
Conference ICL2008 September 24 -26, 2008 Villach, Austria

Formative Assessment for User Guidance

In Single Stepping Systems

Alan Krempler

1
, Walther Neuper

2

University of Applied Sciences Joanneum Graz, University of Technology Graz

Key words: e-learning, formative assessment, single stepping system,

rewriting, dialog atom, dialog guidance

Abstract:

Single stepping systems arise from re-engineering computer algebra systems to show

intermediate steps for educational purposes. The most essential of these steps concern

the application of a theorem to a mathematical term transforming it into a more useful

one; this is called 'rewriting' in computer mathematics.

This paper gives a systematic account of possible user-interactions within such a

'rewrite step', which we call 'dialog atoms'. More than twenty of these are identified.

Appropriate choice from that range of dialog atoms and their combination is concern

of a dialog guide, planned to balance the flow of user interaction between challenge

and support in learning – an issue calling for close cooperation with practice of

mathematics education.

1 Introduction: e-learning in mathematics

Computer mathematics strives for automating tasks of mathematicians, scientists and

engineers. The most general tools for such tasks are computer algebra systems (CASs, e.g.

[1,2]) and computer theorem provers (CTPs, e.g. [3,4]), and these are very successful at

automation. CTPs usually require some interaction, due to the complexity of the respective

tasks. CASs, however, which are being used in education, almost automatically solve

equations, compute integrals etc.

The CASs’ ability in automation is considered harmful for education since their introduction

into class rooms twenty years ago: Why should students learn to integrate, if this is done

much better by a CAS? Actually, since then a major part of conferences on didactics of

mathematics dedicated most vigorous discussions to this question. Shaping this question to

“how to adapt education to the existence of CAS”, very few authors asked the other way

round: “how to adapt CAS to education” [5,6,7]. A few producers of CASs reacted to the

issue, opening up their systems to 'single stepping systems' [8,9], which show intermediate

steps and allow the user to direct these steps in a limited way.

Anyway, CASs do not provide the most adequate basis for educational systems in

mathematics: Students do not only want to know intermediate steps and the rules justifying

the steps, they could also be interested in the proof of the rules - as theorems derived within

some theory, given some definitions, axioms and other theorems. For such interests CTPs are

the appropriate basis. CTPs describe their knowledge in the language of mathematics, they

prove theorems mechanically in a rigorous manner and involve more and more readable proof

scripts [10,11]. Thus, they come along with mechanized mathematic knowledge, which can be

1(8)

Conference ICL2008 September 24 -26, 2008 Villach, Austria

read by both, computers and humans - ready to be inspected by a student. Still, CTPs are

rarely used as a basis for formula-based educational systems [12,13].

Indeed, at the state of the art in computer mathematics systems can be built such that they are

'interactive and transparent models of mathematics': each process can be traced down to

atoms, which are elementary operations of mathematics. Such systems can model all phases

of doing mathematics: specifying, modelling and solving. The systems are powerful enough

to resume ideas from the early days of 'expert systems' - to establish a 'dialog between

partners on an equal base' [14]: on the one side the system 'knows' how to do the next step

towards a result, and on the other side the student may watch the steps or may set a step of his

choice, while the system is able to check for correctness of the step input by the user.

This paper is confined to the phase of solving. Section 2 goes into detail with 'single stepping

systems', introduces the notion of 'rewriting' and other technical terms. Section 3, the main

part, gives a systematic account of 'dialog atoms' and discusses issues of combining them to

dialog patterns. Section 4 gives some examples for sequencing dialog atoms with respect to

experiences from field tests, and Section 5 provides conclusions and future work.

2 Single stepping systems and ‘rewriting’

As mentioned above, single stepping systems show intermediate steps, not only the result like

traditional CASs. If a system is considered a 'model of mathematics', the steps must model

basic operations of mathematics.

Given a mathematical term
1
 assumed to be checked by the system and thus 'correct', a step

applies a 'tactic' resulting in another term
2
 A term consists of elements of certain 'types',

where the latter collect specific axioms, definitions and theorems. This ensures correctness of

operations: The theorem a ൉ b ൌ b ൉ a may be applied to integers, reals etc, but not to

matrices. A tactic (in the sense of CTP) is a basic operation of mathematics: de/composition

of a term, case split, substitution, application of theorems or start/completion of a sub-

problem.

This paper confines tactics to the application of theorems; the respective notion in computer

mathematics is 'term rewriting' [15] (short rewriting), employed for many relevant tasks like

algebraic simplification of terms, equation solving, differentiation of functions etc. Usually

rewriting applies well elaborated sets of theorems (called 'term rewriting systems' having

certain properties [15]). Rewriting provides a technique for checking equivalence (via 'normal

forms') of terms input by the user
3
.

This paper again confines rewriting to a special case: Given a term (called given term), apply

one theorem (and not a set of rules; the theorem called rewrite-rule, or short rule) which leads

to a result term. The rewrite rule may be a 'conditional rewrite-rule' where a predicate is

evaluated with respect to the given term and the rule is applied only if the predicate evaluates

to true. Thus a rule, with or without a condition, may be applicable to a term or not. 'Term

orders' are not considered on purpose: a rewrite-rule like a ൉ b ൌ b ൉ a is applicable to any

term containing multiplication (provided appropriate types).

1 In special cases these can be several terms.
2 In special cases these can be several terms.
3 Another technique is 'matching' [15], which allows to check for equivalence of theorems (rules).

2(8)

Conference ICL2008 September 24 -26, 2008 Villach, Austria

Despite the above restrictions of the topic, this paper still covers a most general operation in

doing formal mathematics, which is also crucial in learning: the application of theorems

within calculations of applied mathematics.

3 User-interaction in rewriting

One step in an interactive computation as described above reduces to the following structure:

given term → (rewrite) rule → result term

The arrows denote the application of two basic computational skills:

 find an appropriate rewrite rule

 calculate the term resulting from application of the rule

These are also the basic skills to be exercised and assessed in teaching computational

dexterity.

3.1 Variants in interaction

The possibilities in user interaction can be broken down to elementary interactions called

dialog atoms and combinations thereof called dialog patterns as proposed in [16].

For further investigation, we will confine ourselves to the following basic set of dialog atoms:

 dialog atom responsibility put on the user

(A1) have the user enter the correct result analyse situation, compare to own

knowledge, express conclusion

(A2) have the user fill in blanked subterms

like in a cloze test

understand the relationship between the

original problem and the presented parts of

the result, which may be helpful or distracting

(A3) let the user choose from a list of

variants like in a multiple-choice-test

match the choices to the situation and guess

or choose a probable variant

(A4) show a correct result (proposed by the

system) to the user

compare to own reasoning or take for granted

(A5) skip an interaction because it will be

implicitly covered later

none

Table 1

These dialog atoms cover both, the context (F) of finding a rewrite rule (with and without

hinting at the result) and the context (C) of calculating the result term:

(F) find a rule result term (C) calculate the result term

(A1) enter manually (FC) shown (A1) enter manually
(F) not shown

(A2) fill in subterms (FC) shown (A2) fill in subterms
(F) not shown

(A3) select from a list (FC) shown (A3) select from a list
(F) not shown

(A4) see the correct answer (A4) see the correct answer

(A5) skip ///

Table 2

3(8)

Conference ICL2008 September 24 -26, 2008 Villach, Austria

In Table 2, each of the 5 dialog atoms (A1)...(A5) in context (F) must be followed by one of

the 4 atoms in context (C) to calculate the result term; this results in 5൉4 possibilities.

The 3 atoms (A1)...(A3) in column (F) allow for the variant (FC) of showing the result term in

advance. The (FC) variants need not calculate the result term any more, i.e. they need not be

combined with (C). Finally the number of combinations of dialog atoms completing a step is

5൉4 + 3 = 23; in other words: there are (at least) 23 different dialog patterns for one step.

3.2 Feedback on interaction and assessment

Compared to other domains, mathematics has the advantage that decisions can be checked

formally (and, in rewriting, immediately) for correctness, allowing for automated and

immediate feedback.

In case of success, the only possible feedback is acknowledging the correct result.

In case of error, feedback can be varied as to the amount of additional information given:

feedback of the system responsibility left to the user

result is not correct re-analyse, draw conclusions, start over

partial hint solve a subset of the original problem

correct result compare to own reasoning

Table 3

Note the similarity between choice of feedback in case of error and dialog atoms. In essence,

this reduces to the choice of insisting on completing the calculation with the actual dialog

pattern, giving „incorrect“ as feedback and forcing the user to try again or choosing another,

more supportive, dialog pattern for the next try.

Obtainable feedback in every step of a calculation depends on the amount of choice and

responsibility left to the user (as detailed in the table of dialog atoms above) and therefore on

the dialog pattern originally chosen. Therefore, the desired amount of support in case of error

can serve as a criterion for choosing a dialog pattern.

In any case, immediate feedback is not only possible but also necessary, because sCAS are

designed not to proceed if the calculation is not in a consistent, ie proven mathematically

correct state.

3.3 Preview: choosing appropriate dialog patterns

Having the opportunity to choose from a wealth of different dialog patterns poses the problem

of making the „right“ choice for every particular situation.

While making a random choice already offers the advantage of offering a more varied and

interesting learning experience, it is to be hoped that even automated systems can do better

than that.

The right choice can depend on a number of factors [17]:

 the topic presently being exercised

 the context of interaction, eg. explorative learning vs. exam

 the amount of obtainable feedback vs. possible frustration arising from excessive

demands posed on the user

 the user's preferred learning strategies

 the user's knowledge and experience with the topic

All of these factors are moving targets which not only depend on the particular user of the

system but also tend to change rapidly with the user's learning progress and even with the

user's present mood.

4(8)

Conference ICL2008 September 24 -26, 2008 Villach, Austria

Setting individual preferences on a per-user, per-topic basis may serve as a starting point, but

suffers the drawback that these preferences not only change over time but, more importantly,

even the user himself might be only partially aware of them.

In addition to that, to even offer a choice of preferences would require consistent

classifications of

 mathematical topics

 human mathematical experience

 human preferences in learning

to express such preferences.

Assuming that suitable classifications of mathematical topics exist and the other

classifications exist in their beginnings and can be refined by further didactic research, setting

fine-grained individual preferences could be put to the test in experimental systems.

Based on the same assumptions, even an automated, situation-dependent choice of dialog

patterns would come into reach [18]. A system choosing appropriate dialog patterns would

base its decisions on assumptions about the present state of the individual user, drawn from

experience gathered in interaction with the user, classified according to the aforementioned

criteria [19,20]. Such a system would use the mathematical knowledge employed during a

calculation, the success in doing so and the time spent to build an abstract model of the user –

the very same data used for formative assessment of learning progress and already present in

the system.

4 Examples and experiences

Here we give examples for some dialog atoms and dialog patterns, and add experiences

gained from field-tests [17] with the experimental software [13]. Below the dialog atoms are

described by tables with two columns displaying the initial and final state respectively,

initial state final state

given term

rule__________to given

…………………

given term

rule applicable to given

result term

where ____ marks a gap to be filled by the student, ….. marks an unused line (above for the

result term in the initial state), this colour indicates input of the user, and this colour indicates

output of the system. The given term is coloured like output, because it is assumed to be

checked by the system.

Let us start with a dialog pattern which combines dialog atom (F.A5) with (C.A1). The “Skip”

in (F.A5) (i.e. skip finding a rule) makes the user free to apply an arbitrary number of rules at

once, and not only one rule; for instance, the following input should be accepted as a result

term:

ௗௗ௫ ଶݔ ൅ ௗௗ௫ .ሺ3݊݅ݏ ସሻݔ ൌ … … … … … … ..… … … … …… … … … … … … … … … … ..

ௗௗ௫ ଶݔ ൅ ௗௗ௫ .ሺ3݊݅ݏ ସሻݔ ൌ … … … … … ..… … … … … …
 ૛. ࢞ ൅ .ሺ૜࢙࢕ࢉ ࢞૝ሻ. ૚૛ . ࢞

Dialog atom (C.A1) is a ‘unique selling point’ of [13] (an open source product). With this

system, implementing only (C.A1) and (C.A4), field tests [17] revealed, that these two atoms

are not sufficient to lead students to deal with rules and their application – even not, when

displaying the applied rules was a fixed feature within all steps.

5(8)

Conference ICL2008 September 24 -26, 2008 Villach, Austria

Now, what if the student cannot provide a correct result term in the above example? The

system could provide the result term by (F.A4); but a less challenging dialog atom than

(C.A1) may seem a more appropriate choice, for instance (FH.A2), partially providing the

chain rule:

 ௗௗ௫ ଶݔ ൅ ௗௗ௫ .ሺ3݊݅ݏ ସሻݔ ൌ ݀݀ݔ ሻݑሺ݊݅ݏ ൌ
 … … … … … … … … … … … .ሻݑሺݏ݋ܿ .. ______

ௗௗ௫ ଶݔ ൅ ௗௗ௫ ݅ݏ ሺ݊ 3. ସሻݔ ൌ ௗ
 ௗ௫ ሻݑሺ݊݅ݏ ൌ .ሻݑሺݏ݋ܿ ࢞ࢊࢊ ࢛

 … … … … … … … … … … … ..

If the student cannot provide the input
࢞ࢊࢊ ࢛, the system can provide it by (F.A4). Again, a still

less challenging dialog atom could leave the initiative with the student, for instance (F.A3)

selecting t rule frhe om a list:

 ௗௗ௫ ଶݔ ൅ ௗௗ௫ .ሺ3݊݅ݏ ସሻݔ ൌ ݀݀ݔ ሻݑሺ݊݅ݏ ݀ൌ .ሻݑሺݏ݋ܿ ݔ݀ ݔ݀݀ݑ ௡ݔ ൌ ݊ ݔ݀݀.௡ିଵݔ cos ݔ ൌ sin …ݔ … … … … … … … … … … ..

ௗௗ௫ ଶݔ ൅ ௗௗ௫ .ሺ3݊݅ݏ ସሻݔ ൌ

࢞ࢊࢊ ሺ࢛ሻ࢔࢏࢙ ൌ .ሺ࢛ሻ࢙࢕ࢉ ࢞ࢊࢊ ࢛

 … … … … … … … … … … … ..

This example demonstrates, that formula renderers (and editors) should allow to mark sub-

terms. If not, more than one choice may be correct (in the above example 2 rules).

Now an applicable rule has been interactively determined, and the next task is to determine

the result term. A really smart dialog guide would remember the student’s difficulties with the

chain rule nd se e ern to create a partial resul w in), a u the sam patt t ith (C.A2 :

 ௗௗ௫ ଶݔ ൅ ௗௗ௫ .ሺ3݊݅ݏ ସሻݔ ൌ

ݔ݀݀ ݊݅ݏ ሻݑ ൌሺ .ሻݑሺݏ݋ܿ ݔ݀݀ ݑ

ௗௗ௫ ଶݔ ൅ .ሺ3ݏ݋ܿ .ସሻݔ ௗௗ௫ _____

ௗௗ௫ ଶݔ ൅ ௗௗ௫ ݅ݏ ሺ݊ 3. ସሻݔ ൌ ௗௗ௫ ሻݑሺ݊݅ݏ ൌ .ሻݑሺݏ݋ܿ ௗௗ௫ ݑ

 2. ݔ ൅ .ሺ3ݏ݋ܿ .ସሻݔ ௗௗ௫ ૜. ࢞૝

By now one single rewrite step has been completed employing 3 dialog atoms of the 23 dialog

patterns. As soon as mechanized choice and combination of dialog atoms has been clarified,

one may expect many other details coming up. We conclude the examples with just one such

open question (which, again, poses no problems for computer mathematics): Should the

following input be accepted alog atom (C.A1)? to di

 ௗௗ௫ ଶݔ ൅ ௗௗ௫ .ሺ3݊݅ݏ ସሻݔ ൌ
ௗௗ௫ ଶݔ ൅ ௗௗ௫ .ሺ3݊݅ݏ ସሻݔ ൌ

6(8)

Conference ICL2008 September 24 -26, 2008 Villach, Austria

 ௗௗ௫ ሻݑሺ݊݅ݏ ൌ .ሻݑሺݏ݋ܿ ௗௗ௫ ݑ

ௗௗ௫ ሻݑሺ݊݅ݏ ൌ .ሻݑሺݏ݋ܿ ௗௗ௫ ݑ

࢞ࢊࢊ ࢞૛ ൅ .ሺ૜࢙࢕ࢉ ࢞૝ሻ. ሺ૚૛. ࢞૜ሻ

5 Summary and future work

This paper provides new means for user-guidance in one of the most crucial skills in learning

mathematics: the skill of transforming terms correctly and firmly, finally relying on the proper

application of rules, and not relying on 'intuition' or some magic. The new means use a well

established technology, Computer Algebra Systems (CAS), which model the application of

rules (theorems) by steps of 'rewriting'. 'Single Stepping Systems' (sCAS) make the rewrite

steps accessible for students.

The novel contribution of this paper is to identify five so-called dialog atoms, which allow for

more than twenty different dialog patterns to accomplish a single rewrite step. This somewhat

surprisingly large amount mirrors the many kinds of interventions a creative human tutor uses

to guide a student through the steps of a difficult calculation.

To construct a meaningful dialog pattern, two elements are needed: mathematical knowledge

to ask the right question and didactics knowledge to ask the question right.

Asking the right question means generating a problem consistent with the context of a

calculation and checking the answer for correctness. Both can be provided by a sCAS,

employing matching and rewriting to normal forms. Thus no human efforts for assessment,

neither for formative nor for summative assessment are required. No repeated costs arise,

either: A topic (e.g. calculus), once implemented in a sCAS, can be re-used in arbitrary

applications of mathematics. Thus the primary effort concerning computer mathematics is

implementing mathematics knowledge into sCAS to match the power of present CAS.

Asking the question right, i.e. in a supportive and motivating way, concerns the domain of e-

learning and poses a wealth of interesting questions:

Given the wealth of dialog atoms and the large number of dialog patterns for a rewrite step,

how to select the appropriate atom at a certain moment during calculation? Can the atoms be

combined to 'dialog patterns' covering more than one step? How to select such 'dialog

patterns' as an appropriate mechanized reaction to certain situations? Do such patterns relate

to some preferences of certain users? Can a user model go beyond “student x applied rule y

correctly n times and incorrectly m times” to more abstract user behaviour related to dialog

patterns? What kinds of preset user models are appropriate for which courses? What is a

teacher’s language to parameterise dialogues? What kinds of tools can be provided for

teachers to assess the student’s success? How smoothly can standardisations be adopted (IMS

QTI etc)?

The authors are convinced that tackling these questions calls for close cooperation between

research in e-learning and practice of education. The extent of usability engineering and of

feed-back loops required also provides possibilities to transfer knowledge between computer

mathematics, e-learning and practice of education.

7(8)

Conference ICL2008 September 24 -26, 2008 Villach, Austria

8(8)

References:

 [1] P. Adams, K. Smith, and Vyborny R. Introduction To Mathematics With Maple. World Scientific
Publishing Company, 2004. ISBN: 9812560092.

[2] Stephen Wolfram. The Mathematica Book . Wolfram Research Inc., 1999.
[3] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL, a proof assistant for

high-order logic. Springer Verlag, 2008.
[4] Yves Bertot and Pierre Casteran. Coq’Art: The Calculus of Inductive Constructions. Texts in

Theoretical Computer Science. An EATCS Series. Springer Verlag, 2004.
[5] Christopher J. Sangwin. Assessing elementary algebra with STACK. International Journal of

Mathematical Education in Science and Technology, 38:987 – 1002, January 2007.
[6] Eno Tonisson. Checking the equivalence of expressions in computer algebra systems —

application possibilities in mathematics education. In The Fifth International Conference on
Technology in Mathematics Teaching , University of Klagenfurt, Austria, August 6 - 9 2001.

[7] Walther A. Neuper. What teachers can request from CAS designers. In The Fifth International
Conference on Technology in Mathematics Teaching, University of Klagenfurt, Austria, August 6
- 9 2001. http://ftp.ist.tugraz.at/pub/projects/isac/publ/requestCAS.ps.gz.

[8] http://www.chartwellyorke.com/derive/derivefeatures.html.
[9] http://www.ti-nspire.com/tools/nspire.
[10] Wenzel Makarius. Isabelle/isar — a generic framework for human-readable proof documents. In

R. Matuszewski and A. Zalewska, editors, Festschrift in Honour of Andrzej Trybulec, volume 10
of Studies in Logic, Grammar, and Rhetoric. University of Bialystok, 2007.

[11] R. Vajda, T. Jebelean, and B. Buchberger. Combining Logical and Algebraic Techniques for
Natural Style Proving in Elementary Analysis. Mathematics and Computers in Simulation , pages
1–11, 2007. to appear.

[12] http://www.leactivemath.org.
[13] http://www.ist.tugraz.at/projects/isac.
[14] Larry Press. Toward balanced man-machine systems. International Journal of Man-Machine

Studies , 3(1):61–73, 1971.
[15] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,1998.
[16] Alan Krempler. Architectural Design for Integrating an Interactive Dialog Guide into a

Mathematical Tutoring System. diploma thesis, Institute for Softwaretechnology, University of
Technology, A-8010 Graz, 2005.

[17] Peter Baumgartner and Sabine Payr. Lernen mit Software. Studienverlag, Innsbruck, 1999.
[18] Timothy J. Sliski, Matthew P. Billmers, Lori A. Clarke, and Leon J. Osterweil. An architecture for

flexible, evolvable processdriven user-guidance environments. In ESEC/FSE-9: Proceedings of
the 8th European software engineering conference, pages 33_43. ACM Press, 2001.

[19] Linton, Deborah Joy, and Hans-Peter Schaefer. Building user and expert models by long-term
observation of application usage. In UM '99: Proceedings of the seventh international conference
on User modeling, pages 129_138. Springer-Verlag New York, Inc., 1999.

[20] Heimo H. Adelsberger, Markus Bick and Jan M. Pawlowski. Design principles for teaching
simulation with explorative learning environments. In J. A. Joines, R. R. Barton, K. Kang, and P.
A. Fishwick, eds, Proceedings of the 2000 Winter Simulation Conference, 2000.

[21] Johannes Reitinger and Walther Neuper, Begreifen und Mechanisieren beim Algebra-Einstieg.
IMST Projekt 1063, Klagenfurt, 2008.

Author(s):

Alan Krempler, Dipl.Ing.

Joanneum, University of Applied Sciences

A-8020 Graz, Alte Poststraße 149

alan.krempler@mmm-komm.at

Walther A. Neuper, Dr.techn.

University of Technology, Institute for Softwaretechnology

A-8010 Graz, Inffeldgasse 16b

neuper@ist.tugraz.at

