequence of the amount of data but how they are
presented: data are reported using e.g. the mean and variance (see 5.2.2 ) or data are summarised as
counts of observations falling into a series of classes (see 5.2.3 ). It is evident that a parametric
approach is the only way out and that the parameters of the lognormal distribution should be inferred
using the available data.

If for some foods there are far less concentration data than for others, it may be sensible to consider
pooling procedures for means and or variances of the concentration distributions (see 5.3.1.1.3).

If the amount of data is limited, this may lead to a relatively large sampling uncertainty. Resampling
methods may be used to assess the magnitude of this uncertainty (see 5.5 ).

Back to: Concentration model options

5.2.1 The choice between a parametric and non-parametric approach

How many compound concentration data are required for a sensible calculation of upper-tail
percentiles in the intake distribution based on a non-parametric approach? The rule of thumb can be
used that the chosen percentile should be contained directly in the data. For example, at least 20
measurements are needed to estimate the 95™ percentile and at least 100 measurements to estimate the
99™ percentile.

More generally, the number of measurements per food () should at least equal 1/(1-p%/100) to allow
a rough empirical estimate of the p” percentile of the compound concentration distribution to be
made. Of course, the risk assessment is only coarse with this minimum amount of data and more
measurements per food are certainly worthwhile.

In situations where the number of measurements becomes a problem, an appropriate risk analysis
should be based on further modelling. Essentially, the lack of data is compensated by a priori
assumptions. Assuming a simple distributional form for the compound data, the number of
measurements can be smaller in principle (at least 10, say). However, non-detect measurements
provide no information about variability, and therefore we should now count the number of positive
measurements. Figure 45 shows which approach could be best used depending on the total number of
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measurements and the number of non-zero measurements. In principle, such a choice could be made
separately for each food.

Number of positive
measurements
(value >0)

parametric or
nonparametric

parametric

10

not enough data non-parametric

0 100

Total number of measurements on compound

Figure 45: Use of non-parametric or parametric modelling for estimating the 99% percentile of
the intake in relation to number of positive measurements and the total number of
measurements.

5.2.2 Estimation based on histogram data

In EU reporting, compound data are sometimes reported in a tabulated (histogram) form: data are
expressed as counts of observations falling into a series of groups. The observed counts are #n;...n,,
which fall into ¢ classes with limits ¢, c.. The number 7, is the number of positive samples, which are
nevertheless below the LOR (= ¢;); n, is the number of positive samples that fall in between limits c;
and c»; n. is the number of samples that fall in between limits c..; and c..

For histogram data, parameters u and o of the lognormal distribution can be obtained by fitting a
normal distribution to a set of observations n;...n.. In an iterative way, expected counts for a
standardised normal variable are calculated using the log-transformed group limits. Each round,
parameters are updated until the process converges.

5.2.3 Estimation based on summary data

Occasionally, data are reported in a very condensed form. Summary statistics like the mean, quantiles
and dispersion measures as the variance or the coefficient of variation are used to describe
characteristics of the underlying concentration distributions. The reported statistics are calculated
using all values (with concentrations below LOR sometimes replaced by 2*LOR), or using positive
values (detects) only. In order to use the binomial-lognormal model, summary statistics based on all
values must be corrected for the values replacing the concentrations below LOR. For the mean, the
correction is straightforward, taking a zero or the midpoint-value (*2*LOR). Likewise, the standard
deviation or any measure of dispersion is corrected for the sum of squares due to all zero values and
taking into account the corrected mean. The median is also corrected, but instead of correcting the
value itself, a corrected quantile z, is calculated corresponding to ¢, the lower fraction and z,
satisfying:

z,= &g} = & (AN~ ng) (N - ng)}

with @(.), the cumulative probability function of the standard normal distribution, N, the total number
of samples and ny, the number of zeroes.
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The maximum is the largest order statistic. Its expected value can be approximated by taking the
appropriate population quantile, especially in large samples. Here, the problem is the other way
around: the population quantile corresponding to the largest value given the sample size is to be
estimated. For sufficiently large N an approximation to E(g,./) is provided by the value of z,
satisfying @(z,) = N/(N+1). Blom (1958) and Harter (1961) made the following suggestions for
smaller sample sizes:

z,=P{(N-)/(N-2a+ 1)}

with &= 315065 + .057974u - .009776u° and u = log;oN. Over a wide range of N ¢ approximates the
value 3/8. This empirical formula is a very accurate approximation to the exact value of E(g,,,) and is
used to estimate appropriate population quantiles for ¢,,,.. (David, 1970; Pearson and Hartley, 1972 ;
Blom, 1958; Harter, 1961).

Three situations can be distinguished:
1) the reported information is insufficient to estimate both ¢ and o, or
2) the reported statistics are sufficient to extract x and o, or
3) the information is redundant so various estimates for x and ¢ are available.

Here, we first consider approaches for situation 2. Situation 1 requires additional information: a
solution might be to use the information on comparable food-compound combinations to assess the
necessary estimates. Situation 3, basically, is a pooling problem how to weigh and combine estimates
that originate from different statistics.

5.2.3.1 Moments and other characteristics

A positive random variable X is said to be lognormally distributed with parameters x and ¢” if ¥ = InX
is normally distributed with mean x and variance ¢”. The probability density function of X is:

1x) = /(N2 7ox) exp(-(Inx - )*/26%).
The corresponding normal distribution for Y is denoted by N(u, ¢”).
Estimation of x and ¢ using summary statistics is based on equations and characteristics derived from
the moment generating function of the lognormal distribution. Required parameters are estimated by

solving the formulas of the first two moments for x and o.
The following characteristics for variable X derived from the moment generating function are given:

mean: exp(u+ 1/26%) (D
variance: exp(Qu + o°)(exp(a’) — 1) 2)
mode: exp(u - 0°) 3)
quantile (q,): exp(u + z,0), 4
ve. V(exp(a”) — 1) (5)

with vc the coefficient of variation, g a given lower fraction and z, the corresponding standard normal
deviate. The 50™ quantile, the median, is a special case with z, = 0. The geometric mean of X is equal
to the median.

5.2.3.2 Estimation
Approach 1: estimation based on two quantiles, g,; # g4>.

Using (4) gives:

o =10g(q41/942) / (z41 — z42). Substituting o yields pu.
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Approach 2: estimation based on a quantile and the mean.
Solving for o using (1) and (4) gives:
o - 2z,0 - 2log(mean/g,) = 0, with roots for o according to:
z,%/(z; + 2log(mean/q, )) (6)

For moderate to small sample sizes the estimation of ¢ fails because the discriminant is negative, i.c.
the argument of the square root function. Empirical simulations show that a negative discriminant
happens more often for small sample sizes and for estimation based on extreme quantiles like the
maximum. Figure 46 shows the empirical relation between the sample size and the fraction of failures
for estimation methods involving the mean with respectively, the maximum and median. For the
maximum, failures occur already at sample sizes n = 30 to 40, for the median n = 15 to 20. Negative
discriminants occur when estimation is based on empirical (sampled) values instead of theoretical
(calculated) values assuming a normal underlying distribution. The amount of failures for small
sample sizes is in accordance with large sample theory. When the maximum is involved and
estimation fails, an estimate of ¢ is assessed by equating the discriminant to zero. Empirical results
show that this works out very well for sample size n > 4, although ¢ is slightly biased upwards being a
conservative estimate. In case of the median no solution to this problem is available so the estimate of
o is set to a missing value.

Simulation results
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Figure 46: Simulated fraction of failures versus sample size for estimation of o based on the
mean and respectively the maximum and median

In general, for n large enough, say n > 40, ¢ has two roots. Usually, the mean is larger than the
median. Then, ¢ is estimated with:

zy +( Zq2 + 2log(mean/median)) with condition ¢ > 2z,..
In case of the mean and maximum o is estimated with:
zy-( zq2 + 2log(mean/max )) with condition o < 2z,,..
Note that maximum is always greater than the mean. Here, the smallest root is taken as an estimate

because empirical results show that the largest root yields unlikely high measures of dispersion and
therefore should be rejected.
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Approach 3: estimation based on mean and variance or coefficient of variation.

The coefficient of variation, vc = V(variance)/mean. Using (5), parameter o is estimated with:
V(log(ve? + 1))

and u is estimated solving (1).

Approach 4: estimation based on a quantile and coefficient of variation.

For estimation of o, see approach 3. Using (4), parameter yu is estimated with:
log(quantile) - z,o

For the median, estimation of x simplifies to:

log(median)

5.3 Acute risk assessment
5.3.1 Concentration model: modelling of compound concentrations in consumed food

5.3.1.1 Distributional assumptions

Compound concentrations in the various foods are independent and therefore can be modelled by
univariate distributions.

5.3.1.1.1 Non-parametric modelling of concentrations (empirical)

In the empirical (non-parametric) approach, concentrations are sampled at random from the available
data and combined with the consumption data to generate a new distribution of intake values. To
assess the risk-intake, percentiles of the intake distribution are estimated.

Back to: Empirical

5.3.1.1.2 Parametric modelling of concentrations (binomial/lognormal no pooling)

In the parametric approach, compound concentrations per food are sampled from parametric
distributions. A special feature of compound data is that the large majority of measured concentrations
(often more than 80%) is recorded as zero (non-detects). These values may correspond to true zero
concentrations (for example because the compound is never used in the specific food), or they may
correspond to low concentrations which are below a pre-established reporting limit (LOR). In any
case, the compound concentration distribution is very skew, with a large spike at zero and an extended
tail to higher values. For statistical modelling a two-step procedure is chosen. First, the presence of a
concentration > LOR on food is modelled with a binomial distribution with a parameter p representing
the probability of a reported concentration. Probability p depends on the chemical compound and the
food and is estimated as the fraction of detects. Secondly, the non-zero compounds are modelled with
the lognormal distribution. After consideration of several possibilities using the program BestFit, this
distribution has been selected as being both theoretically sensible and practically useful. The
parameters u and ¢ are the mean and standard deviation of the log-transformed non-zero compound
concentrations.

In the basic model (see 5.1)

Ci = ng - CPOS
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with [, indicating whether a compound concentration is sampled (/;,=1) or not (/;;=0), and cpos;
the compound concentration in the subpopulation of positive values. The probability of /;, being 1 or
0 depends on the number of detects found for food & and [, is sampled separately for each consumer

on occasion j.
Back to: Binomial/lognormal (no pooling)

5.3.1.1.3 Parametric modelling of concentrations (binomial/lognormal with pooling)
When data are limited, it may be advantageous to apply the parametric approach for modelling of the
positive concentrations. In MCRA the positive concentrations are modelled as lognormal with
parameters x and o, representing mean and variance of the natural logarithm of the concentrations.
However, estimation is often hampered because data on compounds in specific foods are sparse or
even missing. In those cases, grouping of foods into food groups enlarges the number of
measurements per group and may give sufficient data to base estimates upon. We must assume that
concentration distributions are the same for the grouped foods. A second related question is the
reliability of estimates, based on a few number of degrees of freedom. The following procedure is
designed to cope with the above problems.

1. Pooling variances within food groups. For each food the variance ¢” and mean x is estimated.
Then, foods are assigned to groups which are composed of related foods, e.g. a foodgroup
containing sorts of cabbages or a group containing all kind of berries. Foods where agricultural
use is allowed are remained separate from foods where agricultural use is not allowed. The
homogeneity of variances in the different groups is assessed using Bartlett's test (Snedecor &
Cochran, 1980). The test statistic determines whether variances within a group are to be pooled
automatically (p > 0.05) or not (p < 0.05).

2. Pooling means within food groups. After pooling the variances, an overall test for differences of
means within each group is performed, based on analysis of variance. Means within groups are
pooled automatically if the probability p > 0.05.

3. Using overall variance if there are < 10 degrees of freedom. Estimates of variances based on
less than 10 df are considered not very reliable. Therefore, variances based on < 10 df are
compared to the overall variance (pooled over all foods except the tested food itself, i.c.
corrected) and tested for equality. Variances are replaced by the overall variance (uncorrected)
whenever the hypothesis of equality of variances is not rejected; if rejected, the original variances
are maintained.

For a parametric risk assessment all variances and means must be present. This requirement implies
that very often rearrangement of foods into (sub) groups preceeds the actual simulation of the intake
distribution.

To summarise, actions are:

e calculate variances and means for each food

e classify foods into groups

e test homogeneity of variances and equality of means within groups of foods. Results are: not
significant (p > 0.05) or significant (p < 0.05).

o take foods(-groups) with df < 10

e compare variance with overall variance (corrected). Replace variance with overall variance
(uncorrected) for non-significant test results.

Back to: Binomial/lognormal with pooling

5.3.1.2 Modelling of missing data and replacement of non-detects

Missing data should be indicated by 9999 in the database tables. In principle such values are ignored
in the analysis.

Most monitoring measurements of chemical compounds are non-detects, i.e. no quantitative
measurement is reported. For this reason data are entered in the Concentration table by specifying the
total number of measurements made together with the LOR. We use LOR to mean exactly what the
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term says: measurements below LOR are not reported, whereas values equal to or higher than LOR
are represented by numerical values in the database.

In the analytical and food risk fields analytical limits are often indicated as LOD (limit of detection)
or LOQ (limit of quantification). Unfortunately, it is not always clear what is meant with these terms.
In any case official recommendations are to always report any available numerical values even if they
are below LOD or LOQ limits (IUPAC 1995).

For legal applications of compounds data may be available about the percentage of the crop which
receives treatment. When a chemical compound can enter the food chain only via crop treatment, and
when the percentage of crop treated is (approximately) known to be 100p.p-reaes, then this
knowledge may be used to infer that 100(1-peop-sreaea)%o Of the monitoring measurements should be
real zeroes, contributing nothing to pesticide intake, whereas other non-detects in the monitoring data
could have any value below the LOR. For 100(pon-detcc: T Perop-ireatca - 100)% of the monitoring
measurements, 0 and LOR represent best-case and worst-case estimates. A simple way (tier 1
approach) to consider the uncertainty associated with non-detects is to compare intake distributions
for these best-case and worst-case situations.

Back to: Replacement of non-detects

5.3.1.3 Modelling of processing effects

Concentrations in the consumed food may be different from concentrations in the food as measured in
monitoring programs (typically raw food) due to processing, such as peeling, washing, cooking etc.
In general, we assume the model:

CpoOS ;. = S " Clik

where cryj is the concentration in the raw food, and where f; is a factor for a specific combination k of
RAC and processing. Values will typically be between 0 and 1, although occasionally the processing
factor may also be >1 (e.g. drying as applied for grapes and figs).
The user of the model will have to specify processing factors for each food & as defined in the food
consumption data base. For this purpose, it is advised to maintain a data base of processing factors,
indexed by chemical compound, RAC and processing type (e.g. washing, peeling or other
processing). Before running the model, it may then be necessary to specify how the necessary
processing factors are derived from the data base entries and/or other information. Example: if there
are no processing factors known for captan in pears, it may be decided to use the corresponding
factors for apples instead.
Often processign effects may be variable, and this may be entered in the Monte Carlo modelling by
specifying two values for each processing factor:
1. finom: the nominal value, typically some sort of central value from an experimental study
2. frupp: an upper 95% confidence limit, which typically will be set by an expert (even if statistical
information on variability of the factor is available)

A typical data base entry might thus read:

RAC processing Sinom  Jiupp

apple washing 0.5 0.7

In the MC-modelling, processing factors can be used in either of three ways (for each food & to be
chosen by the user):

5.3.1.3.1 No processing factor
Just take f; = 1. This is in most (though not all) cases a worst-case assumption. No data on processing
are needed and therefore this route is useful in a first tier approach.

5.3.1.3.2 Processing (fixed factors)

Use fi = frup- Available information on specific processing effects is used, although still in a
cautionary way (in accordance with the precautionary principle). Note that f; .., values need not to be
specified.

65



5.3.1.3.3 Processing (distribution based)

Sample f; using a normal distribution. Log or logit transformed values of fi ,om and f.,, are used to
define the first two moments of the normal distribution. Two situations are distinguished depending
on the type of transformation.

a) The logarithms of fi ..., and fi,, are equated to the mean and the 95% one-sided upper
confidence limit of a normal distribution. This normal distribution thus is specified by a mean
In(fi.om) and a standard deviation {In(f;.,,) — In(finom)}/1.645. Values are drawn from this
distribution in the MC-simulations. Processing factors f; will be nonnegative. Note: f;,,, and
Jinom values equal to O are replaced by a low default value (0.01); this is useful
computationally to avoid problems with logarithms.

b) The logits of f;,om and f;,,, are equated to the mean and the 95% one-sided upper confidence
limit of a normal distribution. This normal distribution thus is specified by a mean logit(f; .om)
and a standard deviation {logit(fy.,,) — logit(fi.om)}/1.645. Values are drawn from this
distribution in the MC-simulations. Processing factors f; will be between 0 and 1. Note: f;,,,
and f ... values equal to 0 and 1 are replaced by default values (0.01 and 0.99); this is useful
computationally to avoid problems with logits.

The user should keep in mind that, in case of a lognormal distribution, f; ..., defines the median,

while fy ., quantifies skewness. The same holds for the logistic. Usually, a logarithm will be the

standard transformation, but for very skew distributions (see Figure 47) occasionally values above

1 are sampled (upper row, 1™, 3™ and 5™ plot). A logit transformation should be considered

instead.

nom=0.01 upp=1.0D nom=0.3 upp=0.6 nom=0D.7 upp=0.9 nom=0.9 upp=0.92 nom=0.9 upp=1.0

- 1
7 10
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91 0 .91

nom=0.01 upp=1.00 nom=0.3 upp=0.6 nom=0.7 upp=0.9 nom=0.9 upp=0.92 nom=0.9 upp=1.0
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Figure 47: Lognormal (upper row) and logistic (lower row) distributions for various values of
Sinon (= nom) and f.y, (= upp)

Back to: Modelling processing effects

5.3.2 Modelling of unit variability

5.3.2.1 Introduction, variability in deterministic modelling

Variability in compound concentrations between individual units is a relevant factor in the assessment
of short-term dietary intake of chemical compounds. It is addressed separately because monitoring
measurements cmy, are typically made on homogenised composite samples, both in controlled field
trials and in food monitoring programs. Such a composite sample for food & is composed of 7 units
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with nominal unit weight wuy each. The weight of a composite sample is therefore wmy = nuy x wuy .
This weight is often larger than a consumer portion, e.g. a typical composite sample of 20 sweet
peppers weighs 3.2 kg, whereas daily consumer portion weights in the Dutch Food Consumption
Survey 1997 ranged from 0.08 g to 458 g.

How should monitoring data be used to estimate the raw food concentration levels cr;; in consumer
portions? Although the mean level of cm; may be a fair estimate of the mean level of cry, the
variability of cmy is not appropriate to estimate the variability of cry. In smaller portions more
extreme values may occur more readily, and thus acute risks may be higher than would follow from a
direct use of the composite sample data.

Therefore, the FAO/WHO Geneva Consultation recommended to include a variability factor (v) in the
non-probabilistic calculation of an international estimate of short-term intake (/ESTT) (FAO/WHO
1997). The IESTI has been adopted by the Joint Meeting of FAO and WHO experts on Pesticide
Compounds in food in 1999, and was modified in 2000 to reflect that the supply for actual
consumption on a given day is likely to be derived from a single lot (JMPR 1999, 2000). In both the
original and the modified definition, the variability factor is used in a similar way. The basic idea is
that the compound concentration for the first unit eaten is multiplied by v, whereas this factor is not
applied for any remaining part of the daily consumption.

In the original presentation v was meant to reflect “the ratio of a highest concentration in the
individual product unit to the corresponding concentration seen in the composite sample”
(FAO/WHO 1997). It was not clearly stated what was meant with “a highest concentration”. Should
this be the maximum concentration found or should it be a high percentile, e.g. p95 or p97.5? In
practical terms this did not matter too much, because little data were available. Therefore the
FAO/WHO Consultation recommended to take initial values of v equal to “the number of units in the
composite sample as given in Codex sampling protocols”. This will provide a conservative estimate of
the compound concentration in the first unit, based on the assumption that all of the compounds
present in the composite sample are present in this single unit. If Codex sampling protocols are used,
then the number of units per composite sample is 5 for large crops (unit weights > 250 g) and 10 for
medium crops (unit weights 25-250 g). For small crops (< 25 g) a variability factor v = 1 was
recommended. More recently, it has been proposed to replace the default value 10 with 7. For foods
which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, a variability factor v =
1 is proposed. To summarise:

unit weight, wu FAO/WHO default variability factor, v
<25¢g 1
25-250¢g 7
>250¢g 5
juicing, marmalade/jam, sauce/puree 1

Table 20: Default variability factors for IESTI calculations

The Consultation specifically recommended to replace these default values with more realistic values
obtained from studies on actually measured units. A working group of the International Conference on
Pesticide Residues Variability and Acute Dietary Risk Assessment held in York in 1998 suggested to
define v, for samples taken from controlled trials, as the 97.5™ percentile of the unit levels divided by
the sample mean (Harris et al. 2000), and this is used in the current version of MCRA as the defining
relation.

Back to: Unit variability model options

5.3.2.2 Approaches to unit variability in probabilistic modelling: specifying distributions

How should variability between units be incorporated in probabilistic modelling of acute risks? In
probabilistic modelling we generate consumption amounts and compound concentrations which will
be multiplied, summed over foods and divided by body weight to estimate the intake. However, the
compound concentration cm; will usually be derived from a distribution based on measurements on
composite samples. Assume that a batch of food contains N units (N large, for the statistics we assume
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infinite). The monitoring measurement cm;, is made on a composite sample of nu, units (for example,
nui = 5). These units are assumed to be representative of the batch. Unit concentrations cry are to be
simulated for one or more units from this batch that will be part of a consumption portion in the MC-
simulation. Basically, there are three possibilities depending on the availability of data:

1. use actual measurement data on individual units;

2. use variability factors or other summary statistics based on measured individual units;

3. use conservative assumptions.

In MCRA only methods under categories 2 and 3 are implemented. The first approach has been
pioneered in the context of a large UK survey on pesticides in fruit (Hamey 2000).

In MCRA the following three models, discussed below in more detail, are implemented:

1. Beta model, requires knowledge of the number of units in a composite sample, and of the
variability between units (realistic or conservative estimates);

2. Bernoulli model, requires only knowledge of the number of units in a composite sample (results
are always conservative);

3. Lognormal model, requires only knowledge of the variability between units (realistic or
conservative estimates).

Preferably realistic estimates of unit variability are to be used, either expressed as coefficients of
variation cv (standard deviation divided by mean) or as variability factors v (defined in MCRA as
97.5™ percentile divided by mean). However, often such information is not directly available. In such
cases it is customary to select high values for the variability factor, either based on collections of
variability factors for other compounds/foods, or calculated as the theoretical maximum derived from
the number of units in a composite sample.

How to translate the concept of conservatism to the probabilistic model? In a non-probabilistic model
a higher value of v gives a higher /ESTI, but in a stochastic model a higher variability means more
spread around a central value. In general this means that higher values, but also lower values can be
generated. In order to retain an overall conservatism it is therefore necessary to replace all simulated
values below the monitoring level (cmy) with cmy itself.

It is common to use default conservative values, such as the FAO/WHO variability factors in Table

20. However, one should be aware that two entirely different interpretations are possible:

1. The default variability factor may be defined in the same way as a data-based variability factor (v
= 97.5th percentile/mean). For example, it may be an expert opinion based on seeing many actual
data sets from trials, that a certain value v can be used as a conservative value for other situations
(see e.g. Table 1 in Harris et al. 2000). Then we might use the beta or the lognormal model,
censoring these distributions at c¢my to guarantee conservative behaviour. For the beta model
additional information on the number of units in a composite sample is needed.

2. Alternatively, one can revert to the original definition and interpret FAO/WHO variability factors
as the number of units in the composite sample (v = nuy). In this case, without other information,
the only workable model is the Bernoulli model.

Back to: Estimated parameters for unit variability

5.3.2.2.1 Beta model for unit variability

With this model MCRA will generate values for individual unmeasured units of a measured
composite sample. If cm; is the concentration measured (or simulated) for the composite sample in
monitoring for food £, then the concentration in any unit can be no larger than c,,,, = nuy « cmy, where
nuy, is the number of units in the composite sample. Under the Beta model simulated unit values are
drawn from a bounded distribution on the interval (0, ¢,.). The parameter for unit variability is
specified as a coefficient of variation cv; of the unit values in the composite sample, or as a variability
factor.

The standard beta distribution is defined on the interval (0, 1) and is usually characterised by two
parameters a and b, with a>0, b>0 (see e.g. Mood et al. 1974). Alternatively, it can be parameterised
by the mean u=a/(a+b) and the variance o’=ab(a+b+1)"(a+b)?, or, as applied in MCRA, by the
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mean u and the squared coefficient of variation cv*=ba”(a+b+1)". Note that the coefficient of
variation is the same for the unscaled and the scaled distributions.

For the simulated unit values in each iteration of the program we require an expected value cmy. This
scales down to a mean value u = cmy/cpox = 1/nuy in the (standard) beta distribution. From this value
for u and an externally specified value for cv, the parameters a and b of the beta distribution are
calculated as:

a=b(nu, —1)"
b (nu, — 1)(nuk —1- cv,f)
nu,cv;

From the second formula it can be seen that cv; should not be larger than ,/nu, —1 in order to avoid
negative values for b.
. e . . p97.5, . .
When the unit variability is specified by a variability factor v, = instead of a coefficient of
cm,

variation cv;, then MCRA applies a bisection algorithm to find a such that the cumulative probability
P[Beta(a,b)] = 0.975 for b= a(nu, —1).

Sampled values from the beta distribution are rescaled by multiplication with ¢, to unit
concentrations crjy on the interval (0, ¢pqy).

In the case that variability has been estimated by a conservative high value, all sampled values lower
than cmy, are replaced by cmy.

In Figure 48, for several values of the coefficient of variation and number of units the beta distribution
is shown with estimated parameters a and . When the parameter for unit variability is high (upper
left plot) the ratio of the spikes on the extremes (3:1) represent the 75% probability at crj = cmy and
25% probability at c7;; = cua. In the upper right plot, the parameter for unit variability is smaller and
some unit values in between the two extremes are sampled. The ratio of the spikes is about 5:1, which
is according to the number of units in the composite sample. In the lower left plot, variability is low
and unit values are sampled around the monitoring compound. In the extreme case, when unit
variability is close to zero the monitoring compound itself is sampled and a spike occurs (not shown ).
The lower right plot shows an intermediate situation, moderate to high variability.

- J

vy =1.732; nuy=4; a=0.00005, b=0.00015 .y, =7.20: nu,=6; a=0.4; b=2

cvi=0.62; nu=6, a=2; b=10 v =1.46: nu=4: a=0.1: b=0.3
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Figure 48: Standard Beta distribution for different values of the coefficient of variation cv; and
number of units nu; in the composite sample. x axis from 0 to 1.

Back to: Beta distribution

5.3.2.2.2 Lognormal model for unit variability

With the Beta and Bernoulli models, MCRA simulates concentrations for units in the composite
sample, such that the concentration of an individual unit can never be higher than the monitoring
measurement multiplied by the number of units in the composite sample ¢, = nuy = cmy, .

With the Lognormal model for unit variability MCRA simulates concentrations for new units in the
batch from which the composite sample was taken. Effectively the number of units in a batch is very
large, so in this case there is no practical upper limit to the concentration that can be present.

The lognormal distribution is considered as an appropriate model for many empirical positive
concentration distributions. With the Lognormal model MCRA assumes a lognormal distribution for
unit compound concentrations. Let this distribution be characterised by 4 and o, which are the mean
and standard deviation of the log-transformed concentrations. The unit log-concentrations are drawn

from a normal distribution with mean ¢ = ln(cml.k )

Also for the Lognormal model MCRA allows two choices to specify the parameter for the unit
variability. The parameter is specified as a coefficient of variation (cv;) or as a variability factor ().
The coefficient of variation cv is turned into the standard deviation o on the log-transformed scale
with:

o=\In(cy’ + 1)

A variability factor v is converted into the standard deviation o as follows:

u+1.960
v = p97.5 _ e _ 1.960-1/205>

- 2
mean e,u+1/20

with 4 and o representing the mean and standard deviation of the log-transformed concentrations. So
In(v) = 1.960 — 1/2¢°

Solving for o gives: o” — 2+1.96¢ — 2log(v) = 0, with roots for ¢ according to:
o=1.96+(1.96* +2log(v))

The smallest positive root is taken as an estimate for o (see also 5.2.3.2).

In the case that variability has been estimated by a conservative high value, all sampled values lower

than cmy, are replaced by cmy.
Back to: Lognormal distribution

5.3.2.2.3 Bernoulli model for unit variability

The Bernoulli model is a limiting case of the Beta model, which can be used if no information on unit
variability is available, but only the number of units in a composite sample is known. As a worst case
approach we may take cv; as large as possible. When cv; is equal to the maximum possible

value/nu, —1, the (unstandardised) Beta distribution simplifies to a Bernoulli distribution with

probability (nu, — 1)/nuy for the value 0 and probability 1/nu, for the value ¢, = nuy « cmy...

In MCRA values 0 are actually replaced by cmy, to keep all values on the conservative side. For
example, with nuy = 5, there will be 80% probability at cr;x = cmy and 20% probability at crx = ciax.
Back to: Bernoulli distribution
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5.3.2.2.4 Estimation of intake values using the concept of unit variability

e For each iteration i in the MC-simulation, obtain for each food & a simulated intake x; , and a
simulated composite sample compound concentration cmiy .

e Calculate the number of unit intakes nux; in x; (round upwards) and set weights wy, equal to unit

weight wu, except for the last partial intake, which has weight w,, = x, —(nux,, —1)jwu, .

e For the Beta or Bernoulli distribution: draw nux; simulated values x;; from a Beta or Bernoulli
distribution. Calculate concentration values as ¢y = Ky * CHg, oy = Kitg * CHy * Ny Sum to obtain
the simulated concentration in the consumed portion:

nux;;
Cry = Zwiklcik/ Xik
=1

e For the Lognormal distribution: draw nux; simulated logconcentration values /c;; from a normal
distribution with mean = ln(cm 0 ) and standard deviation ¢. Back transform and sum to obtain

the simulated concentration in the consumed portion:

nux;,
_ leyy
Clrix = 2 W€ Xik
=1

5.3.2.3 Additional: Comparison of probabilistic with deterministic estimates of acute risk

The IESTI (International Estimated Short-Term Intake) is a deterministic estimate of the short-term
intake of a compound on the basis of the assumptions of high daily food consumption per consumer
and highest compounds from supervised trials. The IESTI is expressed per kg body weight and has
only been defined for single foods.

MCRA calculates IESTI for comparison with MC-percentiles.

Calculations of IESTI (according to FAO 2002) recognise four different case (1, 2a, 2b and 3). In
cases 1 to 3 the following definitions are used:

LP: Highest large portion reported, calculated as the 97.5™ percentile of the distribution of
consumed portions on days with positive consumption of the food (kg food/day)

HR: Highest residue (=compound) in composite sample, mg/kg

bw: Mean body weight, kg; in MCRA values may be input by the user, or weighted means

are calculated over consumers with the number of days on which they consumed the
food as weights

U: Unit weight of the edible portion, kg.

v: Variability factor — the factor applied to the composite compound to estimate the
concentration in a high-compound unit

MR: Median residue (=compound) in food, mg/kg

Although the FAO Manual refers to supervised trials only, MCRA calculates concentrations (HR or
MR) from any compound concentration data set supplied (may also be monitoring data).
Concentrations (HR or MR) may be multiplied with a processing factor on beforehand, in MCRA this
depends on the options chosen for processing.

Case 1:
The compound in a composite sample reflects the concentration in meal-sized portion of the food
(unit weight is below 25 gr).

LP* HR
bw

IESTI =

Case 2:
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The meal sized-portion, such as a single fruit or vegetable unit might have a higher concentration than
the composite (whole fruit or vegetable unit weight is above 250 gr). Case 2 is further divided into
case 2a and 2b.

Case 2a:
Unit edible weight of raw food is less than large portion weight.

U*HR*v+(LP—-U)* HR
bw

[ESTI =

The formula is based on the assumption that the first unit contains compounds at the HR*v level and
the next one contains compounds at the HR level, which represents the compound in the composite
from the same lot as the first one.

Case 2b:
Unit edible weight of raw food exceeds large portion weight.

LP*HR*v
bw

I[ESTI =

The formula is based on the assumption that there is only one consumed unit and it contains
compounds at the HR*v level.

Case 3:
For those processed foods where bulking or blending means that the median represents the likely
highest concentration.

LP* MR
bw

IESTI =

When an acute reference dose is available, the calculated IESTI values are also expressed as a
percentage of the ARfD.

IESTI is a deterministic estimate to reflect the unit variability within a composite sample. In the
probabilistic approach, unit variability is explicitly modelled and the result is an estimate of the intake
distribution (per food). These two different approaches handle the same problem, but it is undefined to
which MC-percentile the IESTI value should be compared. In MCRA the user is free to choose a
percentage point for this comparison.

A point to note is that IESTI is calculated from positive consumptions on each separate food. To
allow a fair comparison, the MC-percentiles are calculated in the same way. Note, however, that in a
multi-food MC-analysis, even if one restricts the attention to consumption days only, the percentiles
are typically based on consumption data which are partly zero (days with consumption zero for some
but not all foods).

Back to: Additional options concerning IESTI and consumption days

5.3.3 Intake model

5.3.3.1 Only empirical estimates
This is an acute risk assessment using empirical compound data.
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5.3.3.2 Empirical estimates and betabinomial/normal

An acute risk assessment may be followed by an analysis where the acute intake distribution is related
to a covariable and/or cofactor. The simulated acute intake are input and the betabinomial distribution
is used to estimate an intake frequency model describing the effects of explanatory variables. The
positive intake values are transformed to normality and an intake amount model is estimated, again
relating the amount value to a covariable and/or cofactor. MC-sampling is used to obtain a simulated
acute intake distribution for each combination of levels of covariable and cofactor.

Back to: Empirical estimates and betabinomial/normal

5.3.3.2.1 Monte Carlo data generation of intake

Through MC-sampling, a large number of intakes is generated by combining randomly chosen
consumption patterns of consumers i on day j with randomly chosen concentrations in the consumed
foods. The replicates generated for consumer day ij are further indexed by k to represent differences
due to concentration variability. We ignore the finiteness of the concentration data, that is, we ignore
the identity of the chosen concentration values in the original concentration dataset.

Back to: Empirical estimates and betabinomial/normal

5.3.3.2.2 Intake frequency model
Let n,and npos, be the total number of simulated intakes per consumer, and the number of simulated

positive intakes, respectively. Then npos; is modelled as a function of e.g. age (and/or other
consumer characteristics), using a betabinomial distribution with binomial totals #, and

1

overdispersion parameter ¢ (independent of age). The fitted binomial probabilities are 7 = f (xl.) ,

where x; is the age of consumer i, and the estimated overdispersion parameter is ¢ .
Back to: Empirical estimates and betabinomial/normal

5.3.3.2.3 Intake amount model

For the positive intakes, consider power of logarithmically transformed values y;. (see 5.4.3.1
Average over replicates to obtain consumer day averages y;. These values are modelled in a ML
analysis with random terms consumer and consumer.day as a function of age (and/or other consumer
characteristics), with the number of values per consumer day (n;) as weights w; to correct for
differences in the precision at the consumer day stratum. The fitted values from the model are

L =f (xl. ) , where x; is the age of consumer 7.

Back to: Empirical estimates and betabinomial/normal

5.3.3.2.4 Estimating the acute risk variability of positive intake amounts

Correct the full set of simulated positive intakes by y'i].k = Vi — ,[tx(l.). Estimate the variance O'i, of
y'ijk . We denote the estimated variance as &j,. Now for each selected age x the transformed positive

intake distribution is modelled as normal with mean fz = f (x) and variance 6‘f

Back to: Empirical estimates and betabinomial/normal

5.3.3.2.5 Estimating the acute intake distribution

Acute intake distributions dependent on a covariable and/or cofactor are obtained by numerical
integration. For each combination of levels of the covariable and cofactor, intake frequency values
and transformed intake amounts are simulated and multiplied. This results in a number of distributions
each one representing the acute intake distribution corresponding to a specific combination of levels
of the covariable and cofactor. Covariable- and cofactor-dependent percentiles can be derived.

Back to: Empirical estimates and betabinomial/normal

5.4 Chronic risk assessment

In the MCRA program we have 2 models available to assess chronic risks:
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1) the betabinomial/normal model (see 5.4.2,5.4.3,54.5),
2) the discrete/semi-parametric (ISUF) model without covariable and cofactor (see 5.4.6 ).

5.4.1 Introduction

In a chronic risk assessment the main interest goes to the fraction of consumers with a usual intake per
day higher than an intake limit. Usual intake is defined here as the long-run average of daily intakes of
a (chemical) compound by a consumer.

Usually, food consumption data are available for consumers on 2 (or more) consecutive days. We
assume an equal number of days for each consumer. This is in confirmity with our method of data
entry for consumption (see 9.4.1 ). As a consequence, days without consumptions do have zero intake.
Through the assumed independence of consumption data and compound concentration values (a most
reasonable assumption) the daily intake of consumer i on day j can be calculated as the sum over
foods of consumption amount per kg body weight times average concentration. See the basic model in
5.1. The average concentration of all available concentration measurements on a food is taken, with
non-detect measurements entered as zero, 5 LOR or LOR , or any other fraction of LOR as specified
in the input options.

To calculate the usual intake in the first 2 available models two aspects will be taken into account: the
number of days that a consumer eats that compound and if so, the amount of that compound. The
number of days will be assumed to have a binomial distribution with a probability p different for each
consumer. These probabilities will be assumed to come from a beta distribution. The eaten compound
will be assumed to have a normal distribution mostly after transformation. In the next paragraphs the
modelling will be further discussed.

5.4.2 Modelling the intake frequency distribution

Let n and npos be the total number of days per consumer (for all consumers equal) and the number of
days with a positive intake, respectively. Then npos is modelled using a betabinomial distribution
with binomial totals n and probabilities p. The probabilities, p, are assumed to follow a beta
distribution:

_T@+p) iy g
f(p) F((){)r(ﬁ)p (1-p)

')
With B(a, f)= H@)(h) , the probability that npos equals x can then be written as:
['a+p)

B(a+x,n+ [ —x)

B(a, B)

R x=0,1...n

n
P(npos=x) = ( j
X

This distribution is known as the betabinomial distribution.

The mean and variance of a beta distribution are:

alla+ )
and af(a+ f+n)/[(a+ L)’ (a+ B +1)], respectively.
Re-parameterizing by 7 =a/(a+ f)and ¢ =1/(a+ f+1) is a more stable and interpretable
parameterization. It can be shown that the mean and variance of npos are equal to nz and
nz(l—7m)[1+ (n—1)¢p], respectively.

Note that the first part of the variance n 7(1 — ) equals the binomial variance; the second part is the
so-called overdispersion factor.
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Fitting the betabinomial model with maximum likelihood gives estimates 7 and ¢ for the
parameters 7 and ¢. Back-transformation gives the following estimates for a and f:

a=#(1-¢)/¢ and B=1-A)1-p)/p

The distribution of the probability that a consumer eats a compound at a certain day is then:
Beta(a , ).
Back to: Chronic risk analysis

5.4.3 Modelling the positive intake amounts

5.4.3.1 Power or log transformation

First, to achieve a better normality, the positive daily intake amounts are transformed. The user can
choose a logarithmic transformation f(y) = ln(y) (no parameters to be estimated) or a power

transformation f(y)=y” (one parameter to be estimated). In the latter case the optimal power is
determined on the grid {1 0,2,L,.,3,55,3-35 ,...,ﬁ}, with a further refinement grid search around
the best fitting value. If a powery; gives the best fit in this grid search, then the logarithmic
transformation is selected (Note that a logarithmic transform corresponds theoretically to y =0). The
goodness of fit is determined by minimising the residual sum of squares: (z(i)— 3,y ) of a

regression of normal Blom scores on the power-transformed daily intakes. Normal Blom scores are
(Tukey 1962):

i3
Z(i) =0 781
f’l+1

where i is the rank of the n” non-zero daily intake, n, the total number of non-zero intakes and®'(.) is
the inverse of the standard normal cumulative distribution function.

5.4.3.2 Model with between-consumer and within-consumer variance component

5.4.3.2.1 Log transformation

The transformed positive intake amounts are modelled in a ML analysis with random terms consumer
and interaction consumer.day to estimate the between-consumer and within-consumer variance
component:

In(yy)=p + cit uy;

where ¢; and u; are the consumer effect and interaction effect respectively. These effects are assumed
to be normally distributed N(O, P petween) T€SP. N(O, azw,«th,«,,).

If the positive intake amounts are logarithmically transformed it can be shown that the expectation
and variance of the positive intake amount per random consumption day of a random consumer are:

E(XU) = exp(:u + Y szithin)
Var(X{j) = szetween

5.4.3.2.2 Power transformation
The power transformed (with power g) positive intake amounts are modelled in a ML analysis with
random terms consumer and interaction consumer.day to estimate the between-consumer and within-
consumer variance component:

Vi =p+ et uy
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where ¢; and u; are the consumer effect and interaction effect respectively. These effects are assumed
to be normally distributed N(0, 6”peeen) resp. N(O, 07 suiznin)-

5.4.4 Modelling usual daily intake

5.4.4.1 Analytical integration

For logarithmic transformed intake amounts, a analytical solution is available (not implemented in the
MCRA program).

The usual intake is defined as the intake amount per random intake day (over both intake and non-
intake days) of a random consumer. To obtain the usual intake the E(y) from 5.4.3.2 has to be
multiplied by the probability z from 5.4.2 . If # was constant for all consumers the usual intake would
have a lognormal distribution with mean In(z) + u + % & vimin and variance o’ pmeen. But because we
have assumed in 5.4.2 that consumers have different p’s coming from a beta distribution, the
probability that a consumer has a usual intake lower than say an intake limit z equals:

P(py < z)= I(£=pAXS%): I(£=pAlnzi(ln(Z)—ln(p)))

2

within ) dp

f D@+B) sy g InG)—In(p)-a-%6
— 1- )
pjo r(&)l"(ﬂ)p ( p) ( &berween

where @ is the cumulative normal distribution.

5.4.4.2 Numerical integration

If the positive amounts are transformed by a power transformation the power transformed values can
not generally be written in terms of a probability distribution as in 5.4.4.1 : the distribution of the
usual intakes has to be calculated numerically.

However, in the MCRA program for both power and logaritmic transformation, the usual intake
distribution is obtained by numerical integration.

The distribution of the usual intakes can be obtained as follows:

1. Draw 1 value of a normal distribution with mean x and variance O bemmeon
2. Calculate the inverse transformation of the value of Step 1.

2a. For a logarithmic transformation: x = exp(u + 0 pesween 0 y) + V2 Uzwithirp
2b. For a power transformation: x =(' i + ¢ penveen e)i +AA—=1) (1t 0 penween e)i' 2 & inin2

with q = 1/ 4, the power to approximately normality, e standard normal distributed N(0, 1)
(Dodd et al. 2006, p1646).

3. Draw 1 value of the Beta distribution
4. Multiply the value of Step 2. with the value of Step 3.

The result is one random draw from the distribution of usual intakes.
Repeat Steps 1 till 4 a great number of times, say 50000.
Back to: Chronic risk analysis

5.4.5 Covariable and/or cofactor in the models

The intake frequency and transformed intake amount model can be extended to describe the effect of
a covariable and/or cofactor. Then, usual intakes are dependent on explanatory variables.
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5.4.5.1 Cofactor
5.4.5.1.1 Intake frequency model

The model is:
IOglt(E) = ﬁo], I=1...L
where L is the number of levels of the cofactor and 7 is the fitted probability of 5.4.2 .

5.4.5.1.2 Intake amount model

The model is:
transf(y;) = fo + ci+ uy, 1=1...L
with notation as in 5.4.3 and 5.4.5.1.1

5.4.5.1.3 Usual intake model
The usual intake is calculated per level of the cofactor as described in 5.4.4

5.4.5.2 Covariable
5.4.5.2.1 Intake frequency model

The model is:

logit(z) = fo + p1 f(x1; df),

where x; is the covariable, f is a spline or polynomial function and df the degrees of freedom. The
degree of the function is determined by backward or forward selection.

5.4.5.2.2 Intake amount model

The model is:
transf(y;) = fo+ Bi f(x1; df) + ¢+ uy;,
with notation as in 5.4.3 and 5.4.5.2.1

5.4.5.2.3 Usual intake model
The usual intake is calculated for user specified values of the covariable.

5.4.5.3 Covariable and cofactor
5.4.5.3.1 Intake frequency model

The interaction model is:

logit(z) = fort B f(x1; df), I=1...L

The main effect model is:
logit(z) = Bort B f(x1; df), =1...L

where x; is the covariable, f is a spline or polynomial function and df the degrees of freedom. The
degree of the function is determined by backward or forward selection.
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5.4.5.3.2 Intake amount model

The interaction model is:

transf(vy;) = fort fuf(xi; df) + cit wy, I=1...L
The main effect model is:

transf(y;) = for+ f1 f(x1; df) + cit wy, 1=1...L
with notation as in 5.4.3 and 5.4.5.3.1
5.4.5.3.3 Usual intake model

The usual intake is calculated for all levels of the cofactor for a number of values of the covariable.
Back to: Chronic risk analysis

5.4.6 Discrete/semi-parametric (ISUF)

Nusser et al. (1996) describe how to assess chronic risks for data sets with positive intakes (a small
fraction of zero intakes was allowed, but then replaced by a small positive value). The modelling
allowed for heterogeneity of variance, e.g. the concept that some people are more variable than others
with respect to their consumption habits. However, a disadvantage of the method was the restricted
use to contaminated foods which were consumed on an almost daily basis, e.g. dioxin in fish, meat or
diary products. The estimation of usual intake from data sets with a substantial amount of zero intakes
became feasible by modelling separately zero intake on part or all of the days via the estimation of
intake probabilities as detailed in Nusser et al. (1997) and Dodd (1996). In MCRA, a discrete/semi-
parametric model is implemented allowing for zero intake and heterogeneity of variance following the
basic ideas of Nusser et al. (1996, 1997) and Dodd (1996).

Nusser et al. (1996, 1997) describe a procedure for the assessment of chronic risks using non-normal

dietary intake data. Principally, their method consists of four steps:

1. transforming the daily intake data to approximate normality using a power function or log
transformation

2. fitting a grafted polynomial function to the power or log transformed daily intakes. The
polynomial provides some flexibility against power transformed components that are still
deviating from normality,

3. estimating the parameters of the usual intake distribution in the transformed scale, and

1. estimating the percentiles of the distribution of usual intakes in the original scale.

Back to: Discrete/semi-parametric (ISUF)

5.4.6.1 Power or log transformation

To achieve a better normality, daily intakes are transformed. The user can choose a logarithmic
transformation (#= f(y)=In(y), no parameters to be estimated) or a power transformation

(t=f(y)=y’, one parameter to be estimated). In the latter case the optimal power is determined on
the grid {10, 2, 1,7%,4,5%,4,5%,..., %}, with a further refinement grid search around the best fitting

value. If a power i gives the best fit in this grid search, then the logarithmic transformation is
selected (Note that a logarithmic transform corresponds theoretically to y =0). The goodness of fit is

determined by minimising the residual sum of squares: (z(i)— f3,y”)’ of a regression of normal

Blom scores on the power-transformed daily intakes. Normal Blom scores are (Tukey 1962):
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i—3
Z =@ —Sl
n+t

where i is the rank of the n” non-zero daily intake, n, the total number of non-zero intakes and® () is

the inverse of the standard normal cumulative distribution function.
Back to: Discrete/semi-parametric (ISUF)

5.4.6.2 Spline fit

To achieve a better normality, a second transformation (optional) is performed: a spline function
t = g(z)is fitted to the logarithmically or power transformed data ¢ as a function of the normal Blom

scores. The spline function is a grafted polynomial consisting of cubic polynomials between p = 3
joint points (knots) and linear functions in the two outer regions. The daily intakes are transformed by
interpolating from # to x = g7'(¢) , using the fitted spline function.

After a successful transformation the daily intakes x will resemble Blom normal scores and their mean
and total variance will therefore be approximately 0 and 1. The normality of the transformed values x
is checked with the Anderson-Darling test. In the case of a spline transformation, if normality is
rejected at the 85% confidence level, then the number of knots p is increased and the spline fit is
repeated (until a maximum of 22 knots).

Back to: Discrete/semi-parametric (ISUF)

5.4.6.3 Estimation of the parameters of the usual intake distribution

Variance components for between and within-consumer information are fitted to the transformed non-
zero daily intakes x using the model:

xij =xi+ul.j

X, ~N(u,03); u; ~N(O,s}); E(s})=o,; var(s)) =0,

In this model the total variance of the daily intakes is divided into a between-consumer component
and a within-consumer component. The within-consumer variance component can be heterogeneous,
that is, it can be different for different consumers. In the model the between-consumer variance

2 . cq . . . . 2
o, and the mean and the variance of the within-consumer variance component distribution (o and

O'j ) are estimated using standard statistical methods (ANOVA). Further, a test statistic MA4 is
calculated to test whether the heterogeneity of variances is significant (see Dodd 1996 for details).
The estimate s of the between-consumer variance is the basis for the estimation of the distribution of

usual intake. The distribution of usual intakes on non-zero intake days in the x scale is represented by
a set of 400 normal Blom scores (which themselves represent the standard normal distribution)

multiplied by si: x; =5z, . The same calculation is applied to user-requested percentiles

Zp = CD_l (p) *
Back to: Discrete/semi-parametric (ISUF)

5.4.6.4 Back transformation and estimation of usual intake

The 400+ values x; are back-transformed to the original scale. This is simple if no spline function has
been estimated. If a spline function has been used, then it is a rather complicated procedure, because
the spline function g was developed for daily intakes, not usual intakes. The following steps are made:
1. First the 400+ values x; are expanded in a set of 9 * 400 values representing the distribution of
daily intakes around each of the 400 points;
2. These 9 * 400+ values are back transformed using the functions g and f, and the sets of 9
values are then recombined (by weighted averaging) into 400 usual intake values y; ;
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3. A spline function g; ,especially adapted for usual intakes, is now fitted to the 400 data pairs
(xi, 1;), where ¢, = f(v,);

4. Finally the usual intakes on non-zero intake days are represented by the back-transform using
this improved function: y, = f(g,(x,)).

The user-requested percentiles y, are the additional values (i > 400) in the 400+ set. The 400 y;

values define the cumulative distribution function by:
3
F(y i) =

-3
400+ 1
The distribution is adapted in order to account for days with zero intake of consumers (defined here as
consumers who have a positive probability of intake on any day, and therefore a non-zero usual
intake). This is done by estimating the distribution of individual intake probabilities. This distribution
is approximated via a number of classes (e.g. 21 or 51, can be selected by the user) arranged by the
proportion of days on which there is a positive intake (p,,). Using a binomial distribution for each

class, the fraction of consumers in each class (6,; m =0,...,M ) is estimated by optimising the fit

of the predicted proportions of consumers with 0, 1, 2, ... intake days to the observed proportions. The
number of parameters to be estimated is usually higher than the number of possible outcomes for a
consumer (e.g. 3 when there are two days per consumer), and therefore a smooth approximation is
made using a modified minimum chi-squared estimator. See Dodd (1996) for details. Only the

fraction of non-consumers (6,) is estimated separately with no restriction to be similar to the other
0, . It can be noted that the distribution of individual intake probabilities can be better estimated
when the number of days per consumer in the consumption survey becomes higher. With only 2 days
per consumer the procedure gives a rather artificial distribution, often with an estimated &, of zero

This step can be time-consuming. Therefore, the number of iterations in the estimation procedure can
be limited by the user. In our experience it is not generally necessary to use 50,000 iterations as in
Dodd (1996).

The estimated distribution of individual intake probabilities (6,,...,8,,) is used to transform the
distribution of usual intake on non-zero intake days (Fy) to the distribution of usual intake for

consumers ( F.) and finally to the distribution of usual intake for the entire population ( £},). These
transformations are based on the relation:

F,(u) =6, +§:9mFy(”/pm)

which basically says that to obtain a certain level of usual intake # we should consider a different
level ( u/p,, ) for the class of consumers which consume only on a fraction p,, of days. See Dodd
(1996) for details of the computational procedure. Linear interpolation based on the 400 values of

the F, distribution is then used to compute representations of the cumulative distribution functions for

consumers only and the entire population.
Back to: Discrete/semi-parametric (ISUF)

5.5 Uncertainty analysis: resampling data sets and resampling from
distributions

In probabilistic risk assessment of dietary intake we use distributions which describe the variability in
consumption within a given population of consumers and the variability of the occurrence and level of
chemical compounds on the consumed foods. However, these calculations do not consider the amount
of uncertainty that is due to the limited size of the underlying datasets. Typically, in a large number of
simulations very many different combinations of consumption and compound concentrations are
made. This leads to a smooth distribution of simulated intakes, and the impression of a very precise
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estimation of intake percentiles or other quantities of interest. It is essential to realise that the accuracy
of the inference depends on the accuracy of the basic data.

When doing an uncertainty analysis in MCRA a number of iterations is chosen, and in each iteration
new inputs are resampled for a complete Monte Carlo analysis:
1. Datasets (concentration data, individual consumption data) are resampled from the original
database (bootstrap methodology)
2. Parametric inputs, such as processing factors and their variabilities are resampled from
parametric distributions.

5.5.1 Resampling datasets

A computer-based instrument to assess the reliability of outcomes is the bootstrap (Efron 1979, Efron
& Tibshirani 1993). In its most simple, non-parametric form, the bootstrap algorithm resamples a
dataset of n observations to obtain a bootstrap sample or resampled set of again n observations
(sampling with replacement, that is: each observation has a probability of 1/n to be selected at any
position in the new resampled set). By repeating this process B times, one can obtain B resampled
sets, which may be considered as alternative data sets that might have been obtained during sampling
from the population of interest. Any statistic that can be calculated from the original dataset (e.g. the
mean, the standard deviation, the 95t percentile, etc.) can also be calculated from each of the B
resampled sets. This generates a uncertainty distribution for the statistic under consideration. The
uncertainty distribution characterises the uncertainty of the inference due to the sampling uncertainty
of the original dataset: it shows which statistics could have been obtained if random sampling from
the population would have generated another sample than the one actually observed.

In MC-modelling of acute risks two datasets are combined: consumption data and compound
concentration data. It makes sense to apply resampling to both datasets separately, in order to
characterise the uncertainty in the final intake. In MCRA the uncertainty algorithm (when selected) is
applied to:

1. the multivariate consumption patterns and associated body weights: actually the data set of
consumer identifiers is resampled, and all consumer information (consumption patterns for all
consumption days, body weight, and age) is coupled to the selected consumer identifiers.

2. the univariate compound concentration data sets: these are resampled independently for all foods.
In principle, the uncertainty algorithm is applied to the dataset consisting of both non-detects and
positive values; in practice, for a dataset with n, non-detects and n; positive values, the number of
positive values in a resampled set is obtained as a draw from a binomial distribution with

parameter 7, / (nO +nl) and binomial total 7, +n,. Then, this number of values is selected
randomly from the set of n; positive values.

In MCRA the resulting uncertainty distribution of percentiles of the intake distribution is summarised
by specifying empirical 2.5" , 25", 75™ and 97.5™ percentiles. The outer percentiles constitute a
central 95% confidence interval for the variability percentiles. However, for this it is necessary that
the number of resampled sets B is high enough. The number of resampled sets should be chosen
depending on the confidence level wanted for the uncertainty interval. Typically 500-2000 resampled
sets will be reasonable for a 95 % confidence interval (Efron & Tibshirani 1993, pp. 14-15, 275).

The same uncertainty algorithm can also be applied to deterministic estimates which are calculated
from data sets. For example the maximum concentration found in a resampled set will be different, if
the actual maximum value in the original dataset has not been selected. Also data-based estimates of
large portion and average body weight will vary.

5.5.2 Resampling parametric distributions
In MCRA 6 this is implemented for processing factors and the variability of processing factors.
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Processing effects are modelled either by a fixed processing factor, or by a lognormal or logistic-
normal distribution (depending on the distribution type set in table Processingfactor).

In the former case (fixed factor) the uncertainty distribution is lognormal or logistic-normal with the
same mean L as the fixed value, and with a standard deviation G, which is calculated from the
specified central; value (procnom) and an estimate of p95 of the uncertainty distribution
(procnomuncupp). The calculation is 6,,. ={logit(procnomuncupp) — logit(procnom)}/1.645 in case of
disttype 1 (logistic-normal distribution) and o, ={In(procnomuncupp) — In(procnom)}/1.645 in case
of disttype 2 (lognormal distribution). Values lower than 0.01 or higher than 0.99 (disttype 1 only) are
replaced by default values (0.01 and 0.99); this is useful computationally to avoid problems. In each
iteration of the uncertainty analysis a new value is drawn from this distribution to be used as a fixed
factor in the Monte Carlo calculation.

In the case of a processing factor distribution (describing the variability of processing factors) two
uncertainties can be specified. First, the uncertainty about the central value p can be specified as
before using a parameter procnomuncupp. Secondly, the uncertainty about the variability standard
deviation Gy, can be specified by the number of degrees of freedom df of a modified chi-square
distribution which is used to generate new values of o,,.. Setting df very high means litte uncertainty,
and o, will be almost equal in all iterations of the uncertainty analysis. Setting df close to 0 means a
large uncertainty, and very different values of 6,,, will be obtained in the iterations of the uncertainty
analysis.

Back to: Uncertainty analysis

5.6 Binning

Binning is a method to summarise the simulated data (total intake, intake per food, consumption per
food, concentration per food) in frequency intervals for further use in deriving the intake distributions.
The alternative would be to store observations for subsequent use, but this would require for moderate
simulations already a large amount of storage capacity and an excessive administration.

The mean value (mean) of the first, say 5%, of the total number of simulations is used to define the
left limit of the central bin. For values above the mean, 1100 bins are used for storage. The upper
limits of the upper bins are defined as 1% higher than the lower limit. So, for upper bin i the upper
limit is calculated as mean x 1.01". For values below the mean also 1100 bins are defined with lower
limits defined by mean x 1.017. After the process of binning is completed, the quantile value of a
specific percentile is determined by linear interpolation between the bin limits. These 2200 bins
together provide efficient storage for numbers spanning more than 9 decades (1.017*%=3.2x10°),
which should be amply sufficient for most practical problems.

To get accurate results, it is rather important that the mean value of the first 5% of the simulations
represents, approximately, the true mean of the sampled distribution. Therefore, the total number of
simulations should not be chosen too small. During the simulation, if a simulated intake is higher than
the upper limit, this value is replaced by the new maximum.

When the mean value is missing, e.g. due to zero intakes, the program resorts to an average mean
value, e.g. the average of the mean values of foods with nonzero intakes.
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6 Selection of consumers and foods

In the next sections, the centrally supplied database ‘validation.mdb’ is used. All tables are selected
and data for survey DNFCS-3 and compound CHLORPYRIFOS are retrieved from the database. Find
in Figure 49 the outcome of the selection. In total, 1230 foods are eaten. Application of the conversion
algorithm shows that the number of derived foods is 33 + 43 = 76. Note that the selected foods do not
depend on the choice of the compound. The retrieved foods are entirely determined by consumption
patterns, e.g. the choice of a survey.

The information in the lower part of the screen is related with the choice of the compound. Here,
chlorpyrifos is selected and this compound is found on 33 derived foods. This means that there is at
least one sample of each of the 33 foods with a positive concentration. On 43 derived foods only non-
detects are found. This means that for each of the 43 foods all samples were negative, i.e. no
chlorpyrifos found. No worstcase values were found in the database.

Check one of the two radio buttons to specify which foods must be used in the risk analysis. If non-
detects are not replaced by the LOR (see input form), the first and second radio button in Figure 49
are equivalent. Note that the first button is computationally more efficient because less foods are
involved.

Press the ‘go’-button in Figure 49 to enter the central menu.

MCRA: Monte Carlo Risk Assessment

Results of conversion of foodcodes
Food consumption survey.  DNFCS-3

Compound:  CHLORPYRIPHOS

Humber of consumed foods: 1230
=+ 1230 consumed foods are converted to 286 foodcodes =

e for 33 foods positive concentration values are available. show

« for 43 foods measurements have been made hut anly nondetects were found. Include these foods in the

analysis ifyou want to replace them with the limit of reparing (Lor). Sty

» for 0 foods only warstcase walues are available. shiow

» for 96 derived foods no information is found. show

REEEE

o for 114 consumed foods no information is found. shiow
selected consumption and compound tables showy
f* Cantinue with 33 foods (with positive concentrations)

" Continue with 33 + 43 = 76 foods {measured=positives/nondetects)

press after making your choice ga

hack to select another compound and survey
hackto selection oftables for MCRA
hack to main menu

Falease 5.0

Figure 49: Selected foods for survey DNFCS-3 and compound CHLORPYRIFOS

With the subset-selection ‘go’-button in the MCRA central menu (see Figure 50) subset selections are
made on the consumer population or on the foods. Through the use of scroll-down menus the user 1)
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selects ages, weights and sexes (and covariable and cofactor if chosen) to define the population of
consumers; 2) selects day(s) of consumption, foods, year, country and sampling type of the compound
concentration data. In Figure 50 the subset-selection ‘show’-button shows all selected levels for those
variables on which selections are active. The corresponding ‘clear’-button removes all selections
already made.

MCRA 6.0 central menu

Overview

data selected on: 6202007 11:50:14 AM
consumption survey.  DNFCS-3

compound: CHLORPYRIFOS

selection of data g0 | show | clear |

campound and survey selection a0
to overview of conversion ga

suhset selection 0o | show | clear |

MCRA input farm ga

& Yourlastjoh is succesfully completed

o Serveris readyto accept 3 joh.

wiew autput

hackto main menu

Release G.0

Figure 50: MCRA central menu, subset selection

If you want to do the same type of analysis for one of the other options, click the to-overview-of-
conversion ‘go’-button in the centralmenu.

6.1 Subset selection: consumers

After clicking the subset-selection ‘go’-button in the MCRA central menu (see Figure 50) the first
subset selection screen is shown (see Figure 51). Here, the consumer population is defined using
characteristics on consumers (age, weight, sex, length and vegetarian). The first time, the
characteristics of the total population are shown, so for age the minimum and maximum values are 1
and 97 year (both current selection as database). Note that combining levels of variables occasionally
results in empty subsets e.g. the combination of ages within the range 1 to 8 and weights in the range
70 kg to 150 kg is an empty subset. So avoid making combinations of variables that yield empty
subsets. The number of consumers currently selected is always mentioned in the screen, e.g. 6250 (see
Figure 51).
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MCRA subset selection

Consumer population

Check individual characteristics for subset selection

check if you want to

variable levels in current selection  select levels
age: min=1; rmax =97 I~
wiaight: min=%; max="140 ~l
SEH n=12 v
vegetarian: n=12 v
length: min=72, max=214 v

Mumber of individuals currently selected; 6250

shovaselect levels for checked variables
ugze total population (no consumer suhset selection) 0o

Figure 51: MCRA subset selection: consumer population

To make a selection of consumers, check one or more of the checkboxes and click the upper ‘go’-
button. The screen in Figure 52 appears after checking all checkboxes. Choose values for age, weight
(the unit depends on the survey you are currently using, see table FoodSurvey in 9.4.3 ) or length and
levels of sex or vegetarian. Change some levels and implement the changes by clicking the subset-
selection-based-on-chosen-levels ‘go’-button. The system automatically adjusts the levels of all
variables.

MCRA subset selection

Select levels for individuals

age hetween |1 and |9?
wigight hetween |3 and |15'3
SEN total number of levels: 2

female
nale

vagetarian  total numhber of levels: 2

no
yes

length hetween |?2 and |214

silhset selection based an chaszen levels a0
hackto previous screen {no selection in this step) a0

Figure 52: MCRA subset selection: select levels for consumers
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For example, select a population between 1 and 6 years. The minimum and maximum weight is 8 and
30 kg, respectively. The selected number of children is 530 (screens are not shown). If you want to
include previously excluded levels in a further selection step, just click the radio button labeled
‘database’ in the ‘select from:’-column and the original levels in the database are retrieved again.
Note that age and weight are related, so results may be unexpected when combinations are selected
which are inconsistent. So, in the children example, if you want to return to your original population,
check for both age and weight the radio button ‘database’, check both checkboxes and press the ‘go‘-
button again. Then, your original population with 6250 consumers is selected again.

6.2 Subset selection: consumption and concentration data

Select the total population. The next screen shows you the current selected levels of each variable (see
Figure 53). Also the levels of each variable stored in the database are shown. In our example, the
number of derived foods with positive concentration values is 33 and these foods are derived from
306 consumed foods.

MCRA subset selection

Consumption data and concentration data

Check variables for subset selection

check if you want to
variable levels in current selection  select levels

derived food:
dayofzurey:
Wear:
samplingtype:
countrynarme:
consumed food:

OOO0Oonoan

showfselect levels for subset selection g0
continue to central menu go

Figure 53: MCRA subset selection: consumption data and concentrations

The subset selection screen for consumption and concentration data is used to select levels for a

number of variables. Variables on which subset selection can be made are:

o derived foods: to restrict the analysis to specific derived foods;

e (consumption) day: to restrict typical consumption survey data to specific days (e.g. only the
first);

e year: to restrict the compound concentration data to specific years;

e samplingtype: to include only compound concentration data from a specific samplingtype (i.e.
monitoring);

e country: to include only compound concentration data from foods originating from specific
countries.

e consumed foods: to restrict the analysis to specific consumed foods;

In general, do not select combinations of levels which may result in empty subsets, e.g. grapefruits are

not grown in the Netherlands. So, combination of these levels for foodname and country results in
empty subsets. In this example, it is quite clear why things go wrong. Often it is less clear what you
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might expect from a combination of levels, especially when ‘current selection’ is combined with
‘database’ in order to retrieve the original levels for a variable, so be aware of empty subsets.

The example is continued by checking the checkboxes for derived and consumed foods.Click the
upper ‘go’button. A new screen appears with scroll-down menus for derived and consumed foods(see
Figure 54) Choose the three BAMI GORENG foods in the first scroll-down menu and click the upper
‘go’-button.

MCRA subset selection

Select levels

derived total number of levels: 33

food: CURRANTS, ELACE, FED, WHITE FEOOZ1 A
CRANBERRY FEO265
STRAWEERRY FBO275
TAELE-GRAPES FE1235
GRAPEFRUIT, SEE ALS0 SUBGROUP 0005 SHADDOCKS OR PO FCO203
LEMON, SEE ALS0 SUEGROUP 0002 LEMONS AND LIMES FCO204
LIME, SEE ALS0 SUBGROUF 0002 LEMONS AND LIMES FCO205
MANDARIN, SEE ALSO0 SUBGROUF 0003 MANDARINS FCOZ06
ORANGE, SWEET, SEE ALS0 SUBGROUP 0004 ORANGES, SWE  FCO208
AVOCADOD FI0326
BANANA FI0327
LITCHI FI0343
MANGO FI0345
APPLE FROZZ6
PEAR FROZ30 %

consumed  total number of levels: 306

food: NASI EALL SPICED RICE DEEP FAT FRIED sNLsL550609 ~
BAMI GOEENG CHINESE NOODLE EALL IN CRUMES DEEF FAT &NLg 1550610
COCKTAIL SNACES NIEEIT &NLg 1550616
COCKTAIL SNACES WOEFELS «NLs 15506109
POTATO CRISPS STERAIS SALTED «NLs 1550620
CELERTAC SALAD &NLs 1A50852
CHICKEN AND CUREY SALAD &NLs 1551498

CRISPS LIGHT &HNLE1651505
BANMI GOEENG CHINESE NOODLE DISH CANNED LG LG5 0368
FRIED RICE INDONESIAN STYLE WITH MEAT CANNED/FROZE sNLsl&50371

CHILDEENS MEAL GREEN AVERAGED sNLs 1G50372
BABT FANGANG POFE CHINESE STYLE IN SPICY 3AUCE &NLs 1G50469
BANMI GOEENG CHINESE NOODLE DISH W/0 EGG LG Lag0470
FRIED RICE INDONESIAN STYLE WITH MEAT AND EGG sNL5 1850471
CHOP-3UEY INDONESIAN STYLE cNLE1850472 %

subset selection based on chosen levels
hackto previous screen (no selection in this step) go
continue to MCRA central menu (no selection in this step) go

Figure 54: MCRA subset selection: select levels

The system automatically adjusts the levels of all variables: all foods that are not an ingredient of a
BAMI GORENG food are removed as you can check by pressing the ‘show’-button in the central
menu. Here, the steps above are repeated (check foodname checkbox and press upper button). In
Figure 55, the selected foods are shown: LEMON, CELERY, ONION, SWEET PEPPER and
CARROT are ingredients of BAMI GORENG foods.
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MCRA subset selection

Select levels

derived total nurmber of levels: 5

food: LEMON, SEE AL30 SUBGROUP 0002 LEMONS AND LIMES FCOzZ04
CELERY LEAVES HHOG624
ONION, EULE VAQ3ES
FEFPERS, SWEET (INCLUDING PIMENTO OF PIMIENTO) Wo0445
CARROT VEO577

cansumed  total number of levels: 3

food: BAMI GOFENG CHINESE NOODLE BALL IN CRUMES DEEF FAT «NLg 1550610
BAMI GFORENG CHINESE NOODLE DISH CANNED sNLg 1850365
BAMI GOFENG CHINESE NOODLE DISH W0 EGG &NLg 1350470

subset selection based on chosen levels ga
hackto previous screen (no selection in this step) ga
continue to MCRA central menu (no =selection in this step) ga

Figure 55: MCRA subset selection: select levels

7 On-line editing of data

Instead of selecting data from a database stored in the central or user directory as discussed in 2.6.1 ,
it is also possible to edit data on-line. Choose ‘MCRA 6.0 (field trial data and Dutch consumption
data)’ in the MCRA main menu (see Figure 2). Now you can add and edit your own concentration
data on-line. You are able to combine your own concentration data with centrally supplied food
consumption data; food codes for the concentration data are automatically generated from the food
consumption database.

From the central menu (see Figure 6), click the start-selection-of-consumption-and-compound-tables
‘go’-button. Then the available databases are shown (see Figure 56).

MCRA for fieldtrial data

Selection of databases

e |nthe list below you find servers and databases.

» Selectone or more databases that vou wish to use for a MCRA analysis.

select databases from list:
Biometriz M validation. mdb
[~ MeraPes_ML.mdb
[~ Ukcarbapple. mdh

[ dutch pesticides.mdb

click go I clear info

hackto central menu
hackta main menu

Felease 5.0
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http://mcra.biometris.nl/mcra/_3.5/ft/usertype.asp
http://mcra.biometris.nl/mcra/_3.5/ft/usertype.asp

Figure 56: Database selection menu, MCRA for field trial data

Check one or more databases and click the ‘go’-button. The table selection menu appears (see Figure
57). Its layout is changed and only tables related to consumption e.g. Foodconsumption, Foods and
Individual are shown. It is compulsory to select these three tables (see also 2.6.1 ). Tables related to
concentration data are not being displayed. Check ‘All Tables’ and the menus for on-line adding and
editing data are reached.

MCRA for fieldtrial data

Table selection for MCRA analysis

Select data tables by checking the boxes below, then click the select-tahles
‘0o’ hutton
Do not select maore than one table with the same name.

Faod Food
can Cam Food
SUmp posi prop Indiwvi All
Database: tion tion Faod ties dual Tables
validation. mdb N B B [ [ [

[ Use alternative foodnames foodname2)

selecttables g0 |

clear all settings clear |

back to main menu

Release 6.0

Figure 57: Table selection menu, MCRA for field trial data

The first time, create a new database (see Figure 58). In all subsequent cases, databases created on-
line are shown in the scroll-down menu. Note that for a proper functioning of the editing menus only
buttons and links in the window screen should be used. Do not use the 'back'-button in the toolbar
during editing: this will mess up the order of the foods and a proper functioning of the menu is not
guaranteed anymore.
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MCRA for fieldtrial data

Select database for concentration

»  Create a new datahase or selectthe name of an existing database ({in your own personal directony)
= Foran accurate functioning of the editing menus, use only buttons and links in the window screen.

« [onot use the "back’ button in the tool bar during editing: this wil mess up the order of the foods and a proper
functioning of the menu is not guaranteed anymaore.

create new database W 4o reset (1o last created database

hackto main menu

Release 6.0

Figure 58: Select database for concentration, create new database

Specify the name of the database (see Figure 59 ) and press the ‘go’-button. Note you should only use
letters and digits, no other characters are allowed.

MCRA for fieldtrial data

Select database for concentration

«  Specify a nevy datahase name {inyour own personal directond

ttestdata| use only letters and digits

hackto main menu
Release 5.0

Figure 59: Select database for concentration, specify a new database name

If you have entered compound concentrations on earlier occasions, Figure 60 appears. If not the ‘list
or add variability factors’, ‘list or add processing factors’ and ‘list or edit ARfD or ADI’-buttons are
not available.

Click the ‘list-or-add-concentrations’-button and a screen displaying an add-records link and a
message ‘“*** Concentration database is empty, add records ***’ is shown (only if you did not enter
concentration values before).
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MCRA fieldtrial data menu

Select data

list or add concentrations |

list or add variahility factors |

list or add processing factors |

list or edit ARTD or ADI |

prepare data for MCRA oo

back to central menu

Feleasze 5.0

Figure 60: Select data

7.1 List or add concentrations

Click the ‘list or add concentrations’-button to add compound concentration values. Specify the name
of a compound (see Figure 61) if you are entering values for the first time.

MCRA for fieldtrial data

Specify compound

Database: testdata.mdb
Acute Reference Dose (ARTD, microgrkg bwid) 100 99949 indicates missing value
Acceptahle Daily Intake (A0 microgrkn mawfd) 10

compound name [CHLORPYIFOS

Rress [u]u]
clear go

hackto main menu

Release 6.0

Figure 61: Specify compound name

The menu for specifying a compound name is skipped when the database already contains compound
concentration values. Select a food in the scroll-down menu, add compound concentration values (see
Figure 62 ) and click the enter-food ‘go’-button.
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MCRA for fieldtrial data

Select food

e Foods are selected ane by ane from the pull-down menu

database: testdata.mdb
compound: CHLORPYIFOS
BAMAMNA W

enter food go
reset list go

Figure 62: Select food

In Figure 63, for food Banana and compound Chlorpyrifos, the number of samples and the
concentration value are entered. After saving this record, a message “*** one record added ***’
appears and another concentration value may be entered. Alternatively, click the select-new-food
‘go’-button for entering values for a new food.

MCRA for fieldtrial data

Concentration data

Compound: CHLORPYIFOS
Food: BANANA
*** one record added ***
enter frequency if concentration occurs more
number of samples 1 than once
concentration {moiko) E7 enter compound concentratian

save this record
select new food 4o

list records
backto fieldirial data menu

Figure 63: Enter concentration data

Click the list-records link (see Figure 63) for an overview of the compound concentration values in
the database (see Figure 64).
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MCRA for fieldtrial data

Click hutton to mmodify a record.

no food frequency concentration

ORAMGE, SWEET, SEE ALS0 SUBGROUP 2 032
0004 ORAMGES, SYWE ’

5 | APPLE 1 1.21

6 | APPLE 2 0.45
7 | BAMNANA 4 0.56

add records
hack to fieldtrial data menu

Figure 64: List concentration values

Click a button displaying the row number to retrieve a record. The value for the number of samples or
the compound concentration value may be changed. Save or delete the record or choose a new food
(see Figure 65).

MCRA for fieldtrial data

Edit concentration value for: BANANA

Record id: 7
number of samples |2 enter frequency if concentration accurs more than once
concentration (mofkd) |0.5s] enter compound concentratian

delete recard delete
gelect new food Go

list recards
add records

Figure 65: Edit concentration value

7.2 List or add variability factors

After supplying all compound concentrations values, click the back-to-fieldtrial-data-menu link (see
Figure 63), and go back to the select data menu (see Figure 60). Now all foods are known and adding
of variability factors, processing factors and ARfD/ADI values may be started. After entering all
values, it still remains possible to supply new concentrations values for old and/or new foods. The
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process of entering variability factors and/or processing factors for new foods may be repeated as
well.

Click the ‘list or add variability factors’-button. If the database does not contain any variability
factors, a message “*** Variability database contains no records yet ***’ is displayed. Click the add-
records link and enter the menu for adding variability factors (see Figure 66). The variability factor
and the number of units of the composite sample should be specified. For each food in the
concentration table, values should be supplied. Only foods for which no values are supplied are
displayed and the process of supplying values is repeated until all necessary values are given. Then
and only then, the message ‘*** Variability factors are specified for all foods present in the
concentration table ***’ or “*** For all foods, variability factors are already specified ***’ is
displayed. Records may be changed afterwards by clicking one of the buttons in the listing menu.

MCRA for fieldtrial data

Variability factors

« Foreveryfood in the concentration table a variability factor and the number of units
ofthe composgite sample should be supplied.

« This menu generates the names ofthe foods for which concentrations are edited automatically.
After editing a food, the name of the next food will be displayed and can be edited.

« This process is repeated until variahility factors for all foods are supplied.

compound: CHLORPYIFOS

add variahility factors for,  BANAMA

wariahility factor 3 defined as p497 . afmean

number of units Bl numkber of units in the composite sample

save this record
clear value g0

Figure 66: Variability factors

7.3 List or add processing factors

In Figure 67 the menu for entering processing factors is displayed. If you did not enter any values
before, a message “*** Processing factor database contains no records yet ***’ is displayed. Click the
add-records link. Select from the scroll-down menu a processing type, enter a processing factor and
save the record. Repeat this step until the message ‘All factors for Banana are specified’ appears and
click the select-next-food ‘go’-button.
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MCRA for fieldtrial data

Processing factors

« Forall foods inthe concentration file, the processing name and processing factor may be specified.
s Processing names are selected from the list Mot all processing names should he selected.

« After selecting all processing names for a food, the nextfood is displayed automatically,
and editing is repeated.

« By clicking the select-next-food 'go’ hutton selection of processing names is ended and the next food
is dizplaved. After supplying values for all foods, the editing menu is stopped automatically.

« When nofoods or processing names are reguired, press repeatedly the select-next-food 'go' button
until the message processing is ended’ appears.

compaound: CHLORPYIFOS
add processing factors for, BAMANA
processing name | PEELING w

processing factor .?5| processing factor is used as fixed value

save this recard

clear value ga
select next food go

hack to fieldtrial data menu

Figure 67: Processing factors

To finish on-line editing for a food, click the ‘select-next-food’-button and continue entering values
for the next food. It is not necessary to enter values for all combinations of foods and processing
types: missing processing factors are by default replaced by value 1 (worst case scenario).

To enter processing factors for only a few number of foods and processing type combinations, enter
your values and click repeatedly the ‘select-next-food’-button until the message *** Processing
factors for foods are specified ***’ is displayed. If you want to enter values at a later stage, just click
the ‘list or add processing factors’-button in the select data menu. A list of processing factors found in
the database is given and after clicking the add-records link, new processing values may be entered.
Note that the scroll-down menus are dependent on the food and contain only those processing types
for which no values are supplied. Records may be changed afterwards by clicking one of the buttons
the listing menu.

7.4 List or edit ARfD or ADI

Click the ‘list or edit ARfD or ADI’-button in Figure 60 to enter values for the acute reference dose
(ARTD) or average daily intake (ADI). This brings you to Figure 68.

95



MCRA for fieldtrial data

Click hutton to modify record.

acute
no reference average coumpoundname
daily intake P
dose
1 100 10 CHLORPYIFOS

hack to fieldtrial data menu

Releaze 6.0

Figure 68: ARfD and ADI
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9 APPENDIX A: Preparing the data

9.1 Overview

MCRA requires that all information needed for a risk assessment is stored in MS Access databases.
Data are organised into tables which are divided into 3 groups with information on

e food consumption data;

e compound concentration data, and
e linking and additional data.

See Table 21 for an overview. To run MCRA, tables called ‘required’ should always be supplied.
Selection of ‘additional’ tables depends on subset requirements (see Ch. 5 ) and model specifications

(see Ch. 3).

Required tables (minimal configuration)

Food

Food consumption
FoodConsumption
Individual

Concentration of compounds

food codes and labels (see 9.3.1)

Description
consumption of foods (see 9.4.1)

consumer characteristics (see 9.4.2)

Description

Compound
Country

One and only one of:
ConcentrationValues

ConcentrationSummary Statistics

ConcentrationDiscreteValues

compound codes, labels, agricultural and toxicological limits (see
9.5.1)
country codes, labels (see 9.5.2)

compound concentration data (full data) (see 9.5.3 )
compound concentration data (as summary statistics) (see 9.5.4 )
compound concentration data (table of frequency counts) (see 9.5.5)

Additional tables (for querying or specific options)

FoodProperties
FoodComposition
FoodMarketShare

Food consumption
FoodSurvey

ProcessingType
Processing

Concentration of compounds

food codes and labels, and food specific information(see 9.3.2 )
food codes and labels, compositions (see 9.3.3 )
food codes and labels, marketshares (see 9.3.4)

Description
Name of survey (see 9.4.3)

processing codes and labels (see 9.4.4)
processing factors (see 9.4.5 )

Description

VariabilityProd
VariabilityCompProd
VariabilityProcCompProd
AgriculturalUse

ConcentrationWorstcaseValues

unit variability factors (see 9.5.6)

unit variability factors, compound-specific (see 9.5.7 )

unit variability factors, processing- and compound-specific

(see 9.5.8)

information on the agricultural use of compounds (e.g. use allowed,
percent crop treated) (see 9.5.9)

information on worstcase values (e.g. compound and food specific
worstcase values) (see 9.5.10)

Table 21: Overview of tables
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Tables are organised into columns (fields) and rows (records). In the next paragraphs, the format of
tables is described.

General remarks:

e Table and column names should be exactly as indicated in the sections below and each table
should contain all fields, except for tables ConcentrationSummaryStatistics (see 9.5.4 ) and
ConcentrationDiscreteValues (see 9.5.5 ).

e Missing values are indicated with code 9999, unless stated otherwise. In general, an empty cell
is also interpreted as a missing value. Occasionally, the use of empty cells leads to errors in
retrieving data. Therefore, it is advised to use the code 9999 to indicate missing values

In sections 9.3 ,9.4 and 9.5 the format is explained: the table name is given followed by field names
and a description with in parentheses the datatype. Each section ends with some notes and an
example.

9.2 Harmonised CODEX codes

In the MCRA program we use harmonised CODEX codes in the interest of Pan-European risk
assessment. This coding offers flexibility to enter food consumption data and chemical concentration
data at any desired level of food coding (e.g. food as eaten, ingredient, raw agricultural commodity,
processed food, brand level, etc.).

9.2.1 Definitions

A food code is a string consisting of symbols:
e letters (case-unsensitive, so x and X are the same letter),
e digits, and/or
e special symbols, such as ~1#$"&*()+-=[]{};”:",./<>?7°

Some special symbols are reserved for special use (see below), and can not be used freely in own
codes:

e &
$

%

Some symbols are not allowed at all, because this would interfere with the way the strings are

analysed:
e %
b —
c @

The first symbol should be:
e aletter (indicates a CODEX code or a code derived from a CODEX code), or
o & followed by a 2-letter country code (indicates a national food code)

CODEX codes start with two letters and four digits, and should comply with the CODEX
Classification of foods and animal feeds. The code XX9999 (usually followed by a subtype code) can
be used for all foods which cannot be placed in the Codex classification system.

Any code (CODEX code or national code) can be followed by:
$ plus a subtype code, and/or
e - plus a processing code
e *-plus a processing code. Here the asterisk (*) serves as a wildcard for the preceding code:
the processing information is valid for all codes that start with the code preceding the *.
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Subtype codes and processing codes can have any format. Multiple levels of subtype code are allowed
(e.g. &NL00$123$456). Only one level of processing code is allowed (e.g. FP0226-2). Subtype codes
should precede processing codes (e.g. &NL00$123$456-2).

Within EU-Safefoods we will harmonise subtype codes and processing codes as far as they apply to
CODEX codes. For this purpose lists will be maintained at RIKILT, and any new subtype code or
processing code is checked against this list, and when found appropriate added to this list.

The table Food has to contain descriptive names for all food codes that occur in the tables
FoodConsumption and Concentration..... and that the user wants to include in the analysis. Names
will be in English, but an additional column with alternative names can be used.

9.2.2 Conversion of codes

We distinguish 3 types of food code conversion, which may be provided in three different tables:

1. Food processing (table Processing)
Processing factors will be applied to concentration data.

2. Food composition (table FoodComposition)
Composition percentages will be used to transform the consumed amounts.

3. Subtypes/ Market share (table FoodMarketShare)
Market share percentages will be used for as probabilities of selecting concentration data for
each of the subtypes.

9.2.3 Conversion rules

e For each code in the FoodConsumption data set try to find the most appropriate
concentration information by searching information in a specific order according to the steps
in the scheme below.

e Ifa code is converted into one or more other codes, then for any such other code re-start the
search scheme before continuing to the next step or substep in the scheme with the old code.

e The search is ended if concentration data have been found for code or as many as possible
derived codes. When a code is converted to multiple new codes (composition, subtypes), then
the search continues for all these new codes.

e Ifno link can be made to concentration data, then the consumption of this code is considered
irrelevant for the current intake assessment.

In 9.2.4 a scheme is given to link the food consumption and compound concentration data.

9.2.4 Scheme to link food consumption and compound concentration data

Find in Figure 69, an schematic outline of the search for food codes. After a successful search, the
code is found in one of the concentration values tables. If the code is not found, searching starts in one
of the link tables. If the code is found, the search starts again in one of the concentration values tables
and the search is repeated. If a code is not found at all, the search for a code is unsuccessful.
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Consumed foods . - ConcentrationValues
- FoodConsumption - ConcentrationSummaryStatistics

Measured foods (step 1, Identical code)

- ConcentrationDiscreteValues

Figure

Step 1.

found not found

/

linking information:
- Processing link (step 2)

unsuccessful - Food composition link (step 3)
search < - Subtype link (step 4)
- Supertype link (step 5)

- Default processing factor 1 (step 6)
- Worst case value (step 7)

69: Link scheme to find CODEX codes

(Identical code)

Try to find code in the field foodmeasured of the ConcentrationValues (9.5.3 ),
ConcentrationSummaryStatistics (9.5.4 or ConcentrationDiscreteValues (9.5.5 ) table. If found,
the search is ended successfully. (Note that one and only one of these tables should be present. These
were formerly referred to as full data, summary data and histogram data, respectively)

Step 2.
a.

b.

Step 3.

(Processing link)

Try to find code in the field foodprocessed of the Processing table (9.4.5 ), and convert to
the code specified in the field foodunprocessed.

(wildcard match) Try to find a wildcard match code in the field foodprocessed of the
Processing table. Wildcard match codes consist of an initial string (startcode, may be empty),
an asterisk (*), and possibly a processing part (-processingtype). * may be any string endcode
(not containing a -) such that code equals startcodeendcode or startcodeendcode-
processingtype.

a. If code contains a processing part (-processingtype), then the wildcard match code
should also end with -processingtype. Convert to the code specified in the field
foodunprocessed, where endcode is substituted for any * in the new code.

b. If code contains no processing part, then the wildcard match code should also contain
no processing part. Convert to the code specified in the field foodunprocessed,
where endcode is substituted for any * in the new code.

(Food composition link)

Try to find code in the field food of the Foodcomposition table (9.3.3 ), and convert to one or
more ingredient codes found in the field ingredient

If code contains a processing part (maincode-processingtype), then try to find maincode in the
field food of the Foodcomposition table. Convert to one or more ingredient codes and add -
processingtype to the new codes.
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Step 4. (Subtype link)
Starting from code, try to find subtype codes equal to code$* in the field foodtype of the
FoodMarketShare table (9.3.4 , where the strings represented by the wildcard are not allowed to
contain a § themselves (meaning that we look only for codes one level down in the type hierarchy).
Check that for the selected codes the market share percentages in the field marketshare% sum to
100%.
If this is not OK, then the result depends on the user option “Allow conversion to subtypes
not summing to 100% and rescale”.
1. If this option is allowed, then the marketshare percentages are rescaled to a sum
of 100 %.
2. If this option is not allowed, then the search in step 4 is considered unsuccessful.

Step 5. (Supertype link)
This step will only be taken if the user has explicitly allowed this option.
a. If code contains a subtype part but no processing part (maincode$subcode), then convert to
maincode.
b. If code contains a subtype part and a processing part (maincode$subcode-processingtype),
then convert to maincode-processingtype.

Step 6. (Default processing factor 1)
If code contains a processing part (-processingtype), then remove it.

Step 7. (Worst case value)

This step will only be taken if the user has explicitly allowed this option.

Try to find code in the field food of the ConcentrationWorstcaseValues table (9.5.10 ). If found, the
search is ended successfully.

9.2.5 Example of use
The FoodConsumption table (9.4.1 ) may contain &NL070251 (Apple pie Dutch):

individual | dayofsurvey | foodconsumed | amountconsumed | foodsurvey

1012 1 &NL070251 150 DNFCS

If measurements are available for FP0226S$Elstar (Apple Elstar), FP0226$JonaGold (Apple JonaGold)
and GC0654 (Wheat), then we need a conversion.

The FoodComposition table (9.3.3 ) may then specify the composition data that apple pie contains
peeled apple and wheat:

food ingredient | proportion%

&NL070251 | FP0226-2 | 58.09

&NLO070251 | GC0654 | 14.52

The Processing table (9.4.5 ) may contain a processing factor for peeling of apples:

compound | foodprocessed | foodunprocessed | proctype | procnom | procupp

120701 FP0226-2 FP0226 2 0.3 0.5

where the field proctype specifies explicitly the type of processing (2 = peeling in this case), and
fields procnom and procupp are processing factor nominal and upper values.
The FoodMarketShare table (9.3.4 ) may contain market shares for subtypes of apple:

foodtype marketshare%

FP0226$Elstar 30
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| FP0226$JonaGold [ 70 |

Finally, the ConcentrationValues table (9.5.3 ) should then contain measured concentrations for
FP0226$Elstar (Apple Elstar), FP0226$JonaGold (Apple JonaGold) and GC0654 (Wheat):

compound | foodmeasured year | month | samplingtype | country | numberofsamples | value
120701 FP0226$Elstar 2006 | 11 M NL 1 0.34
120701 FP0226$Elstar 2006 | 11 M NL 6 -0.01
120701 FP0226$JonaGold | 2006 | 11 M NL 1 0.20
120701 FP0226$JonaGold | 2006 | 11 M NL 1 0.05
120701 GC0654 2006 | 11 M NL 6 -0.01

The Food table (9.3.1 ) should at least contain the following entries:

food foodname
&NL070251 Apple pie Dutch
FP0226$Elstar Apple Elstar
FP0226%$JonaGold | Apple JonaGold
GC0654 Wheat

Note that entries for intermediate stages such as FP0226-2 or FP0226 are not obligatory.

9.3 Food tables

9.3.1 Food (compulsory)

field name description

food (text) food code

foodname (text) food label

foodname?2 (text, optional) alternative food label, e.g. national language

e Foodname?2 is used for alternative foodnames.

Example:
E Food : Table
food foodnarme foodnameZ
SMLO00% Fotatoe aardappel
&MLO003 Pie taart
&MLO004 Yoghurtdrink | yoghurtdrank
FPOZ2E Apple appel

9.3.2 FoodProperties (optional, (for unit variability compulsory))

field name description

food (text) food code

foodname (text) food label

unitweight (number) nominal weight of a unit (gr)

edibleportion (number) edible portion (corrected large portion weight, gr)
largeportion (number) weight of a large portion (gr)

e For unknown nominal unit weight use value 0.
e Missing values for edibleportion and largeportion: 9999.

104



Example:

E FoodProperties : Table

food foodname unitweight edibleportion | largeportion
DT1114 TEA, GREEN, BLACK (BLACK, FERMERM 20 9999 13
FEOOZ0 ELUEBERRIES 25 190 200
FBO021 CURRANTS, BLACK, RED, WHITE 10 160 167
FBOZ64 BLACKEBERRIES] 12 124 125

9.3.3 FoodComposition (optional)

field name description

food (text) food code

ingredient (text) ingredients of the food

proportion% (number) proportion of each ingredient in the food (in percentages)

e Specifies the composition of foods and corresponding proportions.

Example:

B FoodComposition : Table

food ingredient proportion%
&MNL1007 ACZ2341 40
&MNL1007 AB0101 30
&MNL1007 CF1211 5
&MNL1007 FPOZ226 25
&ML10201 FPOZ30 80
&MNL10301 FID353-4 10

9.3.4 FoodMarketShare (optional)

field name description
foodtype (text) subtype of food
marketshare% (number) market share of each subtype (in percentages)

e Specifies food marketshares of subtypes.

Example:
B FoodMarketshare : Table

foodtype marketshare%
[&TETH1H1 10
- |&TE151%2 30
| AT 33
[ &ATE b7
[ &A15183 10
| &ATRTH S0

9.4 Food consumption tables

9.4.1 FoodConsumption (compulsory)

field name description
individual (number) consumer identification number
dayofsurvey (number) day (sequential number in food consumption survey)
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food code
consumed portion of food (g)
name of survey

foodconsumed (text)
amountconsumed (number)
foodsurvey (text)

e Contains data on consumed foods. Days without consumptions are not recorded. The number of

available days per consumer is inferred from this table and is assumed to be the same for each
consumer in the survey.

e No missing values allowed.

Example:

E FoodConsumption : Table

individual dayofsurvey | foodconsumed | amountconsumed | foodsurvey

- 1 1] &MLOOOT 1 200 DNFCE-3
- 1 2 &MNLO0oY 300 DNFCS-3
m 1 2 &MNLoo0Z 180 DNFCS-3
m 1 2 &ENLOT01 %3 35 DMFCS-3
- 2 1] &MLODOZ 150 DMFCS-3
- 2 2 &MNLOo0oo4 212/ DNFC3E-3
9.4.2 Individual(compulsory)

field name description

individual (number)
foodsurvey (text)
age (number)
weight (number)
sex (text)

consumer identification number
name of survey

age (e.g. in years, months or days)
body weight (e.g. in kg or g)
gender

Specify in table FoodSurvey (see 9.4.3 ) the unit for age and weight.
No missing values allowed.

Example:
E Individual : Table
individual age weight sex foodsuney
1 25 70 male OMFCS-3
2 40 74 female OMFCE-3
3 12 21 female OMFCS-3
4 B B3 female OMFCS-3
k 1
9.4.3 FoodSurvey (optional)
field name description

foodsurvey (text)
year (number)
country (text)
agein (text)

weightin (text)

name of survey
year of survey
country of survey
unit of age

unit of weight

e No missing values allowed.

Example:

Defines characteristics of the survey.
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E FoodSurvey : Table

foodsurvey year country agein weightin
OMFCS-3 2006 ML ¥ kg
EL-BARY gr

2005 ML

9.4.4 ProcessingType (optional, (for processing compulsory))

field name

description

procname (text)

proctype (number)

disttype (number)

bulkingblending (number)

indicator (1/2):

indicator (0/1):

code of processing type
description of processing type

e simulated processing factors are restricted to the interval
(0,1) using a logistic-normal distribution (1),

e or simulated processing factors are restricted to positive
values using a log-normal distribution (2)

for types of processing applied on large batches, e.g. juicing,
sauce/puree (obligatory),
e 0= no bulking/blending ;
e 1 = bulking/blending

e Information on bulking and blending is only relevant for modelling of processing effects in
combination with unit variability and IESTI calculations, but should always be present in the table
even when these effects are not explored.

e No missing values allowed.

Example:

B ProcessingType : Table

proctype

procrnarme

disttype

bulkingblending

1| RAWNY

2 PEELING

J COOKING N WATER

4 BAKING OF BREAD

5 CANMED/CONMSERVED
B BREWVVIMNG

7 DRYING

8 FRYING/BAKING 1N FAT
2JUCING

10 MILLING

11 MARMELADE/JAM

12| 0L EXTRACTION

13 SAUCE/PUREE

14 CLEAMING

15 WASHING/CLEANING
16 WWINE MAKING
23 LIMKNOWWHN

9.4.5 Processing (optional)

If=m|lala|lalalpml=m= el o= —

o OO0 0O —- Ol—- O =000 0ocococo

| field name

| Description
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compound (text) compound code

foodprocessed (text) food code processed
foodunprocessed (text) food code unprocessed
proctype (number) code of processing type
procnom (number) nominal value (best estimate of 50" percentile) of processing
factor (defines median processing factor)
procupp upper value (estimate of 95™ percentile or “worst case” estimate) of
(number, optional) processing factor due to variability

(from procnom and procupp a standard deviation for variability of
the processing factor is derived)

procnomuncupp upper 95™ percentile of procnom due to uncertainty

(number, optional) (from procnom and procnomuncupp a standard deviation for
uncertainty of procnom is derived)

procuppuncdf degrees of freedom of a chi-square distribution describing the

(number, optional) uncertainty of the standard deviation for variability of the
processing factor

procuppuncupp’ upper 95" percentile of procupp due to uncertainty

(number, optional) (from procnom, procupp, procnomuncupp and procuppuncupp the

degrees of freedom of a chi-square distribution describing the
uncertainty of the standard deviation for variability is derived)

o This table is only relevant when the input option for processing is set to fixed or distribution.

e  When the input option is set to fixed then in addition to the information in the first four columns
only procnom or procupp needs to be specified. If both are specified the highest value will be
used (worst case argument). For use in an uncertainty analysis also procnomuncupp may be
specified.

e  When the input option is set to distribution then in addition to the information in the first four

columns procnom and procupp have to be specified describing the variability of processing

factors. For use in an uncertainty analysis also procnomuncupp and/or procuppuncdf (or
procuppuncupp') may be specified.

procupp should be higher than procnom.

procnomuncupp should be higher than procnom.

procuppuncupp should be higher than procupp.

procuppuncdf should be positive, with values close to zero defining maximum uncertainty, and

high values defining minimal uncertainty.

e Values lower than 0.01 are reset to 0.01; for processing types with disttype 1 (logistic) values
higher than 0.99 are reset to 0.99.

e Procuppuncdf and procuppuncupp are alternative ways to specify uncertainty for the variability of
processing factors'. The variability of processing factors is described by a standard deviation (at a
logistic or logarithmic scale), and its uncertainty is described by setting the degrees of freedom
(procuppuncdf) of a modified chi-squared distribution (see van der Voet and Slob, 2007 for an
example). Alternatively, an upper uncertainty percentile on the upper variability percentile
(procuppuncupp) can be specified, from which the appropriate number of degrees of freedom is
derived by simulation'.

e Ifavalue for procuppuncdf is specified, procuppuncupp will be ignored.

Example:
B Processing : Tahle
cormpound | foodprocessed | foodunprocessad proctypa | procnom pEOCUpgp grochomuncupg | procuppuncdf

0110040019 FPO22E-0 FPROZX a 09 09 05 4
01 1004001 FRO226-13 FPOZXS 13 L. 0e 0.5 4
o1 10040071 WOD445-15 WDD44B 15 1.2 12 05 -
011004001 WO0445.0 WO0446 9 05 0.5 03 a0

1011004007 Wog44e-5 o448 =1 0.5 0.5 013 1

' This option is not implemented in the first release of MCRA 6.0 and will be implemented later.
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9.5 Compound concentration tables

9.5.1 Compound (compulsory)

field name

Description

compound (text)
compoundname (text)
arfd (number)

adi (number)

unit (number, optional)

compound code

compound label (name of compound)

ARTD (acute reference dose), in microgr/kg bw/day
ADI (acceptable daily intake), in microgr/kg bw/day
-6 (default) or -9, see below

Missing values for ARfD and ADI: 9999.
Column unit contains a coding to determine the unit as used for compound concentration data and

dietary intake. Coding is as follows:

-6 -9
concentration: mg/kg microgram/kg
intake: microgram/kg bw/day nanogram/kg bw/day
e If column unit doesn’t exist code -6 is assumed
Example:
E Compound : Table
- compaound arfd adi compaundname unit
01001001 0.01 0.001 ACERPHATE -6
C01003001 0.05 0.01 DISULFOTON 9
01001002 0.01 9933 IPRODIONE -5

9.5.2 Country (compulsory)

field name

Description

country (text)
countryname (text)

code for country
name of the country, label

No missing values allowed

Example:
E Country : Table
country countryhame
84 Lnknown
A, Aruba
ML

The Methetlands

9.5.3 ConcentrationValues (optional)

field name description
compound (text) compound code
foodmeasured (text) food code

year (number)

month (number)
samplingtype (text)
country (text)
numberofsamples (number)

value (number)

sampling year

number of month

type of sampling (monitoring)

country of sample

count of the number of times the specified concentration or limit of
reporting (LOR) occurs

concentration (mg/kg) or LOR (see below)
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e The limit of reporting is specified in column value using a minus (-) sign to make the distinction
between a measured concentrations, e.g. —0.02 (see example first row).

e Concentration values are stored in column value and the number of times each value occurs in
column numberofsamples, e.g. 0.21 and 1, respectively.

e Missing LORs are reported as —9999. The MCRA program replaces missing LORs with 1) the
maximum LOR found in the database, 2) if all LORs are missing, the lowest concentration found
in the database. A warning is generated when 1) and 2) are not possible.

e No missing values allowed for the other columns.

Example:

E ConcentrationValues : Table

compound country value numberofsamples | foodmeasured year muonth samplingtype
Co1001001 L 0.053] 2 FPO226 2005 & m
C01001001 ML 0.013 4 41201 2008 Im
CO1001002 L -0.02 10 %52300 2008 3m
cO01001002 ML | -0.003 15 FPOZ226 | 2008 12.m
CO1001001 R -0.05 25 FPOZ226 2008 1/m

9.5.4 ConcentrationSummaryStatistics (optional)

field name description
compound (text) compound code
foodmeasured (text) food code

country (text) code for country

limitofreporting (number)
numberofsamples (number)
numberofpositives (number)
the mean: mean or meanall
(number)

the median: med or medall

limit of reporting (mg/kg)

size of sample (detects and non-detects)

number of positive concentration values (detects)
statistic for the mean

statistic for the median

(number)
max (number)
the variance: var or varall

statistic for the maximum

(number) statistic for the variance
the percentile: perc or percall
(number) statistic for the percentile

percentile (number) specifies the percentage of the statistics perc and percall

e Field names mean, meanall, med, medall, max, var, varall, perc, percall and percentile are
optional and their order is free. Not all statistics need to be present in the table. See also last
bullet.

e Statistics ending on ‘all’ refer to statistics based on all samples including non-detects
(concentrations below LORs), while statistics without suffix ‘all’ relate to statistics based on
nonzero samples (non-detects) only.

e The use of equivalent statistics, like mean and meanall, for one food in the same row is not
allowed.

e Be aware that statistics should be consistent e.g.: med is always smaller than mean; the
calculated mean (nonzero samples only) that is derived from statistic meanall should be smaller
than max; specifying medall implies that more than half the number of samples are detects
(numberofpositives); specifying percall implies that the number of detects (numberofpositives) is
greater than the percentage specified in column percentile.

e Missing LORs are reported as —9999. The MCRA program replaces missing LORs with 1) the
maximum LOR found in the database, 2) if all LORs are missing. A warning is generated when 1)
and 2) are not possible.
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e Missing statistics are reported as 9999. Columns containing only missing values are not allowed
and should be deleted.

Example:

B ConcentrationSummaryStatistics : Table

median | max var
1.8 95 338
29 21 7
1

fondmeasured
FPOZ26
FB1235

mean
25
3B

limitofreporting | numberofsamples
0.001 200
0.001 333

numberofpositives
100
200

perc | percentile
6.3 25
8.1 25

compound

012001001
012001001

cauntry
L
L

9.5.5 ConcentrationDiscreteValues (optional)

field name description
compound (text) compound code
foodmeasured (text) food code

code for country

limitofreporting (number) limit of reporting (mg/kg)

numberofsamples (number) size of sample (detects and non-detects)

c%01 (number) e number of samples with a concentration between the value
¢%02 (number) extracted from the field name of the previous column
¢%05 (number) (exception: for the first column a value 0 is taken) and the
¢%]1 (number) value extracted from the field name in the current column
c%?2 (number) (mg/kg).

¢%5 (number)
cl (number) o
c2 (number)
c<xxx> (number)
c<xxx> (number)
c<xxx> (number)
cE10 (number)

country (text)

classes (i.e. columnnames) are free to choose so c<xxx>...
may be replaced with any appropriate concentration e.g.
c5, c10 etc.

e Field names representing the number of frequency counts are constructed as follows:
¢ = indicates class limit,
% = represents the decimal point (if necessary),
xx = is the value of the class limit.
Thus: field name c%02 specifies class limit 0.02, field name c2 specifies class limit 2, field name
cE10 specifies class limit 1%¥10".
e The number of non-detects measurements is given as the difference between the

numberofsamples and the sum of frequency counts, e.g. see example first record 377 — 1 = 376,.

e Missing LORs are reported as —9999. The MCRA program replaces missing LORs with 1) the
maximum LOR found in the database, 2) if all LORs are missing...... A warning is generated
when 1) and 2) are not possible.

e For columns numberofsamples, c%02...cE10 no missing values is allowed: classes without
frequency counts are reported as 0. When no data are available for a food, delete the entire row.

Example:
B ConcentrationDiscreteValues : Table
compound | foodmeasured country lirnitofreparting | numberofsamples | c%01 c%1 cl cld | c100 cE10
CO012001001 FPOZ26 ML 0.001 200 ] 3 15 85 12 1
012001001 FB1235 ML 0.001 333 1] 2 17 180 S 1]
9.5.6 VariabilityProd (optional)
field name description
food (text) food code

varfac (number)
coefvar (number)

variability factor
coefficient of variation
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nounitcomp (number) | number of units in the composite sample |

e This table is used for specifying real empirical estimates of unit variability (e.g. from special
studies) for the lognormal and the beta distribution and the number of units in a composite
sample.

e Estimates for unit variability are independent of the compound.

e Missing values: 9999

e  When the parameter for unit variability is a coefficient of variation and the number of units equals
1, unit variability is ignored for this food.

Example:
B VariabilityProd : Table
food varfac coefrar nounitcomp
OF&2E3 0.4 1.2 12
FBEO2G4 0.6 23 15
FBO265 12 21 20
FBO27Y 0.95

0.98 25

9.5.7 VariabilityCompProd (optional)

field name description
compound (text) compound code
food (text) food code

varfac (number)
coefvar (number)
nounitcomp (number)

variability factor
coefficient of variation
number of units in the composite sample

o This table is used for specifying real empirical estimates of unit variability (e.g. from special
studies) for the lognormal and the beta distribution that are dependent on the compound. Values
for unit variability in table VariabilityProd are replaced by the new ones.

Example:
E VariabilityCompProd : Table
compound food varfac coefvar nounitcornp
01001001 DF5263 0.3 1.1 12
CcO1001002 FEO264 0.76 23 15
01001003 FEOZE3 1.4 24 20
cO1001004 FBOZ 2 1.1 1.4 24

9.5.8 VariabilityProcCompProd (optional)

field name description
compound (text) compound code
food (text) food code

proctype (number) processing type code

varfac (number)
coefvar (number)
nounitcomp (number)

variability factor
coefficient of variation
number of units in the composite sample

o This table is used for specifying real empirical estimates of unit variability (e.g. from special
studies) for the lognormal and the beta distribution that are dependent on the combination of
processing type and compound. Values for unit variability in table VariabilityProd and
VariabilityCompProd are replaced by the new ones. This can be used for example to reset the
variability factor to 1 for grape juice and raisins (dried grapes).
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Example:

B VariabilityProcCompProd : Table

compound proctype varfac coefvar nounitcamp

CO1001001 DF5263 2 0.3 1.1 12
CO1001002 FEO264 3 0.76 2.3 15
CcO1001003 FEO2E3 4 1.4 24 20
01001004 FEOZT2 3 1.1 1.4 25

9.5.9 AgriculturalUse (optional)

field name description

compound (text) compound code

food (text) food code

country (text) code for country

year (number)
useallowed (number)

perccroptreated (number)

year

indicator (0/1) whether use of the compound for the food is allowed (1)
or not (0)

maximum percentage of the food that is treated with the compound

e For combinations of compound and foods that are not listed in table AgriculturalUse MCRA will

assume that use is not allowed.

Example:
E AgriculturalUse : Table
compound food country year useallowed | perccroptreated
CcOM2007001 FB1235 ML 2005 1 34
co12001002 AB1235 ML 2005 1 80
CO12001001

SR1235 ML 2002 1 55

9.5.10 ConcentrationWorstcaseValues (optional)

field name description
compound (text) compound code
food (text) food code
country (text) code for country
year (number) year

worstcasevalue (number)

worstcase value

e  When information on detects and non-detects is missing, worstcase values may be used.

Example:
B ConcentrationWorstcaseValues : Table

compound country worstcasevalue year
01001001 ACO102 ML 0.02 2005
01002001 CF1211 BE 0.05 2005
01002003 AS121 EU 0.05 2005
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10 APPENDIX B: Example output

Appendix B shows more output examples. For the acute risk assessment the example of 4.1 is used,
for the chronic risk assessment the example of 4.2 .

10.1 Acute risk assessment: processing fixed factors

In this example output is shown for an acute risk assessment for Chlorpyrifos. In paragraphs 10.2 unto
10.7 the same data as in 4.1 are used. Set the ‘processing factors’ option is to processing (fixed

factors). Table 22 lists the main options:

Input form

Compound CHLORPYRIFOS

risk type acute

uncertainty analysis no

concentration model empirical

number of Monte Carlo simulations 100000

unit variability model no unit variability
random seed 0

intake model
concentration data:
processing factors
additional

output

only empirical estimates

processing (fixed factors)
system defaults
system defaults

Table 22: Input form options: processing

In Table 23, find the main characteristics concerning this analysis taken from the ‘Additional output’
file. Note that the number of foods and processing combinations is 11 whereas the number of foods is

9.

‘Additional output’ file

Number of foods 9
Acute reference dose (ARED) 100
Average daily intake (ADI) 10
Number of detects 665
Number of non-detects 3267
Number of foods and processing
type combinations 11
No of consumers 6250
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150
sex female, male
Total no of consumption days 12132

Table 23: Information in ‘Additional output’ file

For a summary of the data, see Table 5. In Table 24 you find a summary of the simulated intakes.
Compared to Table 6, this table contains a second section with information on processed foods only.
Find an additional column (ProcFact) with, for fixed factors, the value of the fixed processing factor
and for distribution based factors, the mean of the sampled processing factor values.

Summary of simulations of consumptions and compound concentrations with respect to:
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Compound: CHLORPYRIPHOS

Code : food code

Food : food label

MeanConsum : average consumption, all consumers, all days

DeltaC : difference (%) compared to average consumption
in database

MeanConsDays : average consumption, consumption days only

NConsDays : number of consumption days in the data set

NDays : total number of days

%ConsDays : percentage consumption days

MeanConcen : mean concentration in simulations with positive amount consumed
(after processing)

DeltaR : difference (%) compared to average concentration
in database

NSamplPos : number of positive concentrations in simulations with positive
amount consumed

NSamples : total number of concentration measurements

(detects and non-detects) in simulations with positive
amount consumed.

$SamplPos : percentage positive concentrations
ProcFact : mean processing factor

Food consumption data

Code Food MeanConsum DeltaC MeanConsDays NConsDays NDays
(9) (%) (9)
FB1235 TABLE-GRAPES 12.99 -1.8 33.51 38776 100000
FC0203 GRAPEFRUIT, 4.05 -0.4 28.29 14308 100000
FC0204 LEMON, SEE A 1.56 1.1 4.21 37039 100000
FC0206 MANDARIN, SE 8.80 -0.4 41.09 21404 100000
FC0208 ORANGE, SWEE 56.81 -0.4 99.05 57352 100000
FP0226 APPLE 61.51 0.0 99.22 61994 100000
FS0247 PEACH 2.04 -1.9 7.17 28395 100000
V00445 PEPPERS, SWE 3.32 -0.5 16.37 20270 100000
VR0589 POTATO 138.21 -0.2 172.99 79893 100000
Compound concentration data
Code Food MeanConc DeltaR NSamplPos NSamples $SamplPos
mg/kg (%) (%)
FB1235 TABLE-GRAPES 0.0161 0.9 5191 38776 13.4
FC0203 GRAPEFRUIT, 0.0692 -0.1 6249 14308 43.7
FC0204 LEMON, SEE A 0.0126 -1.0 8208 37039 22.2
FC0206 MANDARIN, SE 0.0959 -0.6 16003 21404 73.0
FC0208 ORANGE, SWEE 0.0521 0.0 27678 57352 48.3
FP0226 APPLE 0.0030 -1.1 3423 61994 5.5
FS0247 PEACH 0.0075 -1.4 3756 28395 13.2
V00445 PEPPERS, SWE 0.0009 -15.1 189 20270 0.9
VR0589 POTATO 0.0002 -1.6 290 79893 0.4
Food consumption data
Food & Processing MeanConsum DeltaC MeanConsDays NConsDays NDays $%$ConsDays
(9) (%) (9) (%)
MANDARIN, SE canned/conserv 1.92 -0.2 70.86 2711 100000 2.7
MANDARIN, SE juicing 1.50 3.5 77.03 1949 100000 1.9
MANDARIN, SE unknown 5.37 -1.4 31.13 17259 100000 7.3

%ConsDa

(

38.
14.
37.
21.
57.
62.
28.
20.
79.

ys

3
5

O W O > O W~

ProcFact

PR R R ROR PR

ProcFac

0.40
0.70
1.00

.00
.00
.00
.90
.00
.00
.00
.00
.00

t

Table 24: Summary of simulation, including processed foods
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For processing, all tables as found in 4.1 are extended with additional information on the processed
food. Note that the percentiles of the acute intake distribution after applying ‘processing factors’, see
Table 25, are slightly higher than without processing (see Table 9)

Random sampling is based on seed : 0
Number of simulations (consumers) : 100000 out of 6250
CHLORPYRIPHOS microgr/kg bw/day) consumption: 49418 out of 100000

Compound: CHLORPYRIPHOS

Percentiles, maximum and average intake

Percentage Percentiles of CHLORPYRIPHOS microgr/kg bw/day)
50.00 0.00000
90.00 0.22119
95.00 0.42000
99.00 1.18770
99.90 3.45401
99.99 6.71302
mean 0.08012
maximum 14.39752

Table 25: Percentiles for the acute intake distribution applying processing

10.2 Acute risk assessment: unit variability, Beta distribution

In this example, output is shown for an acute risk assessment and unit variability for organo phosphate
pesticide Chlorpyrifos. Table 26 lists the main options:

Input form

risk type acute

uncertainty analysis no

concentration model empirical

Number of Monte Carlo simulations 100000

unit variability model beta distribution
random seed 0

intake model only empirical estimates
concentration data system defaults
Additional system defaults
Output system defaults

Table 26: Input form options: unit variability

Set, see left section of the Input form (see Figure 16), unit variable to Beta. Then, in the right section a
‘Unit variability’ block appears as shown in Figure 70:

116




Unit variability: Beta distribution
close options | Beta

default number of units in composite sample when:

unitweight == 24
28 = unitweight == 240

111

unitweight = 250
fram table Variability(Proc(CommProd use ™ variahility factor " coefficient of variation
estimates are realistic estimates U conservative estimates
unitvariahility is compoundiprocessing dependent ™ no " yes

unit variability is compound dependent  ©* na " yes

Figure 70: ‘Unit variability’ block if Beta distribution is chosen

In Table 27 you find the main characteristics concerning this analysis taken from the ‘Additional
output’ file.

‘Additional output’ file
Model 1 : Beta distribution of unit concentrations.
Maximum possible unit concentration is NU times comp. sample concentration
(NU = number of units in composite sample).
Default values can be overruled by specifying NU values.

unit weight <= 25: 1

25 < unit weight <= 250: 7

unit weight > 250: 5

Estimated variability factors are p97.5/mean.

Table 27: Information in ‘Additional output’ file

In Table 28, the percentiles of the intake distribution are shown. Note that the percentiles are much
higher (p99.99 = 13.95) than without unit variability (p99.99 = 7.358, see Table 9) and after applying
processing (p99.99 = 6.71, see Table 25).

Random sampling is based on seed : 0
Number of simulations (consumers): 100000 out of 6250
CHLORPYRIPHOS (microgr/kg bw/day) consumption: 49404 out of 100000

Compound: CHLORPYRIPHOS

Percentiles, maximum and average intake

Percentage Percentiles of CHLORPYRIPHOS (microgr/kg bw/day)
50.00 0.00000
90.00 0.10089
95.00 0.38606
99.00 1.76710
99.90 5.87387
99.99 13.95083
mean 0.08390
maximum 28.09446

Table 28: Percentiles for the acute intake distribution after applying unit variability
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10.3 Acute risk assessment: IESTI

In this example, output is shown for an acute risk assessment and IESTI for organo phosphate
pesticide Chlorpyrifos. Table 29 lists the main options:

Input form

risk type acute

uncertainty analysis no

Concentration model empirical

number of Monte Carlo simulations 100000

unit variability model no unit variability
random seed 0

intake model only empirical estimates
Concentration data system defaults
additional:

estimation of IESTI yes

standard body weight is 60

compare IESTI with Monte Carlo-

percentile yes

MC percentage for comparison with

IESTI 99

use own variability factors No

consumption days only All days

Output system defaults

Table 29: Input form options: IESTI

In Table 30 IESTI estimates are displayed together with the estimate expressed as percentage of the
ARfD (%ARfD). Also a comparison is made with the MC-percentile per food for positive
consumption days only (ConsPos) as well as all consumption days (AllDays). For Orange the IESTI
estimate is 2.550 microgram/kg bw/day which is much higher than the MC-percentiles for positive
consumption days only (0.99 microgram/kg bw/day) and slightly higher than the MC-percentiles for
all consumption days (1.89 microgram/kg bw/day).

Compound: CHLORPYRIPHOS

IESTI estimates (microgram/kg bw/day)

)

%ofARfD: estimates expressed as % of Acute Reference Dose

ConsPos: percentiles for positive intake days only (per food)

AllDays: percentiles for all days (including days without intake, per food)
LP: Large portion consumption (g/day)

UW: Unit weight (g/day)

HR: High residue = Largest value from database

IESTI compared with Monte Carlo percentiles for positive intake days only and All Days

ConsPos AllDays

Food LP uw HR IESTI $ofARED P99 P99
TABLE-GRAPES 340 500 1.200 34.000 34.000 0.08 1.18
GRAPEFRUIT, 301 340 0.530 13.294 13.294 0.08 1.08
LEMON, SEE A 30 108 0.150 0.075 0.075 0.01 0.07
MANDARIN, SE 210 133 0.690 2.415 2.415 0.42 1.02
ORANGE, SWEE 340 160 0.450 2.550 2.550 0.99 1.89
APPLE 316 112 0.610 3.213 3.213 0.08 1.37
PEACH 230 110 0.270 1.035 1.035 0.00 0.14
PEPPERS, SWE 115 160 0.360 0.690 0.690 0.00 0.22
POTATO 420 216 0.060 0.420 0.420 0.00 0.61

Table 30: IESTI estimates
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10.4 Acute risk assessment: uncertainty

In this example, output is shown for an acute risk assessment and an uncertainty analysis for organo
phosphate pesticide Chlorpyrifos. Table 31 lists the main options:

Input form

risk type acute

uncertainty analysis yes

concentration model empirical

number of Monte Carlo simulations 100000

unit variability model no unit variability
random seed 0

intake model only empirical estimates
number of resampled sets 100

number of simulations per

resampled set 20000

concentration data: system default
Additional system defaults
Output system defaults

Table 31: Input form options: uncertainty

In Table 32, the percentiles of the intake distribution for the specified percentages are displayed
together with the 2.5, 25, 75, 97.5% points of the percentile uncertainty distribution. In this example,
the 95% uncertainty interval for the p99.99 (7.90 microgram/kg bw/day) is (4.81, 9.78).

Random sampling is based on seed : 0
Number of simulations (consumers) : 100000 out of 6250
CHLORPYRIPHOS (microgr/kg bw/day) consumption: 49339 out of 100000

Compound: CHLORPYRIPHOS

Percentiles, maximum and average intake

Percentage Percentiles of CHLORPYRIPHOS (microgr/kg bw/day)
50.00 0.00000
90.00 0.23686
95.00 0.44734
99.00 1.21234
99.90 3.28142
99.99 7.89895
mean 0.08358
maximum 15.42857

Uncertainty of percentiles distribution

2.5% 25% 75% 97.5%

50.00 0.00000 0.00000 0.00000 0.00020
90.00 0.21474 0.22829 0.24797 0.26665
95.00 0.40499 0.43125 0.46066 0.48991
99.00 1.08528 1.16305 1.27898 1.39271
99.90 2.70767 3.11917 3.60726 4.17651
99.99 4.80543 5.76208 7.53429 9.77615
Mean 0.07465 0.08065 0.08769 0.09282
Maximum 6.03799 8.14262 11.48968 18.31118
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Table 32: Percentiles for the intake distribution and uncertainty

The information of Table 32 is plotted in Figure 71. The 2.5 and 97.5% points are displayed by the
endpoints of the small line segments, whereas the thick bar indicates the distance between the 25%-
and 75%-points of the percentile uncertainty distribution. As seen, percentiles for high percentages
have a large uncertainty interval.

CHLORPYRIPHOS

uncertainty analysis
2.5,25,75,97.5% points of percentile uncertainty distribution

microgr/kg bw/day)
N

Intake n

50 90 95 99 99.9 99.99

Percentages

Figure 71: Uncertainty analysis

10.5 Acute risk assessment: diagnostics

In this example, output is shown for an acute risk assessment and an uncertainty analysis focusing on
the diagnostics for organo phosphate pesticide Chlorpyrifos. For input options and information in
‘Additional output’ file, see Table 31 .

Diagnostics are only available after running an acute risk analysis in combination with uncertainty
analysis. The provided diagnostic tools focus on the stability of the percentiles, or, re-phrasing,
quantify 1) the amount of MC-variability and, 2) the amount of variability due to resampling
consumption and compound data. By quantifying both quantities, we are able to assess the influence
both sources of variability have on the estimated value of the percentiles.

The diagnostics are displayed in a number of graphs (as many as the number of requested percentiles
see input screen). For each percentile a graph is available which can be used to draw inference about
the optimal number of MC-simulations, the number of resampled sets and the number of simulations
per resampled set. Recall that we run the analysis with 100.000 MC-simulations and 100 resampled
sets with 20.000 simulations each.

To make inference, we divide the total number of MC-simulations in 2 samples of 50.000 simulations
each, 4 samples of 25.000 each, 8 samples of 12.500 each, ..., etc. By doing so, we get n partitions of
samples and in each partition we have 2" samples of size 100.000/2". In each partition, we estimate the
percentiles of the available samples and then the variance of the percentiles. So, in partition n = 1, the
estimate of the variance is based on 2 percentiles derived from samples of size 50.000; in partition n =
2 the estimate of the variance is based on 4 percentiles derived from samples of size 25.000, ..., etc.
The estimated variances of each partition are plotted against the number of MC-simulations per
sample of each partition. We expect the variance to decrease as function of sample size, so for larger
sample sizes MC-variability decreases. Therefore, through the observed variances a monotone
decreasing spline function is fitted. For each variance the 90% confidence limits are calculated.

The uncertainty analysis provides an estimate of the variance of the percentiles derived from the 100
resampled sets of sample size 20.000.

Now the fitted spline function is interpolated to estimate the amount of MC-variability at 20.000
simulations and to calculate the contribution of MC-variability to the total resampling variability at
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20.000 simulations. The fitted spline function can be used to estimate the MC-contribution to the total
resampling variability for any arbitrary number of MC-simulations.

In the left plot of Figure 72 diagnostics are displayed for percentage point 50%. We can skip this plot
because the percentile is 0.0000 microgram/kg bw/day. For percentage point 90% in the right plot we
have an estimate of the percentile (0.13733 microgram/kg bw/day) and we are able to make inferences
about the stability of the estimate.

On the x-axis the number of MC-simulations is displayed and on the y-axis the variance of the MC-
percentile. The estimated variances in each partition are shown as black dots, the fitted monotone
decreasing spline function as a black line. For each variance, the 90% confidence interval is indicated
by a vertical line segment. The red dotted line indicates the interpolated variance of the bootstrap
percentiles as a function of the number of simulations in each bootstrap sample. Note the horizontal
black line with the open red boxes at 20.000 simulations, which is the estimate of the variance of the
resampled percentiles. The black dot at 200.000 simulations is the extrapolated value for the MC-
variability using the spline fit. At 20.000 simulations the MC-variability contributes 0.7% to the total

resampling variability. For a theoretical resample of size 200.000 the MC-contribution would be
0.0%.

CHLORPYRIPHOS CHLORPYRIPHOS

diagnostics: percentage 50% diagnostics: percentage 90%

black line: extrapolated variance as function of size black line: extrapolated variance as function of size

black dots: observed variance black dots: observed variance

red dotted line: extrapolated variance of bootstrap percentiles red dotted line: extrapolated variance of bootstrap percentiles

MC variability contributes 0.0% to the bootstrap variability at 20000 iterations (red box) MC variability contributes 10.8% to the bootstrap variability at 20000 iterations (red box)

MC variability contributes 0.0% to the bootstrap variability at 100000 iterations MC variability contributes 8.0% to the bootstrap variability at 100000 iterations

black segments: 90% confidence limits of variance black segments: 90% confidence limits of variance

MC iterations: 100000; number of bootstraps: 100 with 20000 MC iterations each MC iterations: 100000; number of bootstraps: 100 with 20000 MC iterations each
00000000 0004

0.00000007~

0.00000006~

0.003

0.00000005~

0.00000004~

0.00000003~

0.002

Variance p 50
Variance p 90

0.00000002~ 0.001

0.00000001~

. e T .
0.00000000 0.000
100 1000 10000 100000 100 1000 10000 100000

Number of MC iterations Number of M C iterations

Figure 72: Diagnostic graphs for percentage S0% and 90%

In Figure 73, the diagnostics for percentage point 95% and 99% are displayed. The contribution of the
MC-variability for p95 and p99 is 0.8% and 3.4%, respectively, indicating that these higher
percentages have stable percentiles.
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CHLORPYRIPHOS

diagnostics: percentage 95%

black line: extrapolated variance as function of size

black dots: observed variance

red dotted line: extrapolated variance of bootstrap percentiles

MC variability contributes 22.8% to the bootstrap variability at 20000 iterations (red box)
MC variability contributes 2.7% to the bootstrap variability at 100000 iterations

black segments: 90% confidence limits of variance

MC iterations: 100000; number of bootstraps: 100 with 20000 MC iterations each

V.12

0.010

0.008

0.006

Variance p 95

0.004

0.002

0.000
100 1000 10000 100000

Number of MC iterations

CHLORPYRIPHOS

diagnostics: percentage 99%

black line: extrapolated variance as function of size

black dots: observed variance

red dotted line: extrapolated variance of bootstrap percentiles

MC variability contributes 23.9% to the bootstrap variability at 20000 iterations (red box)
MC variability contributes 0.7% to the bootstrap variability at 100000 iterations

black segments: 90% confidence limits of variance

MC iterations: 100000; number of bootstraps: 100 with 20000 MC iterations each

Variance p 99

0.06

0.02

? T }
0.00
100 1000 10000 100000

Number of MC iterations

Figure 73: Diagnostic graphs for percentage 95% and 99%

In Figure 74 the diagnostics for percentage point 99.9% and 99.99% are displayed. The contribution
of the MC-variability for p99.9 and p99.99 is 40.0% and 33.2%, respectively, indicating that the last
percentiles are unstable. The confidence interval at 50.000 MC-simulations is displayed as an arrow
for graphical reasons and indicates that a cut off is used. The real confidence interval is much higher.
Extrapolation to 200.000 simulations shows that MC-variability contributes 0.3% to the total
resampling variability (p99.99 right plot). Note that in Figure 74 not all estimated variances are
displayed. As the number of samples in a partition increases, sample size decreases. This restricts the
number of available percentiles (maximum possible percentage: (100 —100/size)).

CHLORPYRIPHOS

diagnostics: percentage 99.9%

black line: extrapolated variance as function of size

black dots: observed variance

red dotted line: extrapolated variance of bootstrap percentiles

MC variability contributes 55.7% to the bootstrap variability at 20000 iterations (red box)
MC variability contributes 9.1% to the bootstrap variability at 100000 iterations

black segments: 90% confidence limits of variance

MC iterations: 100000; number of bootstraps: 100 with 20000 MC iterations each

25

Variance p 9.9

0.0
100 1000 10000 100000

Number of MC iterations

CHLORPYRIPHOS

diagnostics: percentage 99.99%

black line: extrapolated variance as function of size

black dots: observed variance

red dotted line: extrapolated variance of bootstrap percentiles

MC variability contributes 108.5% to the bootstrap variability at 20000 iterations (red box)
MC variability contributes 96.7% to the bootstrap variability at 100000 iterations

black segments: 90% confidence limits of variance

MC iterations: 100000; number of bootstraps: 100 with 20000 MC iterations each

!
6

5

Variance p 99.99

0

100 1000 10000 100000

Number of MC iterations

Figure 74: Diagnostic graphs for percentage 99.9% and 99.99%

10.6 Acute risk assessment: betabinomial distribution

In this example, output is shown for an acute risk assessment followed by a betabinomial/normal
model to estimate age effects for organo phosphate pesticide Chlorpyrifos. The estimation of an age
effect for an acute risk assessment is additional to the standard acute risk assessment (see 4.1 ). Table

33 lists the main options:

| Input form
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risk type acute

uncertainty analysis no

concentration model empirical

number of Monte Carlo simulations 100000

unit variability model no unit variability

random seed 0

intake model empirical estimates +
betabinomial/normal

concentration data system defaults

additional system defaults

intake model:

age effect for intake frequency yes

model

function to model effect polynomial

testing method backward

minimum degrees of freedom 0

maximum degrees of freedom 4

testing at level 0.01

age effect for intake amount yes

model

transformation logarithmic

function to model effect polynomial

testing method backward

minimum degrees of freedom 0

maximum degrees of freedom 4

testing at level 0.01

Output system defaults

Table 33: Input form options: acute risk and betabinomial/normal

In Table 34 you find the main characteristics concerning this analysis taken from the ‘Additional
output’ file. The intake frequency function is estimated using a betabinomial model and a polynomial
function with 4 degrees of freedom to model age effects. Backward selection is applied meaning that
model selection is started with a spline of the highest degree. The model for the logarithmic
transformed intake amounts, In(intake), is based on ML and a polynomial function to model age
effects.

‘Additional output’ file
EXPOSURE SECTION
Acute risk assessment
BetaBinomial/Normal model
Intake frequency model is based on BetaBinomial model
No effect of cofactor included
Include effect of covariable (age)

Function of covariable : polynomial
Minimum degrees of freedom : 0
Maximum degrees of freedom HE
DF selection : backward
Testing at level : 0.01

Model for intake amounts is based on ML
No effect of cofactor included
Include effect of covariable (age)

Function of covariable : polynomial
Minimum degrees of freedom : 0
Maximum degrees of freedom H
DF selection : backward
Testing at level : 0.01

Intake Frequency: BetaBinomial model with covariable age (no cofactor)

* backward selection of degrees of freedom for polynomial model with Prob = 0.01
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http://mcra.biometris.nl/mcra/info/_4.0/Manual.htm#_MCRA_Program_options:_
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Df Ncycle Phi
4 4 0.3077
3 4 0.3078
2 4 0.3092

° Degrees of freedom of polynomial

Estimates of parameters (autoscaled covariable)

Parameter estimate

Constant 0.092192

age Lin -0.147148

age Quad 0.277016

age Cub -0.077561

Overdispersion phi 0.3078
_2Loglikelihood 34458.89

Degrees of freedom 6245

Transformed Intake Amounts: ML model with covariable age

_2Loglik ResDf
34456.284 6244
34458.890 6245
34493.500 6246

s.e.
0.014994
0.014977
0.013934
0.013678

0.00436

Chi
2.61
34.61

t(*)
6.15
-9.82
19.88
-5.67

70.58

ChiDf ChiProb
1 0.106

1 0.000

according to backward deviance testing is 3

(no cofactor)

Maximum likelihood (not REML)

* backward selection of degrees of freedom for polynomial model with Prob =

Df Between Within
4 2.1632 13.9313
3 2.1657 13.9312
2 2.1675 13.9323
1 2.1952 13.9216

* Degrees of freedom
Estimates of parameters

Parameter
Constant
age Lin

age Quad

Between person variance
Within person variance
_2LogLikelihood

Degrees of freedom

Variance of logarithmic transformed intake distribution is: 4.

_2Loglik ResDf
58034.880 9775
58038.257 9776
58041.216 9777
58073.802 9778

(autoscaled covariable)

estimate
-4.057710
-0.065550
0.152223

2.1675
13.9323
58041.22
9777

S.e.

0.025295
0.025105
0.024517

Chi
3.38
2.96

32.59

t(*)
-160.41
-2.61
6.21

19

***** Acute intake percentiles/percentages are calculated from:

sex age Intake probability
- 1 0.7401
- 5 0.6722
- 93 0.5514
- 97 0.5451
Acute intake percentiles of population:
sex age p50 P90
- 1 0.02 0.26
- 5 0.01 0.21

0.01
ChiDf ChiProb
1 0.066
1 0.085
1 0.000

of polynomial according to backward deviance testing is 2

Transformed intake amount

P95
0.55
0.46

r99
2.30
1.96

-3.6527
-3.7430

-3.1919
-3.0515

p99.9
10.47
9.37

p99.99
48.33
30.29
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- 93 0.02 0.29 0.62 2.67 12.17 41.01
- 97 0.02 0.34 0.73 3.10 16.40 60.88
Acute intake percentages of population lower than intake limit:
sex age g0.01 g0.02 g0.04 g0.06 g0.08
- 1 39.17 52.30 65.15 72.01 76.57
- 5 43.34 56.46 68.75 75.28 79.41
- 93 38.50 50.98 63.42 70.21 74.80
- 97 36.30 48.46 61.19 68.10 72.76

Table 34: Information in ‘Additional output’ file

As seen in Table 34, the age effect for the intake frequency is modelled with a polynomial with 3
degrees of freedom. Overdispersion parameter phi is equal to 0.3078, representing between consumer
variation.

The In(intake) amounts are modelled using ML, the fitted polynomial has 2 degrees of freedom. The
variance of the In(intake) distribution is 4.19. Find also the intake probabilities and intake amounts on
the transformed scale for several ages (not all shown).

In the left plot of Figure 75 the intake frequency is shown. For 50 age classes, the mean intake
frequencies are displayed (black dots). The age effect is represented by the curved line. The red dotted
line indicates the 95% confidence interval for the fitted age effect. The blue lines are the 2.5 and
97.5% percentiles of the fitted betabinomial distribution and indicate that the probability of having an
intake varies between 0 and 1 with a 0.95 probability.

The right plot displays the In(intake) distribution. The age effect is small. The black dots represent the
mean In(intake) per age class. To get some idea of the variation in the data, the standard deviation of
the distribution is also shown by a vertical line segment with green boxes at the end.

CHLORPYRIPHOS

black dots: observed intake probabilities

black line: fitted intake probabilities as function of age

function: polynomial with 3 df

red lines: 95% confidence bands for fitted intake probabilities

blue lines: 2.5% and 97.5% percentiles of fitted BetaBinomial distribution

CHLORPYRIPHOS

transformed intake amounts: Logarithmic

black dots: observed transformed intake amounts

black line: fitted transformed intake amounts as function of age

function: polynomial with 2 df

red lines: 95% confidence bands

blue segment: between person stdev; green segment: between days (within person) stdev

Intake probability

transformed intak
o

Figure 75: Age dependent intake frequency and In(intake) distribution

In Figure 76, age dependent percentiles (derived from percentages) and percentages (derived from
percentiles) are shown. The same information is found as tabular output (not shown).
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CHLORPYRIPHOS CHLORPYRIPHOS

red line: p50% v red line: percentage < q0.01
black line: p90% black line: percentage < q0.02
blue line: p95% blue line: percentage < q0.04
yellow line: p99% 60 yellow line: percentage < q0.06
purple line: p99.9% purple line: percentage < q0.08
orange line: p99.99%

3

Usual intakemicrogr/kg bw/day)
N
&

g
—
N
Percentage of population

40

Figure 76: Age dependent percentiles and percentages

Find in Table 35 a short summary of an acute risk assessment using age as explanatory variable.

Short term exposure (acute intake)

Compound: CHLORPYRIPHOS

Transformation to normality

Logarithmic transformation

Anderson-Darling test for Normality

Test statistic : 521.76
p-value : 0

Variability within and between individuals
Variance components (transformed scale/unit variance)

within individuals : 0.86

between individuals : 0.14

ratio : 6.16

Variance of the transformed distribution : 4.19

Table 35: Technical information

10.7 Acute risk assessment: binomial/lognormal with pooling

Example 1
In this example, output is shown for an acute risk assessment for organo phosphate pesticide
Chlorpyrifos. Table 36 lists the main options:

Input form

risk type acute

uncertainty analysis no

concentration model binomial/lognormal (with pooling)

number of Monte Carlo simulations 100000
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unit variability model no unit variability

random seed 0

intake model only empirical estimates
concentration data system defaults
Additional system defaults

Output system defaults

Table 36: Input form options: binomial with pooling

For information in the ‘Additional output’ file, tables and figures, see 4.1 .

When specifying the binomial/lognormal distribution with pooling, a parametric form of modelling is
used to simulate data and estimate the intake percentiles. For each food, the positives samples are
taken to estimate the variance and mean on the lognormal scale. If pooling is requested, food groups
need to be formed. Each food is characterised by a hierarchical food code. For CODEX codes, the
first 2 characters in combination with factor Allowed define a group used in pooling. Factor Allowed
indicates whether a chemical substance is allowed on a food or not. If the code is a subtype (e.g. X8y,
the supertype is taken to form foodgroups (e.g. X).

Table 37 illustrates the pooling procedure. There are 6 food groups (ProdGr): 5 groups with a single
food and one group with 4 foods: group FC contains foods Lemon, Orange, Mandarin and Grapefruit.
Within a foodgroup variances and means of foods are pooled.

In the example, the original mean (Mean) and sigma (StdDev) are displayed together with the number
of observations (nos). In columns Mu and Sigma, you find the result of pooling: parameters ux and o of
the lognormal distribution; the pooled number of degrees of freedom is in column Df.

In group FC, standard deviations are 0.94, 0.26, 0.65 and 0.66. A test of homogeneity of variances is
not significant so the pooled standard deviation becomes 0.68. A test of homogeneity of means is
significant so means are not pooled. For Potato no standard deviation is estimated because only one
positive sample is available. In a second step, standard deviations of foods with less than 10 degrees
of freedom are replaced by the overall variance if the test of homogeneity is not significant. For these
foods, the pooled or original standard deviation is replaced by the value 0.75. Note, that for Peach
(StdDev = 0.33, n = 4) the standard deviation is replaced by the overall standard deviation, but for
Lemon (Sigma = 0.68, StdDev = 0.26) no replacement of sigma occurs: the test on homogeneity of
variance is not significant due to the high degrees of freedom of the pooled estimate (Df = 151). AD
is the value of the Anderson-Darling test statistic for Normality and ER indicates if the statistic is
significant or not.

Summary of calculations and input of a PARAMETRIC SIMULATION

>0 : number of detects

nos : total number of measurements, detects and non-detects

Frpos : fraction of detects

Mu : parameter mu of the lognormal distribution

Mean : original means per food before pooling

Sigma : parameter sigma of the lognormal distribution

StdDev : original st.dev. per food before pooling

AD : Anderson-Darling statistic

ER : significance level of AD-statistic:

ns = hypothesis of Normality not rejected
s = hypothesis of Normality rejected

Df : degrees of freedom of pooled sigma

Group : combination of foodgroup and allowed

ProdGr : foodgroup

Allwd : code if compound is allowed on food (1) or not (0)

Food : foodlabels
>0 nos Frpos Mu Mean Sigma StdDev AD ER Df Group ProdGr Allwd Food
54 501 0.11 -2.35 -2.35 0.96 0.96 1.12 s 53 1 FB 1 TABLE-GRAPES
13 41 0.32 -2.02 -2.02 0.68 0.94 0.84 s 151 2 FC 1 GRAPEFRUIT,
4 39 0.10 -2.84 -2.84 0.68 0.26 0.20 ns 151 2 FC 1 LEMON, SEE A
44 105 0.42 -2.13 =-2.13 0.68 0.65 0.19 ns 151 2 FC 1 MANDARIN, SE
94 221 0.43 -2.38 -2.38 0.68 0.66 0.34 ns 151 2 FC 1 ORANGE, SWEE
10 241 0.04 -3.20 -3.20 0.27 0.27 0.61 s 9 3 FP 1 APPLE
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4 62 0.06 -3.26 -3.26 0.75 0.33 0.16 ns 217 4 FS 1 PEACH
2 111 0.02 -1.77 -=1.77 0.75 1.06 -0.81 ns 217 5 VO 1 PEPPERS, SWE
1 40 0.03 -2.81 =-2.81 0.75 . . . 217 6 VR 1 POTATO

Table 37: Pooling information

In Table 38 the percentiles for a parametric model are displayed. Note that the p99.99 changed from
6.69 to 7.06 microgram/kg bw/day.

Random sampling is based on seed : 0
Number of simulations (consumers) : 100000 out of 6250
CHLORPYRIFOS (microgr/kg bw/day) consumption: 100000 out of 100000

Compound: CHLORPYRIFOS

Percentiles, maximum and average intake

Percentage Percentiles of CHLORPYRIFOS (microgram/kg bw/day)
50.00 0.00000
90.00 0.20379
95.00 0.40437
99.00 1.15487
99.90 3.26754
99.99 7.05740
mean 0.07323
maximum 12.97748

Table 38: Percentiles for the acute intake distribution using the binomial/lognormal with
pooling

Example 2

The variances and means of foods are pooled within a food group. Food groups are formed based on
the first two characters in combination with factor Allowed (see example, factor Levels (= food code)
and Allowed). Factor Allowed indicates whether a chemical compound is allowed on a product or not.
Foodgroup 10101 contains foods Bean and Sperzieboon. Foodgroup 10201 is split into two subgroups
(according to factor Allowed): one group with Chicory, Endive, Cabbage lettuce and Curly lettuce
and a group with Roodlof and Spinach. On the last two foods the use of a chemical compound is not
allowed.

In the example, the original mean and sigma are displayed together with the number of observations.
The last three columns show the parameters 4 and ¢ of the lognormal distribution together with the
degrees of freedom after pooling. For Bean and Sperzieboon, a pooled u (= -1.67) and ¢ (= 1.31) are
used. Chicory, Endive, Cabbage lettuce and Curly lettuce only sigma is pooled (o = 1.47), the original
means are maintained. For Roodlof (1 observation) the overall sigma (= 1.36) is used to estimated the
variance.
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Original Automatically pooling
Labels Levels Allowed Sigma Mean Nobs Sigma mean Nobs
BEAN 10101 1 1.60 -1.17 8 1.31 -1.67 12
SPERZIEBOON 10101 1 0.75 -2.33 6 1.31 -1.67 12
CHICORY 10201 1 1.38 -2.69 4 1.47 -2.69 382
ROODLOF 10201 0 * -2.3 1 1.36 -2.3 729
ENDIVE 10201 1 1.52 -0.91 92 1.47 -0.91 382
CABBAGE LETTUCE 10201 1 1.46 -1.44 286 1.47 -1.44 382
CURLY LETTUCE 10201 1 1.08 -2.14 4 1.47 -2.14 382
SPINACH 10201 0 1.18 -0.57 10 1.36 -0.57 729
BRUSSELS SPROUT 10301 0 1.14 -2.7 2 1.36 -2.7 729
CHINESE CABBAGE 10301 1 1.62 -2.32 21 1.62 -2.32 20
OXHEART/CONICAL 10301 0 * -2.3 1 1.36 -2.3 729
ONION (SMALL) 10301 1 0.08 -1.66 2 0.08 -1.66 1
FENNEL 10301 1 0.16 -2.38 3 0.16 -2.38 2
POTATO 10401 0 0.62 0.19 2 0.59 0.19 50
WINTER CARROT 10401 0 0.62 -2.55 14 0.59 -2.55 50
CARROT 10401 0 0.54 -2.71 36 0.59 -2.71 50
RADISH 10401 1 1.52 -2.91 6 1.36 -2.91 729
CELERIAC 10401 0 1.31 -2.07 2 0.59 -2.07 50
GRAPE 10501 0 1.14 -1.06 25 1.14 -1.06 24
STRAWBERRY 10501 1 1.14 -1.57 169 1.14 -1.57 168
RASPBERRY 10501 1 1.73 -1.04 9 1.36 -1.04 729
BLACKBERRY 10501 1 1.15 -0.89 17 1.15 -0.89 16
BLUE BERRY 10501 1 1.83 -1.24 3 1.36 -1.24 729
CURRANT 10501 1 1.87 -0.62 30 1.87 -0.62 29
OTHER FRUIT, NUT 10601 0 * -1.51 1 1.36 -1.51 729

10.8 Chronic risk assessment: discrete/semi-parametric (ISUF)

In this example output is shown for a chronic risk assessment for aspartaam. In 4.2 the same data are
analyzed with another model. The summaries of the data before modeling can there be found. Table
39 lists the main options:

Input form

Risk type chronic

uncertainty analysis no

concentration model empirical

intake model discrete/semi-parametric (ISUF)
concentration data system defaults

intake model:

transformation power

spline fit yes

number of simulations to estimate 10

frequency distribution

number of bins for discretisation 20

Output system defaults

Table 39: Input form options: discrete/semi-parametric (Nusser)

In Table 40 you find the main characteristics concerning this analysis taken from the ‘Additional
output’ file.

‘Additional output’ file
Number of products
Acute reference dose (ARfD)
Acceptable daily intake (ADI)
Number of detects
Number of non-detects
No of consumers 6250
Population characteristics,

minimum age 1

o Ul *
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maximum age 97

minimum weight 8

maximum weight 150

Sex female, male
Total no of consumption days 5136
Replace all non-detects
Multiplication factor for LOR 0.5

INTAKE SECTION
Chronic Risk Assessment
Discrete/semi-parametric (Nusser)
Power transformation
followed by spline transformation
No. of iterations to estimate theta: 5000
No. of binomial proportions (M): 20

Table 40: Information in ‘Additional output’ file

Find in Figure 77 the untransformed intake distribution (left plot). The right plot shows the
distribution after a power transformation (with exponent 0.148).

aspartaam aspartaam
distribution of positive daily intakes (41.1%) distribution of power transformed positive daily intakes (41.1%)

0 10000 20000 30000 1 2 3 4 5
Daily intake microgr/kg bw/day) Daily intake after 0.148th power transformation microgrikg bw/day)

Figure 77: Untransformed and power transformed intake distribution

The Nusser method additionally fits a spline function to the power transformed values as a function of
the normal Blom scores, see left plot Figure 78. The result of a power and spline transformation of the
positive intakes is shown in the right plot.
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spline transformation of daily intakes aspartaam
for an adequate transformation to normality, the spline fit (solid line) distribution of power and spline transformed positive daily intakes (41.1%)
should approximately follow the transformed daily intakes (red dots)

>

0.148th power of daily intakes
v

-4 -3 -2 -1 0 1 2 3 4 -4 -3 2 -1 0 1 2 3 4

Normal-scores Daily intake after 0.148th power and spline transformation microgr/kg bw/day )

Figure 78: Transformation plot and power and spline transformed intakes

The fit seems adequate, which is confirmed by the QQ plot shown in Figure 79. The Anderson-
Darling test on the transformed non-zero daily intakes is not significant.

estimated individual intake frequency

Normal QQ-plot of transformed daily intakes

after an adequate transformation to normality, the fitted values (red dots) should
approximately follow a straight line (solid line)

Anderson-Darling test: statistic = 0.20 (not significant at 85% confidence level)

4

3

Predicted normal-scores

Normal-scores

Figure 79: Normal probability plot

In Table 41 you find details on the spline functions (11 knots) and the Anderson-Darling test result
(0.20), which shows no significant deviation from normality for the transformed values (p-value =
0.90). In the same output section you also find a test whether there is evidence for heterogeneity of
variance between consumers, MA4=5.8447, p-value=0.0000.

Based on the daily intake the variance components are estimated, reported as within consumers is 0.30
and between consumers is 0.70. Therefore in this case the day-to-day variation in aspartaam intake is
much lower than the variation between individual consumers.

Long term exposure (usual intake)

Compound: aspartaam

Transformation to normality
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Power transformation : 0.148
Number of knots spline function 11
Anderson-Darling test for Normality

Test statistic : 0.20
p-value : 0.9

Heterogeneity of variance between individuals

Test statistic (MA4) . 5.8221 (3 for homogeneous
variances)
p-value : 0.0000

Variability within and between individuals
Variance components (transformed scale/unit variance)

within individuals : 0.30
between individuals : 0.70
ratio : 0.43

Intake frequency

Estimated fraction non-consumers (theta 0): 0.2818

Table 41: Technical information on usual intake

The next step is to estimate the intake frequency distribution. The estimated fraction of non-
consumers theta 0 (consumers with zero usual intake) is estimated to be 0.281. In output file theta.txt
(which you get after downloading results) you find the full results, see Table 42. So the fraction of
consumers that always eats foods with aspartaam (p=1.00) is estimated to be 0.0601.

P theta
0.00 0.28183499 (= thetal)
0.05 0.03651911
0.10 0.03631187
0.15 0.03429980
0.20 0.03298592
0.25 0.02907445
0.30 0.02736419
0.35 0.02595573
0.40 0.02525151
0.45 0.02505030
0.50 0.02535211
0.55 0.02625755
0.60 0.02766600
0.65 0.02987928
0.70 0.03279678
0.75 0.03712274
0.80 0.04195171
0.85 0.04708249
0.90 0.05191147
0.95 0.05694165
1.00 0.06006036

Table 42: Estimates of the intake frequency distribution, theta
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Graphical results of the values from Table 42 are shown in Figure 80.

aspartaam

estimated individual intake frequency

proportion of individuals with zero usual intake: 0.28

warning: only 2 days per individual in the dataset

model fit will be unimodal and may be a too smooth representation of the real distribution

V.3V

=
=
3

Proportion of individuals

o
>

Proportion of days (per individual)

Figure 80: Intake frequency distribution

Finally three cumulative distributions are estimated: for intake days only, for intakers only, and for the
total population, see the left plot of Figure 81. For for intake days only and for intakers only the
distributions are also shown as probability densities in the right plot.

cumulative usual intake distribution probability density functions usual intake
intake days only: blue line intake days only: blue line
intakers only: red line intakers only: red line

total population: green line

Probability
-
4
Probability density function
-
S
;

1 10 100 1000 10000 1 10 100 1000 10000

Usual intake microgr/kg bw/day ) Usual intake microgrikg bw/day )

Figure 81: Cumulative usual intake and density functions

Long term exposure (usual intake)

Compound: aspartaam

Percentage Total
population

50.00 109.6090
90.00 847.0583
95.00 1269.0260
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99.00 2447.1316
99.90 4078.5759
99.99 5166.2093

Table 43: Percentiles for usual intake distribution: entire population

In Table 44 you find information on selected percentiles for the other types of distributions.

Short term exposure

Percentage Intake Intakers
days only only

50.00 487.8314 224.2399
90.00 1674.2954 1042.5254
95.00 2280.0644 1489.2372
99.00 3946.3718 2699.3570
99.90 7087.3211 4350.4755
99.99 10282.0186 5166.2093

Table 44: Technical information on usual intake: percentiles for usual intake distribution,
positives only and consumers only

10.9 Chronic risk assessment: betabinomial/normal with covariable age
and uncertainty

In this example output is shown for a chronic risk assessment for aspartaam modeling the effect of age
on the usual intake. Table 45 lists the main options:

Input form

risk type chronic
uncertainty analysis yes
concentration model empirical
Number of MC simulations 10000

intake model betabinomial/normal
concentration data system defaults
INTAKE FREQUENCY MODEL:

age effect yes

function to model age effect polynomial
minimum degrees of freedom 0

maximum degrees of freedom 4

testing method backward
testing at level 0.01

INTAKE AMOUNT MODEL: yes
transformation logarithm

age effect yes

function to model effect polynomial
minimum degrees of freedom 0

maximum degrees of freedom 4

testing method backward
testing at level 0.01

Output system defaults

Table 45: Input form options: betabinomial/normal with covariable age and uncertainty

In Table 46 you find the main characteristics concerning this analysis taken from the ‘Additional
output’ file.

The intake frequency function is estimated with a betabinomial model using a polynomial function to
model age effects. Backward selection is applied meaning that model selection is started with a
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polynomial of degree 4. The logarithmically transformed intake amounts are modeled using ML and a
polynomial to describe age effects.

‘Additional output’ file

Chronic risk assessment
BetaBinomial/Normal model
Intake frequency model is based on BetaBinomial model
No effect of cofactor included
Include effect of covariable (age)

Function of covariable : polynomial
Minimum degrees of freedom : 0
Maximum degrees of freedom : 4
DF selection : backward
Testing at level : 0.01

Model for intake amounts is based on ML
No effect of cofactor included
Transformation : Logarithmic
Include effect of covariable (age)

Function of covariable : polynomial
Minimum degrees of freedom : 0
Maximum degrees of freedom HI!
DF selection : backward
Testing at level : 0.01

Intake Frequency: BetaBinomial model with covariable age (no cofactor)

* backward selection of degrees of freedom for polynomial model with Prob =
0.01

Df Ncycle Phi _2Loglik ResDf Chi ChiDf ChiProb
4 4 .5106 11949.208 6244 27.41 1 0.000
3 6 .5121 11976.616 6245 - - -

* Degrees of freedom of polynomial according to backward deviance testing is 4

Estimates of parameters (autoscaled covariable)

Parameter estimate s.e. t(*)

Constant -0.758153 0.053550 -14.16

age Lin -0.970010 0.082574 -11.75

age Quad -0.021940 0.097746 -0.22

age Cub -0.305835 0.089282 -3.43

age Quart -0.304492 0.060303 -5.05

Overdispersion phi 0.5106 0.01171 43.061
_2Loglikelihood 11949.21
Degrees of freedom 6244

Transformed Intake Amounts: ML model with covariable age (no cofactor)

Maximum likelihood (not REML)
* backward selection of degrees of freedom for polynomial model with Prob = .01
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Df Between Within _2Loglik ResDf Chi ChiDf ChiProb

4 1.1825 0.5379 16133.771 5130 0.55 1 0.457
3 1.1827 0.5379 16134.325 5131 19.00 1 0.000
2 1.1927 0.5375 16153.323 5132 - - -

* Degrees of freedom of polynomial according to backward deviance testing is 3

Estimates of parameters (autoscaled covariable)

Parameter estimate s.e. t(*)

Constant 5.939241 0.021963 270.42

age Lin -0.185661 0.022033 -8.43

age Quad 0.161915 0.020330 7.96

age Cub -0.086084 0.019717 -4.37
Between person variance 1.1827
Within person variance 0.5379
_2LogLikelihood 16134.33
Degrees of freedom 5131

*x**% Usual intake percentiles/percentages are calculated from:

sex age Intake probability Transformed intake amount
- 1 0.6996 6.6524
- 5 0.7055 6.3967
- 9 0.6881 6.1879
- 13 0.6524 6.0219
- 17 0.6025 5.8946
- 21 0.5435 5.8017
- 25 0.4813 5.7391
- 29 0.4218 5.7027
- 33 0.3697 5.6882
- 37 0.3273 5.6916
- 41 0.2952 5.7085
- 45 0.2727 5.7350
- 49 0.2586 5.7668
- 53 0.2510 5.7998
- 57 0.2481 5.8297
- 61 0.2473 5.8525
- 65 0.2457 5.8640
- 69 0.2397 5.8599
- 73 0.2255 5.8362
- 77 0.1998 5.7887
- 81 0.1616 5.7132
- 85 0.1147 5.6056
- 89 0.0680 5.4616
- 93 0.0320 5.2772
- 97 0.0114 5.0481

Table 46: Information in ‘Additional output’ file

As seen in Table 46, an age effect is found for the intake frequency. A polynomial with 4 degrees of
freedom is fitted and overdispersion parameter phi is equal to 0.5106. Parameter phi represents
between consumer variation. So each consumer has its own probability of having an intake. This
probability is sampled from a betabinomial distribution with age dependent probabilities and
dispersion factor phi. For the intake amount model a polynomial model with 3 degrees of freedom is
fitted. Find in the output, the estimated intake probabilities and transformed intake amounts dependent
on age

Click icon ‘Plots’ to get the next screen (see Figure 82).
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Figure 82: Diversity of possible plots

The first two plots are shown in Figure §3.

aspartaam

black dots: observed intake probabilities

black line: fitted intake probabilities as function of age

function: polynomial with 4 df

red lines: 95% confidence bands for fitted intake probabilities
blue lines: 2.5% and 97.5% percentiles of fitted BetaBinomial distribution

Intake probability

aspartaam

transformed intake amounts: Logarithmic
black dots: observed transformed intake amounts
black line: fitted transformed intake amounts as function of age

function: polynomial with 3 df
red lines: 95% confidence bands

blue segment: between person stdev; green segment: between days (within person) stdev

¥

transformed intake amount

age

Figure 83: Age dependent intake frequency (left) and intake amount (right)

In the left plot of Figure 83 the intake frequency is shown. For 50 age classes, the mean intake
frequencies are displayed (black dots). The fitted age effect is plotted through the dots as a black line.
As seen, the probability of having an intake decreases with age. The red dotted line indicates the 95%
confidence interval for the fitted age effect. Note the wider intervals at the edges of the plot showing
that for very old and young consumers less information is available. The blue lines are the 2.5 and
97.5% percentiles of the fitted betabinomial distribution: the sampled intake probability of consumers
according to the betabinomial are within these lines and may vary from about 0.04 till about 1 for
young people and 0 till about 0.1 for old people.
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The right plot of Figure 83 displays the In(intake) distribution. The age effect is plotted as a black line
through the observed mean In(intake) amounts per age class. The components of variance for the
between consumers and within consumers variation are 1.18 and 0.54, respectively (on the
logarithmically transformed scale). The standard deviation of the between and within consumer
variation are indicated by the vertical blue and green line segments.

From these models the usual intake is calculated. Click ‘Display output’ to get summaries of the
analysis.

In Table 47, age dependent percentiles of the usual intake are shown together with uncertainty limits
based on resampling.

Usual intake percentiles of total population for percentiles (p_):

sex age P50 p90 P95 P99 p99.9 p99.99
- 1 646.68 3046.04 4649.36 10163.81 24096.67 51706.86
- 5 505.59 2382.62 3670.83 8001.49 18413.50 33718.23
- 9 394.50 1908.54 2907.32 6327.66 14923.00 24587.06
- 93 0.00 15.30 77.61 421.97 1523.45 3870.07
- 97 0.00 0.03 3.75 139.71 686.38 1992.09

Uncertainty of percentiles distribution based on 100 resampled sets

P sex age
est: - 1 646.68 3046.04 4649.36 10163.81 24096.67 51706.86
2.5% - 1 453.14 2109.81 3193.76 6905.88 15574.14 31639.97

25% - 1 555.70 2558.83 3828.65 8304.43 19041.04 40613.89
75% - 1 631.42 2936.67 4479.25 9865.74 23408.42 52559.19

97.5% - 1 692.20 3115.41 4843.41 11113.77 28112.13 68942.51
est: - 5 505.59 2382.62 3670.83 8001.49 18413.50 33718.23
2.5% - 5 386.87 1851.10 2804.74 5971.28 13399.11 26905.62

25% - 5 449.80 2129.26 3237.93 6949.38 15491.97 35066.43
75% - 5 499.12 2431.88 3767.18 8330.75 19167.11 47158.12

97.5% - 5 527.81 2612.19 4072.87 9485.99 23902.51 59468.72
est: - 9 394.50 1908.54 2907.32 6327.66 14923.00 24587.06
2.5% - 9 318.16 1569.25 2363.32 5067.06 11047.47 18723.74

25% - 9 364.98 1757.08 2668.94 5768.92 12871.17 22382.79
75% - 9 400.94 2019.04 3122.20 6957.87 16240.96 28205.90

97.5% - 9 420.63 2142.14 3373.49 7867.73 19130.75 33821.71
est: - 93 0.00 15.30 77.61 421.97 1523.45 3870.07
2.5% - 93 4.24 273.58 492.58 1294.96 3931.73 8931.78

25% - 93 25.69 769.90 1367.70 3633.35 9695.44 19557.33
75% - 93 62.67 1112.89 1959.62 5092.72 13736.59 30358.94

97.5% - 93 127.01 1699.63 2976.02 7730.14 20340.48 46220.44
est: - 97 0.00 0.03 3.75 139.71 686.38 1992.09
2.5% - 97 3.27 260.96 463.10 1238.96 3397.27 7698.74

25% - 97 36.28 928.28 1652.30 4332.58 11612.30 22339.64
75% - 97 102.59 1461.53 2534.35 6527.55 17633.98 37805.35
97.5% - 97 216.36 2316.63 4036.64 10322.23 27333.32 57025.29

Table 47: Percentiles of usual intakes and uncertainty intervals

In Table 48 age dependent percentages of consumers lower than specified limits of usual intake are
shown also with uncertainty limits based on resampling.

Usual intake percentages of total population lower than intake limit (g ):

sex age g0.01 g0.02 g0.04 g0.06 g0.08
- 1 0.03 0.03 0.05 0.06 0.08
- 5 0.02 0.03 0.05 0.05 0.08
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- 9 0.02 0.04 0.07 0.09 0.10

- 93 71.78 73.32 74.91 75.85 76.56
- 97 89.10 89.77 90.41 90.81 91.09

Uncertainty distribution of intake percentages of total population lower than
intake limit (g ):
based on 100 resampled sets

q sex age
est: - 1 0.03 0.03 0.05 0.06 0.08
2.5% - 1 0.00 0.00 0.01 0.01 0.02

25% - 1 0.01 0.01 0.02 0.02 0.03
75% - 1 0.01 0.02 0.03 0.04 0.05

97.5% - 1 0.03 0.03 0.05 0.06 0.08
est: - 5 0.02 0.03 0.05 0.05 0.08
2.5% - 5 0.01 0.01 0.02 0.03 0.04

25% - 5 0.01 0.02 0.03 0.05 0.06
75% - 5 0.02 0.04 0.06 0.07 0.09

97.5% - 5 0.04 0.06 0.09 0.12 0.14
est: - 9 0.02 0.04 0.07 0.09 0.10
2.5% - 9 0.01 0.03 0.05 0.07 0.08

25% - 9 0.03 0.04 0.07 0.10 0.12
75% - 9 0.05 0.08 0.11 0.15 0.18

97.5% - 9 0.07 0.10 0.16 0.20 0.24
est: - 93 71.78 73.32 74.91 75.85 76.56
2.5% - 93 2.21 2.80 3.49 4.00 4.40

25% - 93 5.31 6.31 7.51 8.35 9.02
75% - 93 10.60 12.09 13.83 15.04 15.98

97.5% - 93 21.01 23.26 25.74 27.37 28.47
est: - 97 89.10 89.77 90.41 90.81 91.09
2.5% - 97 1.04 1.37 1.81 2.11 2.36

25% - 97 3.67 4.46 5.41 6.03 6.54
75% - 97 9.44 10.87 12.47 13.51 14.32
97.5% - 97 22.44 24.717 27.31 28.90 30.09

Table 48: Percentages of consumers lower than specified limits and uncertainty intervals

Figure 84 shows the age dependent percentiles and percentage for the usual intake distribution.

aspartaam aspartaam

red line: p50% ovuvu™ red line: percentage < q0.01
black line: p90% black line: percentage < q0.02
blue line: p95% - blue line: percentage < q0.04
yellow line: p99% 50000-] yellow line: percentage < q0.06
purple line: p99.9% : purple line: percentage < q0.08

orange line: p99.99%

1y

2 40000~ 90

Usual intakemicrogrikg bw/day

Percentage of population
3
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Figure 84: Age dependent percentiles derived from percentages and percentages derived from
percentiles

In Table 49, a report of technical information on the analysis is shown.

Long term exposure (usual intake)

Compound: aspartaam

Transformation to normality

Logarithmic transformation

Anderson-Darling test for Normality

Test statistic : 22.67
p-value : 0

Variability within and between individuals
Variance components (transformed scale/unit variance)

within individuals . 0.31
between individuals : 0.69
ratio : 0.45

Table 49: Technical information on usual intake

10.10 Chronic risk assessment: betabinomial/normal with covariable age
and cofactor sex

In this example output is shown for a chronic risk assessment for aspartaam modeling the effect of age
and sex. Table 50 lists the main options:

Input form

risk type chronic
uncertainty analysis yes

Random seed 0

concentration model empirical
number of MC simulations 100000

intake model betabinomial/normal with age and sex
concentration data system defaults
cofactor sex

covariable age

interaction no

INTAKE FREQUENCY MODEL

sex effect yes

age effect yes

function to model effect polynomial
testing method backward
minimum degrees of freedom 0

maximum degrees of freedom 4

testing at level 0.01
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INTAKE AMOUNT MODEL

transformation logarithmic

sex effect yes

age effect yes

function to model effect polynomial
testing method backward
minimum degrees of freedom 0

maximum degrees of freedom 4

testing at level 0.01

Output system defaults

Table 50: Input form options: betabinomial/normal with covariable age and cofactor sex

In Table 51 you find the main characteristics concerning this analysis taken from the ‘Additional
output’ file. The intake frequency function is estimated with a betabinomial model using a polynomial
function with 4 degrees of freedom to model the age effect. Backward selection is applied meaning
that model selection is started with a spline of the highest degree. To model the transformed intake
amounts a polynomial with 3 degrees of freedom is used. There is a clear sex effect for the intake
frequency model, whereas the sex effect for the intake amount model has a P-value of 6.6%.

‘Additional output’ file

Intake Frequency: BetaBinomial model with cofactor sex and covariable age (no

interaction)

* backward selection of degrees of freedom for polynomial model with Prob =
0.01

Df Ncycle Phi _2Loglik ResDf Chi ChiDf ChiProb
4 4 0.5092 11927.137 6243 27.96 1 0.000
3 6 0.5108 11955.100 6244 - - -

* Degrees of freedom of polynomial according to backward deviance testing is
4

Estimates of parameters (autoscaled covariable)

Parameter estimate s.e. t(*)
Constant -0.664664 0.056905 -11.68
age Lin -0.986971 0.082685 -11.94
age Quad -0.032632 0.097706 -0.33
age Cub -0.315594 0.089219 -3.54
age Quart -0.306695 0.060141 -5.10
sex male -0.224418 0.047878 -4.69

Parameters for factors are differences compared with the reference level:
Factor Reference level

sex female

Overdispersion phi 0.5092 0.01173 43.40
_2Loglikelihood 11927.14
Degrees of freedom 6243

Transformed Intake Amounts: ML model with cofactor sex and covariable age
interaction)

(no
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Maximum likelihood (not REML)
* backward selection of degrees of freedom for polynomial model with Prob =
0.01

Df Between Within _2Loglik ResDf Chi ChiDf ChiProb
4 1.1811 0.5378 6130.454 5129 0.49 1 0.485
3 1.1813 0.5378 6130.943 5130 19.41 1 0.000
2 1.1915 0.5374 6150.348 5131 - - -

* Degrees of freedom of polynomial according to backward deviance testing is
3

Estimates of parameters (autoscaled covariable)

Parameter estimate s.e. t(*)
Constant 5.975393 0.029456 202.86
age Lin -0.188744 0.022086 -8.55
age Quad 0.162650 0.020324 8.00
age Cub -0.086991 0.019714 -4.41
sex male -0.081538 0.044323 -1.84

Parameters for factors are differences compared with the reference level:
Factor Reference level

sex female
Between person variance 1.1813
Within person variance 0.5378
_2LogLikelihood 16130.94
Degrees of freedom 5130

***** UJgsual intake percentiles/percentages are calculated from:

sex age Intake probability Transformed intake amount
female 1 0.7237 6.6959
male 1 0.6767 6.6144
female 5 0.7288 6.4379
male 5 0.6823 6.3564
female 9 0.7117 6.2272
male 9 0.6636 6.1457
female 93 0.0326 5.2954
male 93 0.0262 5.2139
female 97 0.0113 5.0625
male 97 0.0090 4.9810

Table 51: Information in ‘Additional output’ file

Click on icon ‘Plots’ to display the next screen (see Figure 85).
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Display plots of:

Frequency model

Probabdlity of intake vs. age (level fernale of sex)
Probabdity of ntake vz, age (level male of sex)
FProbahdity of intalee w2 age (all levels of zex)

Transformed intake amount model

Transformed intake amount ws. age (level female of sex)
Transformed ntake amount vs. age (level male of sex)
Transformed intake amount vs. age (all levels of sex)

Percentiles of usual intake vs. age

po0% percentile of usual intalce ws. age (all levels of sex)
3 p30% percentile of usual intalce ws. age (all levels of sex)

Display Dutput 5% percentile of usual mtake vs. age (all levels of sex)

to Input Farm p39% percentile of usual ntalce ws. age (all levels of sex)
to Central Menu £99.9% percentile of usual intake vs. age (all levels of sex)
WO LETIALIT P39 99% percentile of uzual intalee w2, age (all levels of ze:)

Download Output for OF line Viewing - .
Info Charts p30% p20% pd3% p35%h pB9 8% pB9. 89% percentiles of usual intake vs. age (level female of sex)

pa0% p30% p95% pR9% pPB. 9% pP9.599% percentiles of usual intalce ws. age (level male of sex)

Percentage of population < usual intake limits vs. age

Percentage of population = g0.01 of usual intake ws. age (all levels of sex)

Percentage of population < g0.02 of usual intake vs. age (all levels of sex)

FPercentage of population = g0 of usual intalee w2 age (all levels of zex)

Fercentage of population < g.06 of usual intakee ve. age (all levels of sex)

Percentage of population < g0.08 of usual intalce vs. age (all levels of sex)

Percentage of population = g0.01 q0.02 q0.04 g0.06 g0.08 of usual mtake vs. age (level female of sex)
Percentage of population = g0.01 q0.02 q0.04 g0.06 g0.08 of usual intake vs. age (level male of sex)

Figure 85: Diversity of possible plots if covariable and cofactor present and no uncertainty

Find in the left plot of Figure 86 for the intake frequency distribution the polynomial functions of age
for both levels of sex. In the right plot, find for the transformed intake amounts the polynomial
functions of age for both levels of sex.

aspartaam aspartaam

black dots: observed intake probabilities transformed intake amounts: logarithmic

black line: fitted intake probabilities as function of age black dots: observed transformed intake amounts

function: polynomial with 4 df black line: fitted transformed intake amounts as function of age
red, level female of sex function: polynomial with 3 df

black, level male of sex red lines: 95% confidence bands

blue segment: between person stdev; green segment: between days (within person) stdev
- red dots, level female of sex
black dots, level male of sex

Intake probability

transformed intake amount

age age

Figure 86: Age dependent percentiles derived from percentages

The intake frequency model and intake amount model are used to derive the usual intake. Click on
‘Display output’ in Figure 85 to get the result of the analysis. In Table 52 the age dependent
percentiles of the usual intake are shown for each level of sex.

Usual intake percentiles of population:

sex age P50 r90 P95 P99 r99.9 r99.99
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female 1 703.16 3242.11 4941.88 10929.49 25370.44 50474.40
male 1 593.79 2870.60 4420.77 9810.18 22715.09 40497.57
female 5 547.95 2550.08 3866.46 8336.34 19202.33 33808.96
male 5 458.52 2220.18 3403.86 7426.94 17353.50 39425.23
female 9 429.53 2038.84 3072.94 6727.03 15705.71 33215.09
male 9 365.71 1768.00 2705.13 5887.64 13970.10 27149.02
female 93 0.00 15.31 81.25 429.84 1531.09 3698.93
male 93 0.00 6.72 52.85 334.93 1253.93 3634.92
female 97 0.00 0.03 4.11 139.18 718.62 2044.27
male 97 0.00 0.00 1.30 107.30 664.78 1928.50

Table 52: Percentiles of usual intakes

In Table 53 age dependent percentages of consumers lower than specified limits of usual intake are
shown for each level of sex.

Usual intake percentages of population lower than intake limit:

sex age g0.01 g0.02 g0.04 g0.06 g0.08
female 1 0.02 0.02 0.03 0.05 0.05
male 1 0.03 0.05 0.07 0.09 0.11
female 5 0.01 0.02 0.02 0.04 0.05
male 5 0.03 0.04 0.07 0.09 0.11
female 9 0.02 0.03 0.05 0.06 0.08
male 9 0.04 0.06 0.09 0.11 0.14
female 93 71.61 73.14 74.79 75.71 76.40
male 93 76.69 78.01 79.35 80.11 80.68
female 97 88.94 89.60 90.30 90.72 91.01
male 97 91.01 91.59 92.18 92.49 92.72

Table 53: Percentages of consumers lower than specified limits

Figure 87 shows the age dependent percentiles for the usual intake distribution for both levels of sex.

aspartaam aspartaam
level female of sex level male of sex
red p50%; black p90%; blue p95%; yellow p99%; purple p99.9%; orange p99.99%; red p50%; black p90%; blue p95%; yellow p99%; purple p99.9%; orange p99.99%;

ouvuy Su000

40000~

Usual intakemicrogrikg bw/day)
Usual intakemicrogrikg bw/day)

Figure 87: Age dependent percentiles for females (left) and males (right)
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Figure 88 shows the age dependent percentages of consumers lower than the specified limits for both
levels of sex.

aspartaam aspartaam
level female of sex level male of sex
red q0.01; black q0.02; blue q0.04; yellow q0.06; purple q0.08; red q0.01; black q0.02; blue q0.04; yellow q0.06; purple 0.08;

1 o

90

Percentage of population
3
7

Percentage of population
]

Figure 88: Age dependent percentages female consumers (left) and percentages male consumers
(right) lower than the specified limits
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11 APPENDIX C: Errors in displaying the page and scripting

€rrors

Occasionally, ASP-scripts crash due to inconsistencies found in tables, as a consequence of wrong
column names (see 9.1 ), and combinations of levels during subset selection that lead to empty
subsets.

In general, the internet explorer error message is: @ The page cannot be displayed
or an ASP debug-scripting-error is displayed.

When this occurs:
e try to reach the MCRA main menu (see Figure 2),
e g0 to manage input/output,
e move your mouse to directory ‘IN’ or ‘OUT’ or any other directory and left click,
o click the ‘Clear history’-button (see Figure 4).

If you cannot reach the MCRA main menu:
e close the internet explorer,

e login to the website again,
e go to manage input/output in the MCRA main menu (see Figure 2),
e move your mouse to directory ‘IN’ or ‘OUT’ or any other directory and left click,
e clear your history first by clicking the ‘Clear history’-button (see Figure 4).
Links

for correct link insert cursor in link and press Shift+F9:
Acute risk type
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