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Abstract 

This paper presents a philosophy underlying CS-1 pro- 

gramming projects, and illustrates this philosophy with a 
concrete example. Integral to the philosophy is the use 
of Ada packages (or Modula-2 modules, or Pascal units) 
and the stepwise-enhancement programming method. The 
example project specifies a simple program that controls 
a simulated cardioverter-defibrillator; the first appendix 
shows a program that meets these specifications. The 
packages and programs in this paper are written in Ada 
(the programming language that we use at the University 
of Washington in our introductory programming courses), 
but they could be easily transliterated into any language 
that included the package/module/unit feature. 

1 Project Philosophy 

In the beginning of a programming course, students must 
learn the syntax and semantics of a programming language; 
they must also learn how to build programs, given their 
specifications, using the language features studied. Pro- 
gramming projects ensure that, students achieve both goals. 
Certainly, such projects must meet the criterion that they 
require the student to exercise his/her knowledge of the 
relevant language features and programming method. But 
well chosen projects can also instruct students about how 
computers are used in the world outside the classroom, 
and stimulate them to think about the ramifications of 
computerization in society. 

In my CS-1 courses, I try to assign real-world pro- 
gramming projects (suitably simplified) as early as possible. 
Interesting applications of computers are reported daily 
in the media: I frequently find inspiration for projects 
in newspapers, popular magazines, advertising, and small 
blurbs in technical magazines. In fact, I often supply 
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such articles from these sources to “prove” to my student,s 
the usefulness of the programming projects that I assign. 
The evidence is all apocryphal, but I believe that students 
are more motivated and enthusiastic about writing pro- 
grams whose significance and usefulness they can plainly 
understand. Here is a summary of one such project, 
which involves programming a cardioverter-defibrillator (a 
complete specification for this program appears in Section 

3). 

Summary: It has been feasible (since the early 
1980s) to implant a small device into the chest cavity 
of a chronic heart patient who is expected to suffer a 
life-threatening cardiac irregularity (arrhythmia) during 
the next few months or years. This device, called a 
cardioverter-defibrillator, includes a microprocessor whose 
program continually monitors the rhythm of the patient’s 
heart beat; if the program identifies a grossly abuormal 
heart rhythm, it automatically directs the device to deliver 
a powerful electrical shock to the heart in an attempt to 
restore a normal rhythm. This project requires writing 
a program that controls such a device by monitoring the 
patient’s heart and deciding if and when it is necessary to 

ver a tick. 

I must simplify the actual specifications for such 
real-world programs to a level appropriate for beginning 
programming students. Typically, I accomplish this sim- 
plification by paring down the true program specifications, 
and by providing students with packages that contain useful 
operations that are beyond their ability to write (see Section 
2). Once students have studied types, expressions, state- 
ments, and how t,o read and call subprograms in pa.cka.ges, 
I can assign them many possible real-world programming 
projects. 

In summary, my programming projects focus on sys- 
tems, not algorithms (although the systems often include 
algorithms as constituents). Although there is an ac- 
ceptable solution to the specified program, the solution 
to the underlying problem is open-ended and can always 
be improved with increased knowledge about the problem 
domain (as is the case in most real-world programs). By 
their nature, such projects lead to diverse questions - both 
technical and social - about the problem domain and the 
efficacy of applying computer solutions to it. 
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2 Using Packages in Projects 

As discussed above, one way to simplify a programming 
project is to provide students with packages that contain 
useful operations that are beyond their ability to write. It 
is often much easier to describe the semantics (for example, 
by pre- and postconditions) of some complex-to-perform 
operation than to implement the operation (especially in 
the case of complicated I/O operations, which are described 
in more detail below). Before I ask my students to write 
a complete program, I teach them to read simple package 
specifications (mostly containing subprograms) and to call 
the subprograms supplied by these packages in their pro- 
grams. 

This version of a “procedures first” approach is dif- 
ferent from the one commonly taught by introductory 
programming texts. Instead of teaching my students to 
write subprograms early (before they have learned the 
control structures necessary to write useful subprograms), 
I teach my students how to (1) read package specifications, 
(2) access such packages from their programs, and (3) call 
any subprograms specified in these packages. This “calI 
before write” approach has two main advantages: it allows 
students to write more interesting programs early in the 
course and it familiarizes them with the process of writing 
programs that call subprograms; so it is more natural for 
them to continue writing well structured programs after 
they learn how to write their own subprograms. 

The “call before write” approach requires the linguistic 
ability to cleanly separate a subprogram’s specification 
from its implementation. Ada and Modula-2 are prime 
examples of languages designed to embody this ability; 
some Pascal implementations also extend the standard 
language with “units” to achieve this goal. The ability 
to build on the work of other programmers is a crucial 
(but often ignored) part of an introductory programming 
curriculum; the package/module/unit mechanism is one 
language feature that allows students to gain this ability 
easily. When this perspective is taught in a CS-1 course, 
the more general use of “Abstract Data Types” or “Software 
Components” in a CS-2 course follows naturally. 

Many real-world programs, such as the cardioverter- 
defibrillator described in this paper, are actually embedded 
sys terns. Their interface to the real-world is supplied 
by a collection of sensor and effector subprograms that 
control devices external to the computer. An appropri- 
ately equipped laboratory could include actual sensors and 
effecters that are interfaced to a microcomputer. My 
programming projects use interfaces to simulated devices: 
the students use a package that contains sensor and effector 
subprograms that provide a simple interface to the code 
t,hat simula.tes the device. Note that the specification of the 
package is fixed, whether its implementation is connected 
to a real device or to code that simulates the device. So 
a simulated implementation can easily be replaced by the 
real thing; even if real devices are available, students can 
use the packages that simulate the device to test and debug 
their programs more effectively. 

In general, all I/O is technology dependent. Language 
designers, in an attempt to insulate their languages from 
such technological dependencies, have omitted I/O opera- 
tions. Instead, programmers use a more general mechanism 
- packages - to specify and implement whatever I/O 
operations they find useful; the language designers often 
define standard packages for interfacing to terminals and 

the file system (on top of which programmers can build their 
own, more convenient I/O abstractions). This a.pproa.ch 
meshes nicely with the discussion of embedded systems, 
where subprograms in packages can specify and implement 
operations affecting special I/O devices. 

In fact, by relegating I/O operations to packages, 
students can be easily motivated to learn how to read 
packages and call their subprograms: because they must 
acquire these skills to perform I/O from their programs. 
Certainly describing the semantics of such I/O subprograms 
is not any more difficult than describing the semantics of 
built-in I/O subprograms - and the syntax and semantics 
of using packages is quite simple. Therefore, in languages 
where I/O is implemented with this advanced la.ngua.ge 
feature, instructors are provided a context in which to t,each 
their students how to read and use packages early in their 
course - a much more important skill to acquire than 
learning the specific I/O operations of a language. 

Finally, besides problem specific packages I also pro- 
vide my students with various utility packages for primitive 
types. In the Integer-Utility package, for example, I 
supply an Inc procedure (for incrementing va.riables) and 
the Is-Between and Is-Opposite-Sign boolean functions. 
I also provide my students with a Trace package that 
contains procedures that easily display messages and values 
on the users terminal (for those students not using the 
debugger). 

3 A Project Specification 

This section describes a sample programming project that 
I assign to my students. In a previous project they 
have augmented a correct program; in the subsequent 
project they will learn how to structure their programs with 
subprograms that they write. By the time that I assign this 
project, my students have written and hand simulated code 
fragments containing all the relevant language features. 

The actually project that I hand out to my students 
begins with the summary shown in Section 1, and it 
continues below with more detailed specifications of the 
program. In Section 4, following this program specification, 
is a discussion of a special package that the students use in 
their programs. 

Device Details: The program must somehow inter- 
face to a device that can (1) monitor the heart and (2) shock 
the heart. The sensing operation uses a single electrode 
that digitizes the electrical activity of the contracting and 
expanding heart muscle; it always returning an integer value 
between -10 and +I0 inclusive. An example of a normal 
heart rhythm, and how it is sensed by this device, is shown 
below in Figure 1. 

-io I 
Figure 1: Digitization of a “Normal” Heart Beat 

The shocking operation uses an electrode (possibly the same 
one used for sensing, possibly a different set - it depends 
on the technology used) to deliver an electrical shock to the 
heart. 

Sense/Shock Algorithm: To determine whether or 
not to shock the heart, the program will continually sample 
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1 2 3 

N:*1234 5678 901234 5678 90 1234 5678 9012 
---- ------ ----- ---------------___________ -------I -___-__-------- ------ -_--- ---- 

c:o5950-3030-105950-3030-10 -2950-3030-1059... 

2: 0 12 34 56 78012 34 56 . . . 

Figure 2: Sense/Shock Algorithm Example 

a set of 20 values, as one series of data, and count the 
number of times that consecutive values go from a positive 
to negative value (or vice-versa). This number is called 

the “zero crossing count” for that series. The first series 
of 20 values in the illustration above has a zero crossing 
count of 8. If after sampling a series of 20 values the zero 
crossing count lies between 5 and 10 (inclusive) the program 
should take no special action; this number is considered to 
be consistent with a normally beating heart. But if the zero 
crossing count is less than 5, the heart will be assumed to 
be beating much too slowly; if the zero crossing count is 
greater than 10, the heart will be assumed to be fibrillating 
(undergoing rapid, irregular contractions). In both of these 
cases, the heart is not effectively pumping blood, and the 
program should apply an electrical shock to the heart, in 
an attempt to restore a normal rhythm. 

Sense/Shock Details: This program should classify 
0 as a positive number, even though mathematically zero 
is classified as neither positive nor negative. When it 
senses the first value, this program should assume that the 
previously sensed value (there really isn’t one) was 0: note 
that each zero crossing in computed from two numbers - 
the currently sensed value and the previously sensed one - 
so if the first sensed value is negative, the program counts 
it as a zero crossing. Finally, whenever the program starts 
another series of sensed values, it should use the last value 
(from the previous series of values) as the previously sensed 
value - to determine whether the new series starts with 
a zero crossing. These details are made concrete in the 
following example. 

Sense/Shock Example: The table above (Figure 2) 
shows a trace table of the sense/shock algorithm. The N 
row, above the dashed line, shows the number of values 
sensed, starting with * (before any sensing takes place) 
and continuing up to 32 (a little over one series). The C 
line shows the current value sensed; as stated above, these 
values are all between -10 and +lO inclusive. The Z line 
shows the zero crossing count computed so far for each 
series; this value is incremented whenever the currently 
sensed value has a sign that is opposite to that of the 
previously sensed value. After sensing one complete series 
of values (a I on the dashed line), notice that the zero 
crossing count is reset to 0; because there was a total of 
8 zero crossings for this first series of data, the program 
should not shock the heart (because this value lies between 
5 and 10 inclusive). Finally, notice that the first value in 
the second series (the 21st data value) causes the program 
to increment the zero crossing count, because its sign is 
opposite that of the previous value - the 0 sensed as the 
last value in the previous series. 

Aside: When lecturing about this programming 
project, at this point I discuss the Therac-25 incident, in 
which the deaths of 3 persons were discovered to be directly 
caused by a software malfunction in a cancer radiation- 
therapy machine. We briefly discuss the benefits of a 

cardioverter-defibrillator and the various failures possible 
in such a device, and their consequences (along with the 
consequences of not using such a device in the first place). 
For more detailed medical and electrical information about 
the cardioverter-defibrillator device, and the program that 
controls it (and the Therac-25 incident), I refer my students 
to the following articles: [Corcoran 861, [Jacky 891, [Langer 
761, and [Mirowski 851. 

4 A Package to Monitor/Shock 

The program specified above must somehow interface to a 
device (real or simulated) that can (1) monitor the heart 
and (2) shock the heart. For this program, I supply 
my students with a package (placed in a standard libra.rJ 
accessible by all students) that simulates such a device. 
The sensing (monitoring) operation is simulated by rea.ding 
values from some user-specified file: I provide my students 
with various test files, containing normal, abnormal, and 
mixed heart rhythms. The shocking operation is simulated 
by displaying information on the user’s terminal screen (so 
the programmer can tell when the program decided to shock 
the heart). 

The package also includes a special exception that the 
Sense function raises whenever the file that it is reading 
contains no more values; I tell my students to terminate 
their programs whenever this exception is raised. In actual 
use, the program would continually monitor the heart until 
it was externally deactivated (or possibly recognized some 
internal fault and deactivated itself). 

My students are allowed to read this package specifica- 
tion, but not its implementation. Later in the course, when 
they are learning to write their own packages, they study 
this package’s implementation as an example, because the 
students are already familiar with its specification and use. 

Here, in a condensed form, are the required components for 
this package. The entire package specification (containing 
important comments) for this simulated device is shown in 
Appendix 2. 

PACKAGE Simulated-Heart-Device IS 
Terminate-Simulation : EXCEPTION; 

FUNCTION Sense REXVRN INTEGER; 
PROCEDURE Shock; 

END Simulated-Heart-Device; 

5 Stepwise-Enhancement 

The term “stepwise-refinement” describes a variety of meth- 
ods that we can use to solve programming problems in a 
series of steps. I teach my students a stepwise-refinement 
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variation that I call “stepwise-enhancement”. This method 
requires students to formulate a plan that alternates stages 
of synthesis and analysis, ultimately leading to the devel- 
opment of a program that fully meets its required speci- 
fications. After generally discussing stepwise-enhancement 
in this section, I will illustrate how to apply this technique 
to build a program that meets the cardioverter-defibrillator 
specifications. 

To use the stepwise-enhancement technique, students 
first must reduce the program specifications to a minimum, 
concentrating on their main structural features and ignoring 
all the complicated details that will make the program 
difficult to write. Then they design, implement, and 
test (either by hand simulation or by actually compiling, 
linking and running on the computer) a complete version 
of the program that meets these simplest specifications. 
When they are satisfied that this program is well written 
and correct according to the simplest specifications, they 
proceed to the next stage, enhancing the specifications to 
include some of the complicated details that were previously 
ignored. Once again they design, implement, and test an 
enhanced version of the program, which meets the enhanced 
specifications. 

The students continue repeating this process - at each 
stage enhancing the specifications and writing an enhanced 
program that meets these new specifications - until they 
have solved the complete problem described in the original 
specifications. For each of these stages, I recommend that 
my students should first hand simulate their code; then 
enter it onto the computer, remove the compilation errors, 
and finally link and run the code - and then debug the 
execution and intent errors (if any remain that were not 
detected during the hand simulation). 

Thus, step by step the students enhance the simplified 
specifications and their programs, until they have written 
programs meeting the original specifications. At every stage 
they are making small additions or modifications to an 
already correct (for the simplified specifications) program. 
If at any stage they discover that an enhancement is not 
correct, they typically need to reexamine only that small 
amount of code that was added or modified from the 
previously correct version of the program: they can use this 
fact to focus their attention when debugging the program. 
At the end of each stage, it is important to have a well 
written and easily readable program, since this is the code 
that they will immediately build upon in the subsequent 
stages of the stepwise enhancement. Therefore it is critical 
to finish each stage by simplifying and documenting its code 
as much as possible, before advancing to the next stage of 
enhancement. 

Fundamentally the stepwise-enhancement technique is 
useful because it is easier to design, implement, and test a 
series of increasingly more sophisticated complete programs 
than it is to attempt writing one large program that solves 
the original problem specifications at the outset; that is, 
it is easier to solve a series of many small problems than 
it is to solve one big problem (commonly called “divide 
and conquer”). This technique also allows students to test 
their original ideas on how to solve the main features of the 
problem in a simple program first. They receive feedback, 
at very short intervals, that tells them whether or not 
they are on the correct path to a solution program. So, 
if their initial ideas are incorrect, they can recognize this 
fact quickly and discard the ideas early in the programming 
process, without committing a lot of time and effort to 

pursuing them; such feedback is critical for students who 
are learning in parallel the language features and how to 
use these features when writing programs. If their initial 
ideas are correct, confirming them in a simplified working 
program will give the students confidence, as they ta.ckle the 
more complicated details in the specifications. In either 
case, students are gaining experience by learning more 
about the problem and its solution program. 

As students gain more programming experience, it will 
become more obvious to them what are the important struc- 
tural features in specifications and what are the complicated 
details; as their programming skill increases, they will be 
able to implement more complicated specifications at the 
outset, without having to simplify them further. If parts 
of the specification are unclear, ambiguous, or just difficult 
to understand, I advise my students to try to delay coding 
these parts until the later stages of their programs - so 
that they can continue coding while seeking clarifications 
to the specification. At the end of each stage, students 
should have a working program that they can test on the 
computer to ensure that it correctly solves the problem at 
that stage (getting confirming feedback from the computer 
is vital). After they are convinced that the program at this 
stage is correct, they should simplify and clarify it as much 
as possible, before proceeding to the next stage. If they 
do not finish a program, they still should have a running 
program that solves a simpler problem. 

Now let us examine how to apply this technique to plan 
the stages of the cardiovertor-defibrillator program, whose 
specifications were discussed earlier in this paper. 

6 Building the Example 

For the cardioverter-defibrillator specification, I present my 
students with the following plan as a stepwise-enhancement 
in four stages: (1) write a complete program that senses 
(and displays) all th e values and terminates correctly; (2) 
enhance the program to count each series of 20 values tha.t 
it senses and display a message at the end of each series; 
(3) enhance the program to compute the zero crossing count 
for each series; (4) finally, enhance the program to meet the 
original specifications, shocking the heart when it detects a 
grossly abnormal rhythm. 

The final program that solves this problem is shown 
in Appendix 1. Because of space limitations, only the la.st, 
of these four complete programs can be shown; interested 
readers should contact me for the first three complete 
programs. 
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Appendix 1: The Complete Program 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
a. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 

------------------------------------------------------------------------------ 

---~_--_-~---_~~----~~~----~~~----~~~~~--~~~~--~~~--~~~~~~~~-~~~~~-~~~~~~~~~~- 

-- Cardiac-Controller is a program that shocks a heart when it detects a 
-- grossly abnormal heart beat. It senses/shocks the heart using subprograms 
-- contained in the Simulated-Heart-Device package. It operates by continually 
-- processing a series of values, counting the number zero crossings that 
-- occur during each complete series, and shocking the heart if this number 
-- falls outside a specified range. ZCC abbreviates Zero Crossing Count. 
-- 

-- Richard E. Pattis 
-- CS-210, Fall 1988 

WITH Integer-Utility, Simulated-Heart-Device; 

PROCEDURE Cardiac-Controller is 

PACKAGE IU RENAMES Integer-Utility; 
PACKAGE HD RENAMES Simulated-Heart-Device; 

ZCC-Series-Size : CONSTANT INTEGER := 20; -- Series to compute each ZCC 
#inimum,OK-ZCC : CONSTANT INTEGER := 5; -- If < heart beating too slow 
Maximum-OK-ZCC : CONSTANT INTEGER := 10; -- If > heart in fibrillation 

Sense-Count : INTEGER := 0; -- Hoa many in current series 
zcc : INTEGER := 0; -- Zero crossing count so far 
Old-Sense : INTEGER := 0; -- Previously sensed value 
New-Sense : INTEGER; -- Currently sensed value 

------------------------------------------------------------------------------ 
------------------------------------------------------------------------------ 

-- Sense-Shock terminates when calling HD.Sense raises an exception; otherwise 
-- it updates Nea-Sense, Sense-Count, (possibly) ZCC and Old-Sense during each 
-- iteration. After every ZCC-Series-Size iterations, it decides whether to 
-- call HD.Shock, and resets Sense-Count and ZCC for the next iteration. 
-- 

BEGIN 
Sense-Shock: LOOP 

-I 

New-Sense:= HD.Sense; 
-- 

-- TERMINATE: raise exception? 

IU.Inc(Sense,Count); -- Process neuly sensed value 
IF IU.Is-Opposite-Sign(Old-Sense, New-Sense) 

THEN IU.Inc(ZCC); 
END IF; 

IF Sense-Count = ZCC-Series-Size 
THEN 

-- Sensed a complete series? 

IF NOT IU.Is-BetaeenWnimum-OK-ZCC, ZCC, Maximum-OK-ZCC) 
THEN HD.Shock; 

END IF; 
Sense-Count:= 0; -- Reset for next series 
zcc := 0. I 

END IF; 

Old-Sense:= New-Sense; 
END LOOP Sense-Shock; 

EXCEPTION 
WHEN HD.Terminate-Simulation => NULL; 

END Cardiac-Controller; 

-- Save neu value as old one 

-- Terminate gracefully 
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Appendix 2: The Commented Package Specification 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 
51. 
52. 
53. 
54, 
55. 
56. 
57. 
58. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 

_____--__----_______---------------------------------------------------------- 
.-------------_----------------------------------------------------- 
: Device Interface -- Class 

-- 
-- Author 
-- 
-- 
-- 

: Richard E. Pattis 
Department of Computer Science, FR-35 
University of Washington 
Seattle, WA 98195 
Office Phone: (206) 545-1218 
Computer Account: C2517 on VAX1 

-- 
-- 
-- 

-- History 
WI 

: 8/30/1988: Operational 
9/ 3/1989: Bug fixed in Shock (misspelling in announcement) 

-- Description: 

-- This package includes two subprograms that provide a simple interface to 
-- a simulated device that can sense a heart signal and shock the heart. The 
-- Sense function returns information that it gets from a file (the user of 
-- any program using this package is automatically prompted for the name of a 
-- file that contains the simulated data; the Terminate-Simulation exception 
-- is raised when there is no more to sense); the Shock procedure displays a 
-- message on the user>s terminal each time that it is called. 
------------------__-------------------------------------------------- -------- 
------------------------------------------------------------------------------ 

PACKAGE Simulated-Heart-Device IS 

FUNCTION Sense RETURN INTEGER; -- Sense the simulated heart beat 
PROCEDURE Shock; -- Shock the simulated heart 

Terminate-Simulation : EXCEPTION; -- Raised by Sense, ahen no more data 

Semantics 

-- FUNCTION Sense RETURN INTEGER; 
-- Pre : See initialization below. 
-- PreE: There is data to sense in the file; raises Terminate-Simulation. 
.w- Post: Sense returns the next simulated heart reading; it will always be 
-- an INTEGER value between -10 and +lO inclusive 
-- Note: Sense skips any value that is not an integer between -10 and +lO. 

-- PROCEDURE Shock; 
-- Pre : See initialization below. 
..- Post: Shock displays the message "Heart shocked after NNN beats." where 
-- INN is replaced by the number of times Sense has been called 
-- since the program began running. 

-- Initialization: The user will automatically be prompted to enter the name 
-- of a file that contains the simulated heart data; if the entered file 
-- name cannot be found, the user is reprompted for this information. 
-- 

END Simulated-Heart-Device; 
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