
A Philosophy and Example of

CS-1 Programming Projects

Richard E. Pattis
Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195
(206) 545-1218

PATTIS@CS.WASHINGTON.EDU

Abstract

This paper presents a philosophy underlying CS-1 pro-

gramming projects, and illustrates this philosophy with a
concrete example. Integral to the philosophy is the use
of Ada packages (or Modula-2 modules, or Pascal units)
and the stepwise-enhancement programming method. The
example project specifies a simple program that controls
a simulated cardioverter-defibrillator; the first appendix
shows a program that meets these specifications. The
packages and programs in this paper are written in Ada
(the programming language that we use at the University
of Washington in our introductory programming courses),
but they could be easily transliterated into any language
that included the package/module/unit feature.

1 Project Philosophy

In the beginning of a programming course, students must
learn the syntax and semantics of a programming language;
they must also learn how to build programs, given their
specifications, using the language features studied. Pro-
gramming projects ensure that, students achieve both goals.
Certainly, such projects must meet the criterion that they
require the student to exercise his/her knowledge of the
relevant language features and programming method. But
well chosen projects can also instruct students about how
computers are used in the world outside the classroom,
and stimulate them to think about the ramifications of
computerization in society.

In my CS-1 courses, I try to assign real-world pro-
gramming projects (suitably simplified) as early as possible.
Interesting applications of computers are reported daily
in the media: I frequently find inspiration for projects
in newspapers, popular magazines, advertising, and small
blurbs in technical magazines. In fact, I often supply

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specitic permission.
0 1990 ACM 08979 I -346-9/90/0002/0034 $1.50

such articles from these sources to “prove” to my student,s
the usefulness of the programming projects that I assign.
The evidence is all apocryphal, but I believe that students
are more motivated and enthusiastic about writing pro-
grams whose significance and usefulness they can plainly
understand. Here is a summary of one such project,
which involves programming a cardioverter-defibrillator (a
complete specification for this program appears in Section

3).

Summary: It has been feasible (since the early
1980s) to implant a small device into the chest cavity
of a chronic heart patient who is expected to suffer a
life-threatening cardiac irregularity (arrhythmia) during
the next few months or years. This device, called a
cardioverter-defibrillator, includes a microprocessor whose
program continually monitors the rhythm of the patient’s
heart beat; if the program identifies a grossly abuormal
heart rhythm, it automatically directs the device to deliver
a powerful electrical shock to the heart in an attempt to
restore a normal rhythm. This project requires writing
a program that controls such a device by monitoring the
patient’s heart and deciding if and when it is necessary to

ver a tick.

I must simplify the actual specifications for such
real-world programs to a level appropriate for beginning
programming students. Typically, I accomplish this sim-
plification by paring down the true program specifications,
and by providing students with packages that contain useful
operations that are beyond their ability to write (see Section
2). Once students have studied types, expressions, state-
ments, and how t,o read and call subprograms in pa.cka.ges,
I can assign them many possible real-world programming
projects.

In summary, my programming projects focus on sys-
tems, not algorithms (although the systems often include
algorithms as constituents). Although there is an ac-
ceptable solution to the specified program, the solution
to the underlying problem is open-ended and can always
be improved with increased knowledge about the problem
domain (as is the case in most real-world programs). By
their nature, such projects lead to diverse questions - both
technical and social - about the problem domain and the
efficacy of applying computer solutions to it.

34

2 Using Packages in Projects

As discussed above, one way to simplify a programming
project is to provide students with packages that contain
useful operations that are beyond their ability to write. It
is often much easier to describe the semantics (for example,
by pre- and postconditions) of some complex-to-perform
operation than to implement the operation (especially in
the case of complicated I/O operations, which are described
in more detail below). Before I ask my students to write
a complete program, I teach them to read simple package
specifications (mostly containing subprograms) and to call
the subprograms supplied by these packages in their pro-
grams.

This version of a “procedures first” approach is dif-
ferent from the one commonly taught by introductory
programming texts. Instead of teaching my students to
write subprograms early (before they have learned the
control structures necessary to write useful subprograms),
I teach my students how to (1) read package specifications,
(2) access such packages from their programs, and (3) call
any subprograms specified in these packages. This “calI
before write” approach has two main advantages: it allows
students to write more interesting programs early in the
course and it familiarizes them with the process of writing
programs that call subprograms; so it is more natural for
them to continue writing well structured programs after
they learn how to write their own subprograms.

The “call before write” approach requires the linguistic
ability to cleanly separate a subprogram’s specification
from its implementation. Ada and Modula-2 are prime
examples of languages designed to embody this ability;
some Pascal implementations also extend the standard
language with “units” to achieve this goal. The ability
to build on the work of other programmers is a crucial
(but often ignored) part of an introductory programming
curriculum; the package/module/unit mechanism is one
language feature that allows students to gain this ability
easily. When this perspective is taught in a CS-1 course,
the more general use of “Abstract Data Types” or “Software
Components” in a CS-2 course follows naturally.

Many real-world programs, such as the cardioverter-
defibrillator described in this paper, are actually embedded
sys terns. Their interface to the real-world is supplied
by a collection of sensor and effector subprograms that
control devices external to the computer. An appropri-
ately equipped laboratory could include actual sensors and
effecters that are interfaced to a microcomputer. My
programming projects use interfaces to simulated devices:
the students use a package that contains sensor and effector
subprograms that provide a simple interface to the code
t,hat simula.tes the device. Note that the specification of the
package is fixed, whether its implementation is connected
to a real device or to code that simulates the device. So
a simulated implementation can easily be replaced by the
real thing; even if real devices are available, students can
use the packages that simulate the device to test and debug
their programs more effectively.

In general, all I/O is technology dependent. Language
designers, in an attempt to insulate their languages from
such technological dependencies, have omitted I/O opera-
tions. Instead, programmers use a more general mechanism
- packages - to specify and implement whatever I/O
operations they find useful; the language designers often
define standard packages for interfacing to terminals and

the file system (on top of which programmers can build their
own, more convenient I/O abstractions). This a.pproa.ch
meshes nicely with the discussion of embedded systems,
where subprograms in packages can specify and implement
operations affecting special I/O devices.

In fact, by relegating I/O operations to packages,
students can be easily motivated to learn how to read
packages and call their subprograms: because they must
acquire these skills to perform I/O from their programs.
Certainly describing the semantics of such I/O subprograms
is not any more difficult than describing the semantics of
built-in I/O subprograms - and the syntax and semantics
of using packages is quite simple. Therefore, in languages
where I/O is implemented with this advanced la.ngua.ge
feature, instructors are provided a context in which to t,each
their students how to read and use packages early in their
course - a much more important skill to acquire than
learning the specific I/O operations of a language.

Finally, besides problem specific packages I also pro-
vide my students with various utility packages for primitive
types. In the Integer-Utility package, for example, I
supply an Inc procedure (for incrementing va.riables) and
the Is-Between and Is-Opposite-Sign boolean functions.
I also provide my students with a Trace package that
contains procedures that easily display messages and values
on the users terminal (for those students not using the
debugger).

3 A Project Specification

This section describes a sample programming project that
I assign to my students. In a previous project they
have augmented a correct program; in the subsequent
project they will learn how to structure their programs with
subprograms that they write. By the time that I assign this
project, my students have written and hand simulated code
fragments containing all the relevant language features.

The actually project that I hand out to my students
begins with the summary shown in Section 1, and it
continues below with more detailed specifications of the
program. In Section 4, following this program specification,
is a discussion of a special package that the students use in
their programs.

Device Details: The program must somehow inter-
face to a device that can (1) monitor the heart and (2) shock
the heart. The sensing operation uses a single electrode
that digitizes the electrical activity of the contracting and
expanding heart muscle; it always returning an integer value
between -10 and +I0 inclusive. An example of a normal
heart rhythm, and how it is sensed by this device, is shown
below in Figure 1.

-io I
Figure 1: Digitization of a “Normal” Heart Beat

The shocking operation uses an electrode (possibly the same
one used for sensing, possibly a different set - it depends
on the technology used) to deliver an electrical shock to the
heart.

Sense/Shock Algorithm: To determine whether or
not to shock the heart, the program will continually sample

35

1 2 3

N:*1234 5678 901234 5678 90 1234 5678 9012
---- ------ ----- ---------------___________ -------I -___-__-------- ------ -_--- ----

c:o5950-3030-105950-3030-10 -2950-3030-1059...

2: 0 12 34 56 78012 34 56 . . .

Figure 2: Sense/Shock Algorithm Example

a set of 20 values, as one series of data, and count the
number of times that consecutive values go from a positive
to negative value (or vice-versa). This number is called

the “zero crossing count” for that series. The first series
of 20 values in the illustration above has a zero crossing
count of 8. If after sampling a series of 20 values the zero
crossing count lies between 5 and 10 (inclusive) the program
should take no special action; this number is considered to
be consistent with a normally beating heart. But if the zero
crossing count is less than 5, the heart will be assumed to
be beating much too slowly; if the zero crossing count is
greater than 10, the heart will be assumed to be fibrillating
(undergoing rapid, irregular contractions). In both of these
cases, the heart is not effectively pumping blood, and the
program should apply an electrical shock to the heart, in
an attempt to restore a normal rhythm.

Sense/Shock Details: This program should classify
0 as a positive number, even though mathematically zero
is classified as neither positive nor negative. When it
senses the first value, this program should assume that the
previously sensed value (there really isn’t one) was 0: note
that each zero crossing in computed from two numbers -
the currently sensed value and the previously sensed one -
so if the first sensed value is negative, the program counts
it as a zero crossing. Finally, whenever the program starts
another series of sensed values, it should use the last value
(from the previous series of values) as the previously sensed
value - to determine whether the new series starts with
a zero crossing. These details are made concrete in the
following example.

Sense/Shock Example: The table above (Figure 2)
shows a trace table of the sense/shock algorithm. The N
row, above the dashed line, shows the number of values
sensed, starting with * (before any sensing takes place)
and continuing up to 32 (a little over one series). The C
line shows the current value sensed; as stated above, these
values are all between -10 and +lO inclusive. The Z line
shows the zero crossing count computed so far for each
series; this value is incremented whenever the currently
sensed value has a sign that is opposite to that of the
previously sensed value. After sensing one complete series
of values (a I on the dashed line), notice that the zero
crossing count is reset to 0; because there was a total of
8 zero crossings for this first series of data, the program
should not shock the heart (because this value lies between
5 and 10 inclusive). Finally, notice that the first value in
the second series (the 21st data value) causes the program
to increment the zero crossing count, because its sign is
opposite that of the previous value - the 0 sensed as the
last value in the previous series.

Aside: When lecturing about this programming
project, at this point I discuss the Therac-25 incident, in
which the deaths of 3 persons were discovered to be directly
caused by a software malfunction in a cancer radiation-
therapy machine. We briefly discuss the benefits of a

cardioverter-defibrillator and the various failures possible
in such a device, and their consequences (along with the
consequences of not using such a device in the first place).
For more detailed medical and electrical information about
the cardioverter-defibrillator device, and the program that
controls it (and the Therac-25 incident), I refer my students
to the following articles: [Corcoran 861, [Jacky 891, [Langer
761, and [Mirowski 851.

4 A Package to Monitor/Shock

The program specified above must somehow interface to a
device (real or simulated) that can (1) monitor the heart
and (2) shock the heart. For this program, I supply
my students with a package (placed in a standard libra.rJ
accessible by all students) that simulates such a device.
The sensing (monitoring) operation is simulated by rea.ding
values from some user-specified file: I provide my students
with various test files, containing normal, abnormal, and
mixed heart rhythms. The shocking operation is simulated
by displaying information on the user’s terminal screen (so
the programmer can tell when the program decided to shock
the heart).

The package also includes a special exception that the
Sense function raises whenever the file that it is reading
contains no more values; I tell my students to terminate
their programs whenever this exception is raised. In actual
use, the program would continually monitor the heart until
it was externally deactivated (or possibly recognized some
internal fault and deactivated itself).

My students are allowed to read this package specifica-
tion, but not its implementation. Later in the course, when
they are learning to write their own packages, they study
this package’s implementation as an example, because the
students are already familiar with its specification and use.

Here, in a condensed form, are the required components for
this package. The entire package specification (containing
important comments) for this simulated device is shown in
Appendix 2.

PACKAGE Simulated-Heart-Device IS
Terminate-Simulation : EXCEPTION;

FUNCTION Sense REXVRN INTEGER;
PROCEDURE Shock;

END Simulated-Heart-Device;

5 Stepwise-Enhancement

The term “stepwise-refinement” describes a variety of meth-
ods that we can use to solve programming problems in a
series of steps. I teach my students a stepwise-refinement

36

variation that I call “stepwise-enhancement”. This method
requires students to formulate a plan that alternates stages
of synthesis and analysis, ultimately leading to the devel-
opment of a program that fully meets its required speci-
fications. After generally discussing stepwise-enhancement
in this section, I will illustrate how to apply this technique
to build a program that meets the cardioverter-defibrillator
specifications.

To use the stepwise-enhancement technique, students
first must reduce the program specifications to a minimum,
concentrating on their main structural features and ignoring
all the complicated details that will make the program
difficult to write. Then they design, implement, and
test (either by hand simulation or by actually compiling,
linking and running on the computer) a complete version
of the program that meets these simplest specifications.
When they are satisfied that this program is well written
and correct according to the simplest specifications, they
proceed to the next stage, enhancing the specifications to
include some of the complicated details that were previously
ignored. Once again they design, implement, and test an
enhanced version of the program, which meets the enhanced
specifications.

The students continue repeating this process - at each
stage enhancing the specifications and writing an enhanced
program that meets these new specifications - until they
have solved the complete problem described in the original
specifications. For each of these stages, I recommend that
my students should first hand simulate their code; then
enter it onto the computer, remove the compilation errors,
and finally link and run the code - and then debug the
execution and intent errors (if any remain that were not
detected during the hand simulation).

Thus, step by step the students enhance the simplified
specifications and their programs, until they have written
programs meeting the original specifications. At every stage
they are making small additions or modifications to an
already correct (for the simplified specifications) program.
If at any stage they discover that an enhancement is not
correct, they typically need to reexamine only that small
amount of code that was added or modified from the
previously correct version of the program: they can use this
fact to focus their attention when debugging the program.
At the end of each stage, it is important to have a well
written and easily readable program, since this is the code
that they will immediately build upon in the subsequent
stages of the stepwise enhancement. Therefore it is critical
to finish each stage by simplifying and documenting its code
as much as possible, before advancing to the next stage of
enhancement.

Fundamentally the stepwise-enhancement technique is
useful because it is easier to design, implement, and test a
series of increasingly more sophisticated complete programs
than it is to attempt writing one large program that solves
the original problem specifications at the outset; that is,
it is easier to solve a series of many small problems than
it is to solve one big problem (commonly called “divide
and conquer”). This technique also allows students to test
their original ideas on how to solve the main features of the
problem in a simple program first. They receive feedback,
at very short intervals, that tells them whether or not
they are on the correct path to a solution program. So,
if their initial ideas are incorrect, they can recognize this
fact quickly and discard the ideas early in the programming
process, without committing a lot of time and effort to

pursuing them; such feedback is critical for students who
are learning in parallel the language features and how to
use these features when writing programs. If their initial
ideas are correct, confirming them in a simplified working
program will give the students confidence, as they ta.ckle the
more complicated details in the specifications. In either
case, students are gaining experience by learning more
about the problem and its solution program.

As students gain more programming experience, it will
become more obvious to them what are the important struc-
tural features in specifications and what are the complicated
details; as their programming skill increases, they will be
able to implement more complicated specifications at the
outset, without having to simplify them further. If parts
of the specification are unclear, ambiguous, or just difficult
to understand, I advise my students to try to delay coding
these parts until the later stages of their programs - so
that they can continue coding while seeking clarifications
to the specification. At the end of each stage, students
should have a working program that they can test on the
computer to ensure that it correctly solves the problem at
that stage (getting confirming feedback from the computer
is vital). After they are convinced that the program at this
stage is correct, they should simplify and clarify it as much
as possible, before proceeding to the next stage. If they
do not finish a program, they still should have a running
program that solves a simpler problem.

Now let us examine how to apply this technique to plan
the stages of the cardiovertor-defibrillator program, whose
specifications were discussed earlier in this paper.

6 Building the Example

For the cardioverter-defibrillator specification, I present my
students with the following plan as a stepwise-enhancement
in four stages: (1) write a complete program that senses
(and displays) all th e values and terminates correctly; (2)
enhance the program to count each series of 20 values tha.t
it senses and display a message at the end of each series;
(3) enhance the program to compute the zero crossing count
for each series; (4) finally, enhance the program to meet the
original specifications, shocking the heart when it detects a
grossly abnormal rhythm.

The final program that solves this problem is shown
in Appendix 1. Because of space limitations, only the la.st,
of these four complete programs can be shown; interested
readers should contact me for the first three complete
programs.

7 Bibliography

Corcoran 86, Medical Electronics, IEEE Spectrum, Jan-
uary 1986, pages 82-84.

Jacky, 89, Programmed for Disaster The Sciences, Vol29,
No 5, September/October 1989, pages 22-27.

Langer, et. al. 76, Considerations in the development
of the automatic implantable defibrillator, Medical Instru-

mentation, Vol 10, No 3, May-June 1976, pages 163-167.

Mirowski 85, The Automatic Implantable Cardioverter-
Defibrillator: An Overview, Journal of the American Col-
lege of Cardiology (JACC), Vol6, No 2, August 1985, pages
461-466.

37

Appendix 1: The Complete Program

1.
2.
3.
4.
5.
6.
7.
a.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

--

---~_--_-~---_~~----~~~----~~~----~~~~~--~~~~--~~~--~~~~~~~~-~~~~~-~~~~~~~~~~-

-- Cardiac-Controller is a program that shocks a heart when it detects a
-- grossly abnormal heart beat. It senses/shocks the heart using subprograms
-- contained in the Simulated-Heart-Device package. It operates by continually
-- processing a series of values, counting the number zero crossings that
-- occur during each complete series, and shocking the heart if this number
-- falls outside a specified range. ZCC abbreviates Zero Crossing Count.
--

-- Richard E. Pattis
-- CS-210, Fall 1988

WITH Integer-Utility, Simulated-Heart-Device;

PROCEDURE Cardiac-Controller is

PACKAGE IU RENAMES Integer-Utility;
PACKAGE HD RENAMES Simulated-Heart-Device;

ZCC-Series-Size : CONSTANT INTEGER := 20; -- Series to compute each ZCC
#inimum,OK-ZCC : CONSTANT INTEGER := 5; -- If < heart beating too slow
Maximum-OK-ZCC : CONSTANT INTEGER := 10; -- If > heart in fibrillation

Sense-Count : INTEGER := 0; -- Hoa many in current series
zcc : INTEGER := 0; -- Zero crossing count so far
Old-Sense : INTEGER := 0; -- Previously sensed value
New-Sense : INTEGER; -- Currently sensed value

--
--

-- Sense-Shock terminates when calling HD.Sense raises an exception; otherwise
-- it updates Nea-Sense, Sense-Count, (possibly) ZCC and Old-Sense during each
-- iteration. After every ZCC-Series-Size iterations, it decides whether to
-- call HD.Shock, and resets Sense-Count and ZCC for the next iteration.
--

BEGIN
Sense-Shock: LOOP

-I

New-Sense:= HD.Sense;
--

-- TERMINATE: raise exception?

IU.Inc(Sense,Count); -- Process neuly sensed value
IF IU.Is-Opposite-Sign(Old-Sense, New-Sense)

THEN IU.Inc(ZCC);
END IF;

IF Sense-Count = ZCC-Series-Size
THEN

-- Sensed a complete series?

IF NOT IU.Is-BetaeenWnimum-OK-ZCC, ZCC, Maximum-OK-ZCC)
THEN HD.Shock;

END IF;
Sense-Count:= 0; -- Reset for next series
zcc := 0. I

END IF;

Old-Sense:= New-Sense;
END LOOP Sense-Shock;

EXCEPTION
WHEN HD.Terminate-Simulation => NULL;

END Cardiac-Controller;

-- Save neu value as old one

-- Terminate gracefully

38

Appendix 2: The Commented Package Specification

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54,
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

_____--__----_______--
.-------------_---
: Device Interface -- Class

--
-- Author
--
--
--

: Richard E. Pattis
Department of Computer Science, FR-35
University of Washington
Seattle, WA 98195
Office Phone: (206) 545-1218
Computer Account: C2517 on VAX1

--
--
--

-- History
WI

: 8/30/1988: Operational
9/ 3/1989: Bug fixed in Shock (misspelling in announcement)

-- Description:

-- This package includes two subprograms that provide a simple interface to
-- a simulated device that can sense a heart signal and shock the heart. The
-- Sense function returns information that it gets from a file (the user of
-- any program using this package is automatically prompted for the name of a
-- file that contains the simulated data; the Terminate-Simulation exception
-- is raised when there is no more to sense); the Shock procedure displays a
-- message on the user>s terminal each time that it is called.
------------------__-- --------
--

PACKAGE Simulated-Heart-Device IS

FUNCTION Sense RETURN INTEGER; -- Sense the simulated heart beat
PROCEDURE Shock; -- Shock the simulated heart

Terminate-Simulation : EXCEPTION; -- Raised by Sense, ahen no more data

Semantics

-- FUNCTION Sense RETURN INTEGER;
-- Pre : See initialization below.
-- PreE: There is data to sense in the file; raises Terminate-Simulation.
.w- Post: Sense returns the next simulated heart reading; it will always be
-- an INTEGER value between -10 and +lO inclusive
-- Note: Sense skips any value that is not an integer between -10 and +lO.

-- PROCEDURE Shock;
-- Pre : See initialization below.
..- Post: Shock displays the message "Heart shocked after NNN beats." where
-- INN is replaced by the number of times Sense has been called
-- since the program began running.

-- Initialization: The user will automatically be prompted to enter the name
-- of a file that contains the simulated heart data; if the entered file
-- name cannot be found, the user is reprompted for this information.
--

END Simulated-Heart-Device;

39

