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Abstract. Biological life is characterized by a robustness to noise often lacking in 

digital models. Although noise in the form of mutations has an important 

evolutionary purpose, it is also a threat that living systems are particularly adept at 

defending against. Artificial Life systems are frequently state-machines of some sort, 

requiring robustness mechanisms aimed at preserving and correcting state 

information. We explore a class of mechanisms based on robustness in transition 

dynamics rather than robustness in the emergent patterns of complex systems. We 

propose a Game of Life enhancement in which disrupting noise in the form of 

random state changes is corrected using a “light cone” of spatial and temporal 

context information. This enhancement does not change the original rules: a 

noiseless enhanced run is identical to an unenhanced run. We believe this general 

scheme could be applicable to other parallel computing systems in which contextual 

information determines state transitions.



Introduction – biological robustness and the challenge for digital models

A characteristic feature of biological life is its robustness to many types of perturbations. The 

genetic code precisely specifies a mapping between DNA and proteins, yet inbuilt redundancy and 

error correction mechanisms make genomes stable over millions of years. In contrast to biological 

systems, digital systems have some areas of robustness, but they are frequently brittle with respect 

to many types of damage, including random noise.

The process of creating a model of a biological system necessarily abstracts and simplifies 

components. In the past, models have frequently omitted any stochastic components in the search 

for other insights from natural computation. Many properties of biological systems are emergent, 

and computational models are a powerful method for studying how complexity emerges from 

simple processes. The Game of Life is one such model for studying the emergence of dynamic 

propagating patterns from simple local rules (Gardner 1970). Models of the emergence of 

different forms of complex structures are now an established area of study of computational 

modelling and insights are being integrated into systems biology.

A major challenge for computational modellers in general, and systems biologists in 

particular, is how to model robustness in biological systems. Precise definitions of robustness 

differ depending on the source of variation. The first step in modeling the robustness of living 

systems lies in identifying which features a system are most significant for robust dynamics and 

what kinds of abstractions provide informative analogues. Models such as the Game of Life 

provided powerful analogies for studying emergent dynamics, but the patterns of gliders, glider 

guns and other structures are very brittle, in the sense that any non-zero probability of noise 

destroys the intricate dynamics. Similarly, in a different domain, genetic regulatory networks have 

been modeled by Random Boolean Networks (RBNs), which show attractors that provide 

interesting analogies with cell types (Kauffman, 1995). Some attention has been given to the 

nature of the updating schemes in model systems and synchronous updating has been shown to 

play a role in maintaining complex structure in many systems. A critical phase transition occurs in 

the Game of Life as the fraction of cells that are updated changes from low to high synchrony 

(Blok and Bergerson 1999) and has been shown to affect the number and length of limit cycles in 

genetic regulatory networks (Harvey and Bossomaier 1997; Di Paolo 2001; Hallinan and Wiles 

2004). Random noise has some similarities to stochastic updating in destroying structures that 

depend on synchronous transitions.

A variety of approaches have been taken to studying robustness in computational systems. 

Reliable computing with unreliable components is a subject that has drawn interest since Von 

Neumann’s time (von Neumann 1966). Probabilistic cellular automata (PCA) have been used to 

study both innately probabilistic phenomena, such as the behaviour of human populations. For 

example, models have been developed of the disappearance of the Native American tribe called 

the Anasazi in the American South West (Dean, Gumerman et al. 1998). Maintaining information 

with unreliable components has been shown to be possible in automata (Gacs 1986). Other 

models have been developed to investigate the properties of error-correcting (non-ergodic) 

systems. For example, Toom (Toom 1974) proved a method that stabilizes a two dimensional 

automaton of cells having bi-polar spin values that has found application in the development of 

ferromagnetic devices such as computer disk drives (Grinstein, Jayaprakash et al. 1985). The 

study we describe is in this rich tradition of using digital systems to study fundamental issues. We 



are specifically interested in preserving the original rules of the Game of Life, and exploring issues 

that are relevant to biological complexity.

Some aspects of biological systems have the property of acting as digital systems. The 4-

letter alphabet in DNA is one such digital code, and yet biological systems have robustness to 

many types of damage. In the next section we review one such mechanism for robustness in the 

face of stochastic noise, that of the mapping from DNA to protein known as the Genetic code.

Life’s robust mechanisms

The genetic code has fascinated and amazed both biologists and computational modellers since 

the detective work that revealed its subtleties half a century ago. The genetic inheritance in DNA 

is in the form of a double stranded string of nucleotides. Each nucleotide triplet codes for a 

specific amino acid and is called a codon. There are 64 codes (4 nucleotides in three positions in 

the codon) and 20 amino acids, which allows for considerable redundancy in the mapping. Each 

amino acid is recruited by a tRNA, which functions like a tugboat that guides the amino acid and 

attaches it in the order specified by the genetic sequence. The molecular biology of tRNA could in 

theory attach to any amino acid, functioning like a symbolic label. However, in practise, one 

genetic code is shared by almost all living organisms with a few minor variations known for some 

bacteria and yeast (Alberts, Johnson et al. 2002).

The fact that variations occur in the code is taken as evidence that the code is not in fact 

arbitrary, but has probably evolved. Initial models of the mapping were hypothesized based on 

error correction between codons. From an information theoretic perspective, an elegant 

correction mechanism would make sense. Biological organisms are highly evolved, and damage to 

the pathway from gene to protein can occur at many stages, including mutations to the genes 

caused by nucleotide substitution when the DNA is copied during cell division, errors in the 

transcription, editing or other damage to RNA, or mistranslation from codons to amino acids. 

Error correction for these misadventures is a natural hypothesis to make, but it proved inadequate 

to explain the structure of the code.

It turns out that the properties of the code point to robustness of a highly functional form. 

See (Freeland and Hurst 2004) for a lay summary of the properties of the genetic code as 

summarised in this section, and (Freeland and Hurst 1998) for a detailed description of the 

methods they used. In particular, the mapping seems to be optimised to reduce the functional 

impact of substitution errors in the animo acids. The functional form of proteins is governed by 

their 3-dimensional structure. Some animo acids are hydrophobic, and face towards the centre of 

a protein, while others are hydrophilic and face the watery environment of the cell. The genetic 

code has the property that substitutions in the first two positions tend to code for amino acids

with similar hydrophobic properties, and the third position (which is known to “wobble” due to 

mistranslation errors) frequently codes for identical amino acids.

The biological summary is a simplification of the process, and many other mechanisms also 

contribute to reducing the effects of errors from a variety of sources. At the level of the DNA 

sequence itself, multiple types of damage and repair mechanisms are known, including 

spontaneous hydrolysis estimated to occur at the rate of 10
4
 events per cell per day, ultraviolet 

(UV) damage that can affect transcription and replication, and ionising radiation and oxidative 

damage from normal cell metabolism causing DNA double stranded breaks (DSBs) (Rouse and 

Jackson 2002). The past decade has produced major insights into the cell’s repair mechanisms 

although it is still unclear how primary DNA damage is detected (Rouse and Jackson 2002).



For the purposes of this study, the essential insight from studying the robustness of the 

genetic code is that information measures are insufficient for understanding its structure. The best 

explanation of the mapping to date is that it is governed by the effect of errors on the functional 

form of proteins. Proteins can be viewed as emergent structures created by the dynamic processes 

of tRNA assembly. In this sense, we can view the tRNA as local mechanisms that assemble simple 

amino acids to create the complex emergent structures of proteins (emergent compared to the 

functionality of individual amino acids). The system’s properties can be seen as emergent in the 

sense that the genetic code does not “know” what structures its amino acids create. The robust 

design of the code is not based on stored templates for the allowable proteins and checking the 

factory line after production (although cells may also use this form of correction). The robustness 

is emergent from the inherent properties of the assembly process, just as the proteins themselves 

are emergent.

Dynamic vs static forms of error correction

In this study, noise is implemented as randomly changing the value of every cell on a grid with a 

small probability, p. To an extent the rules of Life provide for a certain level of self-correction, 

for example, a cell becoming alive due to noise in a neighbourhood of dead cells will 

immediately die. However, in general the game is quite fragile to stochastic noise. 

We considered a variety of ways in which robustness could be introduced to the Game of 

Life. As a computational mechanism, the normal Game of Life is very precise, but not robust. 

One approach is for each cell to take the average value of its neighbours. Such a model may be 

robust, and has analogies to spin glass systems, but it loses the preciseness that enables the 

computational dynamics of the classic model.

We wanted an approach that preserves the original rules so that in the absense of noise, 

the system behaves exactly the same as the classic model. We developed a discrete approach to 

robustness that uses information from the history of a system to constrain the allowable dynamics.

This approach is consistent with the idea of adding robust mechanisms to the generators of a 

pattern, rather than to the emergent patterns themselves.

Because the updating rules in the Game of Life are localised to a small neighbourhood, 

there are a restricted set of allowable transitions in any region of the grid. Consider a 3x3 grid in 

which the value of the central cell is unknown. If the states of the 8 neighbours are known for the 

previous time step, then in many cases the state of the central cell will be completely determined. 

In a 3x3 grid, there are 2
9
 possible states. After the initial burn in, many of these states do not 

occur. If the number of active neighbours was 0 or more than 3 at the previous time step, then the 

central cell must be off. If the number of active neighbours was exactly 3, then the central cell 

must be on. It is only the cases where the number of active neighbours was 1 or 2 that the value 

of the central cell is uncertain. Such conditions constitute 
8
C1+

8
C2=32 cases, or 6.25% of the 512 

possible states.

Methodology

We enhanced the Game of Life by adding a “light cone” (to borrow a term from astrophysics) of 

spatial and temporal context information to correct erroneous values. This enhancement does not 

change the original rules: a noiseless enhanced run is identical to an unenhanced run. 

The error-correction scheme is based on propagating state information across the grid. 

Chemical signals diffusing in a medium would be a plausible natural analogy. Cells in the grid 



transmit their states to each other via signals sent at the "speed of light" (one cell per step), 

limited by a maximum range. Noise probabilistically causes signals to be misread by destination 

cells in proportion to the distance traveled.  A cell uses this cone of information to construct a set 

of state histories for its locale. The most recent history, that of the previous step, is the 

conventional 3x3 Life neighbourhood. The cone can then be used for error-correction. A 

neighbour's state is compared against its neighbours' states during the previous step. If they agree 

according to Game of Life rules, then the neighbour is considered to be valid. If they disagree, 

then an error must have occurred either in the neighbour or its neighbours. The checking then 

continues back in time. Once a cell's neighbourhood is corrected, limited by the number of 

available histories, the next state can be determined.

A glider is a pattern that recurs, moving across the grid and repeating every four steps.

Corruption to any one of the active cells causes the pattern to disintegrate. The cone provides a 

way of correcting such dynamic patterns (see Figure 1).

        

      
Figure 1. Glider and cone of correction. In the top row, the glider is shown in successive steps 

crossing the grid. The last image shows an error occurring as the gray cell. The cone for the 

central cell adjacent to the error is shown going back 3 steps in time (bottom row). As can be 

seen, the gray cell contradicts the prediction of its previous neighbourhood. But the cells in the 

neighbourhood agree with their respective neighbourhoods going back 2 more steps in time. So 

it is likely that the gray cell is an error.

Defininitions:

Let a grain g be defined as a cell c in a cellular automaton at time t:

g = grain(c, t)

Also define cell, time and state functions to extract these quantities from a grain g:

c = cell(g),  t = time(g), s = state(g)



A cone for a grain g is a pyramidal set of layers of grains, up to height h, each successive layer

containing increasing numbers of increasingly older contiguous grains that are centered about g:

cone(g) = { layer0(g), layer1(g), ... layerh(g) }

where the top layer0(g) contains the 3x3 Moore neighbourhood of g, and successive layers are 

grains that are neighbours of the previous layer:

layeri(g) = 
k

j 1

grain(Nj, time(g) – i)

where N is the set neighbour cells in the Moore neighbourhoods of the cells in the previous 

layer:

N = neighbours(cells(Li-1(g)))

Thus the radius of each successive layer increases by 1.

Error-correction:

Assign the initial probability that a grain x in cone(g) has an erroneous value caused by noise to 

be proportional to its spatial distance from g:

error(x) = max(dist(cell(g), cell(x)) * noise, 1)

where dist is a city-block distance, and noise is a unit of noise probability.

The probability that a set G of grains contains an error is:

error(G) = 1 -


k

j 1

(1 – error(Gj))

Define the context(x) of grain x to be the set of grains in cone(g) containing x’s Moore 

neighbourhood in the successive layer, i.e., at the previous time(x) – 1.

The recursive error-correction algorithm for x is:

correct(x):

if (x in deepest layer) return

for (each grain y in context(x))

do



correct(y)

enddo

if (state(x) = gol(context(x)))

then

error(x) = 1 – (error(x) * error(context(x)))

else

if (error(x) > error(context(x)))

then

state(x) = gol(context(x))

error(x) = error(context(x))

endif

endif

where gol computes a state from a given context neighbourhood according to the Game of Life

rules.

The rule checks the state of a grain against what its context (neighbourhood in the 

previous time step) predicts that it should be. If they agree, then the reliability of the grain is 

increased by virtue of the support it receives from the reliability of its context. If they disagree, 

then the state can be corrected by its context only if the context’s error probability is lower than 

that of the grain; otherwise, the context is assumed to be in error and the state of the grain 

remains unchanged. Optimally, by applying the rule from the deepest layer upward the reliability 

of the grains in the upper portions of the cone will improve.

Results

The algorithm was coded in Java and a variety of comparison runs made on a 50x50 grid. Each 

run consisted of 50 trials of 50 steps. For each trial, 10% of the cells in the grid were randomly 

made live. Two independent variables were selected: range, defined as the maximum cell state 

signal propagation distance, and hence the cone depth; and noise, a unit of signal distortion 

probability that multiplies with city-block distance from the central cell. The dependent variable is 

the number of successful trials compared to an identical noise-free trial. Figure 2 shows the 

results. A range of 1 represents the Game of Life with no error correction. It can be seen that 

even at a noise setting of .00005, which translates to an average of only one misread neighbour in 

the entire grid per time step, there is very little chance of a trial completing successfully, testifying 

to the fragility of the game. 

Increasing the range above 5 effectively corrects for noise settings of .00005 and .0001. 

However, at higher levels of noise, it appears that error correction cannot be accomplished by 

increasing the range. This is likely because as a cone grows larger, it encompasses more and 

more errors within it.
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Figure 2. Error-correction performance

In the previous trials, cells noise applies only to cells reading the states of other cells; a cell’s 

own state is read error-free. A situation in which noise also affects a cell’s reading of its state 

can be modeled by adding an “internal distance” to the city-block distance from the central cell 

in a cone. Thus even the central cell becomes subject  to noise errors. The graph in Figure 3 

shows the results of an internal distance of 1. The graph shows an expected diminishment of 

error-correction performance with the additional noise.
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Figure 3. Error-correction performance with internal distance = 1



Discussion and Conclusions

The mechanism we propose for robust behaviour in the Game of Life is based on error-

correction of the allowable dynamic trajectories in the system rather than error-correction on the 

emergent patterns themselves. This approach provides a new way of thinking about the study of 

robust behaviour in complex systems. The Game of Life has been used as a way of thinking 

about emergent complexity in biology as well as other systems. Simple transition rules give rise 

to space time patterns that have interesting properties at a larger scale of space and time. In this 

study, we have been using the Game of Life to investigate how a complex emergent system 

could correct for stochastic noise. The method is not based on correcting the possible static 

patterns at any point in time, but rather correcting the transitions between local components of 

patterns – the generators that give rise to the emergent complexity. The model provides a way of 

thinking about the power of context for dealing with stochastic noise.

In biological systems and other real-world domains, the state spaces are typically very 

large. The overhead of applying error-correction to the dynamic tranjectories in a large state 

transition diagram are prohibitive. However, if the complex behaviour of interest is emergent

from a small set of rules, as it in the Game of Life, then error-correction of the possible dynamic 

trajectories within local neighbourhoods is a fraction of the size of the emergent state space.

From the perspective of a viewer at the global level, the light cone of past admissable states can 

appear as a way of probabilistically correcting emergent patterns without any knowledge of what 

those emergent patterns are.

Insights from advanced technology, such as the design of Boeing 747’s, are that 

protocols are more important than modularity for multi-level systems design and maintenance,

and this insight has been claimed to apply also to higher level biological organisms (Csete and 

Doyle 2002). Every model is by nature a simplification and serves to highlight some aspects of a 

system under discussion, and finesse other aspects. A conjecture arising from our project is that 

one of the contributing mechanisms to biological robustness is likely to be error correction of the 

allowable transitions governed by protocols, not just the resultant system states.

In conclusion, we have explored how one particular mechanism of robustness may be 

studied in the Game of Life. The dynamics of the Game of Life mean that only a subset of the 

possible patterns occur after the initial burn in. The essential princple of dynamic systems are 

their dynamics, and in this paper we have considered error correction based on the allowable 

transitions within a local neighbourhood.

The Java code is available at www.itk.ilstu.edu/faculty/portegys/research/robustlife.zip
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