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1.0 Motivation 
Many of you will be very familiar with the process of debugging software, and 

thanks to the circuits which you have had to build over the last few weeks, you’ve all 
become at least minimally familiar with debugging your own circuits.  In this lab you will 
become acquainted with more formal debugging and verification techniques and tools as 
we ask you to debug and verify a series of modules. 

 

2.0 Introduction 
No matter how carefully you plan and enter your circuit design, it should always 

come as a major surprise if it works the first time you try it.  The larger and more 
complicated the design, the larger the fraction of the engineering time you should expect 
to spend on debugging and verification.  In a professional setting, a design would not be 
considered finished without a complete testing regimen to prove that it works acceptably 
under all circumstances, a process which can easily consume more than 50% of the time 
required to implement a design. 

In the interest of time, we cut a fair number of corners in this class, for example 
rather than expecting your design to be fully verified (or even fully debugged), we will 
expect it to appear to work.  This is simply because we do not have time to fully examine 
your testing regimen.  However it is in your best interest to fully verify your modules.  
Most students will simply write a piece of Verilog and synthesize it, hopping that it will 
work and perhaps wasting hours debugging it inefficiently. 

 
WE HIGHLY RECOMMEND THAT YOU CONSIDER WRITING AN APPROPRIATE AND 

COMPLETE TESTBENCH AN INTEGRAL PART OF WRITING A VERILOG MODULE.  THIS WILL 

SAVE YOU MANY SLEEPLESS NIGHTS. 

 

2.1 Verification Procedure 
There are roughly two steps in the verification process: 

1. Perform a test. 
2. If the test fails, debug the module being tested. 

As such there are two very different parts to the verification process, designing 
tests and actual debugging.  We will discuss debugging in Section 2.2 Debugging 
Procedure below. 

Because hardware modules are often very much larger and more complex than 
pieces of software it is often not possible to fully verify a module.  For example a 32-bit 
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adder accepts 264 possible combinations of inputs, so even if it could be run at 10 GHz it 
would take nearly 60 years to plug in all possible 264 inputs, even assuming that a 
matching 32-bit adder could be built to test it against.  To make matters worse, most 
circuits have some kind of memory requiring exponentially more time to test.  Because of 
this, exhaustive testing only suffices for the most basic of modules where it can be run 
easily. 

For more complicated modules, hardware engineers rely on bottom up testing and 
interface contracts to ensure that the modules that they instantiate work as expected, as do 
the modules with which they must interact.  Over the course of this lab and the remainder 
of the semester you will become intimately familiar with this style of testing, as it is the 
only way to produce a fully working design. 

 

2.2 Debugging Procedure 
Once you know that something is working properly it is often a relatively trying 

ordeal to hunt down and fix the actual bug.  Below is a formalized algorithm that you can 
use as a starting point for your forays into debugging. 

2.2.1 Hypothesis 

Before starting to try and debug a design you must have a clear hypothesis of 
what the problem might be.  Even if your hypothesis is very much wrong you should 
always have something specific that you are looking for when you start a debugging 
session.  “Whatever is wrong” is not a specific enough goal. 

2.2.2 Control 

With a hypothesis of what is broken in mind, the next step in debugging is to 
develop a set of test inputs which will test for the specific bug you expect.  Usually 
developing the test inputs is one of the most difficult parts of the debugging and 
verification process. 

The difference between test inputs for general verification and for debugging is 
simple: inputs for debugging are meant to aid you in testing your hypothesis, whereas 
inputs for verification should be designed to elicit as wide a range of bugs as possible. 

2.2.3 Expected Output 

Before actually beginning a test, it is necessary to figure out the expected result of 
the test.  This should be a simple matter of working through the circuit specification by 
hand using the test inputs, as developed according to Section 2.2.2 Control above. 

2.2.4 Observe 

With a hypothesis in mind and test outputs and expected outputs in hand it is now 
time to actually run the test.  Unfortunately this is usually a very complicated process, 
made worse by slow simulation times, complex circuits and the difficulty of examining 
signals in hardware. 

To make this step easier, a testbench or test harness can be developed to look for 
the expected output and produce more meaningful reports of the success or failure of the 
test.  For example if the test succeeded, all we need to know is that it succeeded, not the 
how or why of it. 
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2.2.5 Handling Test Results 

Ironically a test which fails is a major success during debugging.  If the test 
succeeds, all that has been proved is that the original hypothesis is false and that there is 
still a bug in the circuit.  However if the test fails, that means that the hypothesis has been 
proven true and the bug has been found. 

When we say that “the bug has been found” we simply mean that it has been 
further localized. That is, we have a better idea of what module or what signal is causing 
the trouble.  Fully specifying the bug and identifying the exact fix may require several 
iterations of this debugging algorithm and many hours of work beyond the first test. 

 
ALWAYS BE SURE THAT YOU KNOW EXACTLY WHAT THE BUG IS AND HAVE A WELL 

DESIGNED FIX BEFORE MODIFYING YOUR CODE!  MAKING RANDOM CHANGES UNTIL THE 

PROBLEM DISAPPEARS WILL SIMPLY PROLONG THE PROBLEM AND FRUSTRATE YOU! 

 

2.3 Types of Debugging (Parts of this Lab) 
In this lab, we will introduce you to four specific types of debugging, all of which 

you will likely be obligated to use during your time in this class. 
1. Bottom Up Testing:  In this part you will take advantage of the 

hierarchical structure of a design, testing the lower level modules first and 
moving towards the top step-by-step. 

2. Designing Test Hardware:  Rather than simulating this circuit you will 
perform much faster testing using carefully designed test hardware. 

3. Exhaustive FSM Testing:  You will feed a stream of inputs to a Finite 
State Machine to completely map its functionality and draw a bubble-and-
arc diagram. 

 

3.0 Prelab 
Please make sure to complete the prelab before you attend your lab section.  You 

will not be able to finish this lab in 3 hrs otherwise! 
1. Read this handout thoroughly.  Pay particular attention to Section 4.0 

Lab Procedure as it describes what you will be doing in detail. 
2. Examine the Verilog provided for this weeks lab. 

a. You should become intimately familiar with the Lab4Part1.v file 
as you will need to debug it. 

b. Make sure to read the Count.v and Register.v modules in Part2 
as you may wish to use them. 

3. Write your Verilog ahead of time. 
a. You will need three separate testbenches for Part1 

i. Lab4PeakDetectorTestbench.v, Lab4Comp4Testbench.v 
and Lab4Comp1Testbench.v. 

ii. Refer to past testbenches as a starting point. 
b. Lab4Part2Tester.v. 

i. You may need time in lab to debug it. 
ii. Start with a timing diagram and schematic. 

4. Prepare your tests for Part 3 
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a. Look at the FSM in Figure 4 and try to devise a sequence of 

inputs to test it completely. 
5. You will need the entire 3 hr lab! 

a. You will need to test and debug both your verilog and ours. 
 

4.0 Lab Procedure 
Remember to manage your Verilog, projects and folders well.  Doing a poor 

job of managing your files can cost you hours of rewriting code, if you accidentally 
delete your files. 

 

4.1 Bottom Up Testing 
This part of the lab will be entirely in ModelSim.  You may wish to read the 

ModelSim Tutorial on the course website before jumping in.  http://www-
inst.eecs.berkeley.edu/~cs150/F05/Documents.htm#Tutorials  

You will be testing the three modules that are in the Lab4Part1.v file, which 
together form an accumulator very similar to the one you built in Lab #3.  To fully 
verify that all three modules work, and to save yourself a number of headaches you will 
be testing each module separately as you move up the hierarchy. 
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Figure 1: Lab #4 Part1 Module Hierarchy & Testbenches 
 

4.1.1 Lab4Comp1 

The first module you will be testing is essentially a duplicate of the Comp1 
module you were asked to build in Lab #2.  The main difference is that we asked you to 
use structural verilog and primitive gates in Lab #3, whereas this time we have used 
behavioral verilog.  Of course this version has a bug that you will need to find and fix 

before moving on to test the Lab4Comp4 module. 
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Signal Width Dir Description 
A 1 I The first input 
B 1 I The second input 
GreaterIn 1 I The GreaterOut from the next higher bit 
EqualIn 1 I The EqualOut from the next higher bit 
GreaterOut 1 O Should be 1’b1 whenever B > A 
EqualOut 1 O Should be 1’b1 whenever B = A 

Table 1: Port Specification for Lab4Comp1 
 

Each Lab4Comp1 module is responsible for comparing one bit of A to one bit 

of B.  In order to generate a useful output however it needs to know the relationship 

between the higher order bits of A and B, hence the GreaterIn and EqualIn inputs. 

Notice that the GreaterOut and EqualOut outputs from the least significant 

bit (bit 0), will yield the correct information for the comparison of all of the bits of A 

and B. 
For this module you will perform exhaustive testing, meaning that you will try 

all 24 = 16 input values in your testbench.  This is feasible because there are so few 

inputs and no state registers. 

To make your life easier, you should make use of if statements and the 

$display process in Verilog to display text errors any time the actual output of the 

Lab4Comp1 module differs from the expected output.  For an example of how to use 
the $display process, see Figure 3 in Section 4.1.3 Lab4PeakDetector below or the IEEE 

Verilog Reference: 
https://www-inst.eecs.berkeley.edu/~cs150/ProtectedDocs/verilog-ieee.pdf 
 

4.1.2 Lab4Comp4 

With a fully debugged Lab4Comp1 module in hand you are now ready to debug 
the Lab4Comp4 module, which instantiates four Lab4Comp1 modules.  This module is 
again very simple, taking two 4 bit inputs and reporting if the second is greater-than or 

equal-to the first. 

Signal Width Dir Description 
A 4 I The first input 
B 4 I The second input 
GreaterEqual 1 O Should be 1’b1 whenever B ≥ A 

Table 2: Port Specification for Lab4Comp4 
For this module you will perform exhaustive testing, meaning that you will try 

all 28 = 256 input values in your testbench.  This is feasible because there are so few 

inputs and no state registers. 

To make your life easier, you should use a for or while loop to generate the 

input values and if statements and the $display process in Verilog to display text 

errors any time the actual output of the Lab4Comp4 module differs from the 

expected output.  For an example of how to use the $display process or for or 

while loops, see Figure 3 in Section 4.1.3 Lab4PeakDetector below or the IEEE 

Verilog Reference: 
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https://www-inst.eecs.berkeley.edu/~cs150/ProtectedDocs/verilog-ieee.pdf 
 

4.1.3 Lab4PeakDetector 

The Lab4PeakDetector module should present no challenges to you at this 
point.  It is a simple module that accepts a new input on ever cycle and outputs the largest 

input it has been given since the last Reset. 

Register

Lab5PeakDetector

In

Clock

Out

Reset

≥
4

4

4

4

 
Figure 2: Lab4 Part1 Peak Detector Block Diagram 

 

Since the Lab4PeakDetector has five inputs and a 4-bit register, testing all 
of the possible combinational logic paths would take a mere 2

9
 = 512 inputs. However 

nearly all of the Verilog modules written have significantly more inputs and state 
information, making it impossible to perform exhaustive testing on these modules. 

Therefore in testing the Lab4PeakDetector you will use a more advanced 
testing technique: you will build a testbench that reads a series of data values from a 

text file and plugs them into the Lab4PeakDetector.  This will let you develop 
more complicated sequences of inputs to perform more careful, directed testing. 

Figure 3 below is an well commented example of a testbench using the 
$readmemh process to read hexadecimal test values from a file.  Please make sure you 

understand it.  For more information on the $readmemh process, please refer to the 
IEEE Verilog Reference: 

https://www-inst.eecs.berkeley.edu/~cs150/ProtectedDocs/verilog-ieee.pdf 
 

Lab4 
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Figure 3: $readmemh Example Testbench & Data File 

 

4.2 Designing Test Hardware 
Because it proves beyond all doubt that a circuit works as desired, we really 

would like to exhaustively test every single Verilog module that we build or use.  
However simulation runs at about 1 millionth of the speed of actual hardware.  
Coupled with circuits like a 16-bit adder, which has 32 bits of input requiring 232 = 4 

billion test vectors, this seriously hinders our efforts to exhaustively simulate our 

modules.  Therefore we test circuits like the Lab4Part2Adder module, a 16bit adder 
in hardware, where at 27 MHz, 4 billion tests take a mere 2 minutes, 40 seconds. 

In this part of the lab you will be designing and building specialized piece of 

test hardware, Lab4Part2Tester, designed to test the Lab4Part2Adder module.  
To make this assignment realistic we have given you an EDIF black box for the 

Testbench.v:

// integers can be used to index an array they may not 

// be used in synthesis 

integer i; 

 

// below is an array of 4-bit values. It contains 16 

// elements indexed from 1 to 16. Note that it 

// is declared as ‘reg’, since we assign to it inside of 

// initial. 

reg[3:0] TestValues[1:16];  

 

initial begin 

 // read the file specified and put the values in 

 // ‘TestValues’ 

 $readmemh("TestValues.txt", TestValues); 

 

 for(i = 1; i <= 16; i = i + 1) begin 

  // Remember to advance the time forward 

  #(`Cycle); 

  In = TestValues[i];  

  $display("In = %d, Peak = %d", In, Peak); 

 end 

end 

 
TestValues.txt: 

0 

A 

B 

6 
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Lab4Part2Adder, namely Lab4Part2Adder.edf.  This file can be easily synthesized, 
but it cannot be simulated and it is nearly impossible to read. 

To help you design your Lab4Part2Tester, the Lab4Part2Adder has 
four different Fail Modes.  The adder will fail in different ways depending on which 
Fail Mode you select on SW9[2:1].  If the Fail Mode is 2’b00 (0), the adder will work 

perfectly, and in 2’b10 (2) it will fail on the inputs 0001, 0001, reporting that their sum 

is 0003, rather than 0002.  This information should help you debug your test harness. 
To help you we have included the Register.v and Counter.v files which you may 

wish to use. 

Signal Width Dir Description 
A 16 I The first input to the adder (Shown on DD1-DD4) 
B 16 I The second input (Shown on DD5-DD8) 
Sum 16 O The sum from the adder (possibly incorrect) 

(Shown on DD5-DD8 when SW10[1] is on) 
FailMode 2 I Used to set the fail mode (From SW9[2:1]) 

Table 3: Port Specification for Lab4Part2Adder 
 
To make this a realistic test, the adder may fail anywhere from 0 to 4 times in 

each fail mode (except 0), and you will need to know how the adder has failed.  Thus 
your tester must be designed to pause when it encounters an error and then continue 

after you have recorded the error. 

SW1 should Reset your Lab4Part2Tester to prepare it for testing a 

specific fail mode.  Go (SW2) should then start the test process, allowing it to free run 
until the tester discovers an error.  When an error is encountered, the tester should 

pause and assert the Error output.  You may then use SW10[1] to switch between 

seeing A and B and seeing the Sum as reported by the Lab4Part2Adder.  When you 

have recorded the error on the Checkoff Sheet, you should press Go again to resume 

testing. 

Signal Width Dir Description 
A 16 O The first input to the adder (Shown on DD1-DD4) 
B 16 O The second input (Shown on DD5-DD8) 
Sum 16 O The sum from the adder (possibly incorrect) 

(Shown on DD5-DD8 when SW10[1] is on) 
FailMode 2 I Used to set the fail mode (From SW9[2:1]) 
Go 1 I Signal to start or continue testing (SW2) 
Clock 1 I System Clock 
Reset 1 I System Reset (SW1) 
Running 1 O Indicates that a test has been started and that not all 

possible inputs have been tested yet 
(Shown on D1-D4) 

Error 1 O Indicates that the tester is paused with an error 
(Shown on D5-D8) 

Table 4: Port Specification for Lab4Part2Tester 
 



EECS 150 Fall 2005  Lab 4 

UCB 9 2005 

TO PROPERLY SYNTHESIZE A BLACK BOX, SUCH AS THE LAB4PART2ADDER.EDF 

FILE WE HAVE GIVEN YOU, YOU MUST TAKE A FEW EXTRA STEPS DURING THE XILINX 

PROJECT NAVIGATOR PROJECT SETUP. 

1. Make sure to add the shell Verilog file (Lab4Part2Adder.v) to your 
project. 

2. Set the Macro Search Path 
a. Make sure FPGA_TOP2.v is highlighted in the Sources in 

Project Box. 
b. Right-Click on Implement Design in the Processes for Source 

Box. 
c. Go to the Translate Properties tab 
d. Set the Macro Search Path to the directory where your copy of 

Lab4Part2Adder.edf resides. 
3. Your project should now be able to Synthesize and implement properly. 

 

4.3 Exhaustive FSM Testing 
Download the Lab4Part3.bit file to the CaLinx2 board.  This will program the 

board with a very simple circuit, namely the FSM shown in Figure 4 below.  You can do 
this by running the iMPACT directly from the Start Menu (Start > Programs > Xilinx 

ISE 6 > Accessories > iMPACT).  In the dialog boxes that appear, select Configure 

Devices, then Slave Serial Mode and then open the bitfile file provided. 

S0

S1 S4

S2 S5

1 1 0

S3
[Output 1'b1]

S6

0 1

1

0

0

0 1

0 1

X
 

Figure 4: Sequence Detector FSM 
This simple FSM is a sequence detector, which has the state diagram shown in 

Figure 4.  The circuit receives a 1-bit input on every clock cycle and asserts the output 
when it detects the sequence 010, as long as the sequence 100 has never been received. 
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If a 100 sequence is received, the circuit halts and the only way to resume normal 
operation is by resetting it. 

The bitfile contains some error, which you should find by performing an 

exhaustive test on the state machine.  The idea is to exercise every arc and make sure 
that the state transition as well as the output is correct. 

To do this efficiently you should prepare a sequence of inputs that exercises all 
the arcs and go through it during the test.  Preparing this test sequence is not a trivial task 
and gets exponentially more difficult with the size of the FSM. 

To perform the test on the board: 
1. The Input can be set on SW9[1]. 

a. The Input will appear on DD7. 
2. The Output will appear on DD8. 
3. The State will appear on DD1. 
4. SW1 will Reset the FSM. 
5. SW2 will Enable the FSM. 

a. The FSM will stay in its current state until you press SW2. 
As you test this FSM, draw a corrected bubble-and-arc diagram on the back of 

your Checkoff Sheet.  You will not need to correct the errors in this FSM as we will not 
be distributing the source code to it. 
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6.0 Lab 4 Checkoff 
 
Name: ____________________________ SID: ____________________________ 
Name: ____________________________ SID: ____________________________ 
Section: ___________________________ 
 
I Bottom Up Testing 

1 Lab4Comp1 (Testbench & Errors) __________ (10%) 
2 Lab4Comp4 (Testbench & Errors) __________ (10%) 
3 Lab4PeakDetector (Testbench & Errors) __________ (10%) 

II Designing Test Hardware __________ (40%) 
1 Fail Mode 1 

A B Bad Sum 

   

   

   

   

2 Fail Mode 2 

0001 0001 0003 

   

   

   

3 Fail Mode 3 

   

   

   

   

III Exhaustive FSM Testing __________ (30%) 
1 Draw the corrected FSM Bubble-and-Arc on back of this sheet 

 
 

IV Hours Spent: __________ 
 

V Total: __________ 
VI TA: __________ 
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