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 Abstract − Principles of complex software and hardware 

design of the sub-optimal low-energy cyclic ADC (CADC) 

are presented. The extended conversion algorithm for esti-

mates computing is discussed. Upper boundaries of CADC 

resolution, rate of conversion and the ways they can be 

achieved are analyzed. Properties and general advantage of 

sub-optimal CADC are discussed and investigated in 

simulation experiments.   

Keywords: low-energy ADC, sub-optimal adaptive 

conversion, upper boundary of resolution  

 

1.  INTRODUCTION 

 

 The objective of micro ADC design is an obtaining the 

highest resolution and speed of conversion under minimal 

complexity, size, power consumption and cost of device. 

these requirements are best satisfied by the cyclic (multi-

pass) ADC [1-3] which form the input signal estimates 

cyclically, using minimal number of repeating operations 

realized by a minimal number of elements. The structure of 

CADC is presented in Fig. 1. They work as follows: 

 Each sample V(m) (m=1,2,…) formed by the sample-and-

hold block (S&H) is stored at the input of subtracting block 

(S) during the time T necessary for completing n cycles of 

conversion. In each cycle , block (R) registers and 

stores following iterations if estimates V  of the sample V. 

Using digit-to-analogue converter (DAC), analogue 

equivalent  of this estimate, with the one-step delay, 

enters the second input of the summating block S.  
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−

The residual signal et. is routed, through the amplifier A, to 

the input of auxiliary internal low-bit ADC ( ), and 

the result of internal conversion =C +ξ , (ξ  is 

the quantization noise) enters the block R. Using previous 

estimate  and current observation , block R forms 

new estimate V , and the cycle repeats.  
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 In general case, work of each CADC can be described by 

the relationship: 

                        V     (k=1,...,n)               (1) kkkk yLV ~ˆˆ
1 += −

where coefficients Lk refer to the chosen method of 

estimates forming. Properties of algorithm (1) depend on the 

employed engineering solutions, choice of parameters of the 

analog part, on the signals they are applied etc. On these 

reasons, real performance of CADC can be much lower than 

that potentially achievable using the same elements. 

 One can see that recurrent formula (1) has the form 

identical to the general form of recurrent algorithms, widely 

and efficiently used for estimation of signal parameters in 

the presence of noises. Methods of these algorithms 

optimization are well known [4,5] and, being modified and 

completed by additional conditions, are used in the present 

work for the concurrent complex optimization of CADC 

software and hardware.  

 The result is a group of relationships determining the 

construction of analog part and software of the converters, 

which may operate with a rate and resolution close to 

theoretically achievable. However, direct application of 

these methods to CADC optimization meets serious 

difficulties caused by twice-nonlinearity of CADC - its step-

wise form of characteristic and always-limited input range.  
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Fig 1: General structure of CADC. 
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2. COMPLEX OPTIMIZATION PROBLEM 

To improve the performance of CADC, we propose:  

- to replace the registering block R by microprocessor or 

special computing block;  

- to replace the estimates V  forming or registering by 

their calculation using properly modified extended 

algorithms [6-10] for joint optimal adaptive observation 

and estimation of input signal. These algorithms have a 

number of important advantages over conventional ones;   

k
ˆ

- to  use the calculated optimal prognoses of the input 

signal values for compensation and forming the residual 

signal ek =V (further, the discrete time analysis 

is performed). 
kk vV +− − ,1

ˆ

Following particularities of CADC’s work should to be 

taken also into account during their optimization and design:  

1. The limited input range of ADCIn - the source of possible 

CADC saturation and rough errors of conversion.  

2. Step-wise transfer function of low-bit ADCIn,- the source 

of powerful quantization noise.  

3. Dependence of coefficients Lk in (1) on the architecture 

of the converter, parameters of its analogue part , and the 

way of estimates forming.  

It is assumed that amplitudes V of the converted samples are 

normally distributed with the mean V0 and variance σ . 

Full noise ν

2

0

t at the output is a sum of the noise η  in the 

feedback chain - DAC noise, possible external noise, and the 

noise of summer (ν

t

t is assumed to be white, zero mean 

gaussian noise with the variance σν
2
.).  

 Denoting the saturation levels of as D, the gain 

of amplifier as C , one can write the static model of "S+ 

A+ADC

InADC ±
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Here  = V  is an unknown component if input signal, 

and V  - the calculated value of its prognosis to k-th cycle 

of conversion;  =V  is the residual error after 

compensation of input signal. Variance σ  of quantization 

noise is estimated by commonly used relationship σ  

=∆

ky
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kv+

ke

2
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kk vV +− − ,1
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2

ξ
2

ξ
2/12 = . The amplifier noise ξ , much less 

powerful then quantization noise, is omitted.    

D )(0
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  2.1.  Problem of  saturation  

      The limited input range of CADC is a source of possible 

saturation of the input signal that results in appearance of 

rough errors in estimates and practical lost of any 

information about distorted sample.  To analyze and exclude 

saturation errors in converters, the statistical fitting 

condition [6,7] is used.   It has the form of constraint on the 

probability of CADC saturation:  

         = 
sat

kPr { } µ  yDeC k

kk −<≤ − 1  ~   || 1

1Pr            (3) 

This inequality defines the "permitted" values of "A+ 

" unit parameters, which guarantee the probability of 

saturation will be less of small given µ. for each 

k=1,...,n. Value µ is chosen by designers according to 

requirements to the quality of conversion  (10

InADC

InADC

-4 < µ < 10-15 ).   

 Setting the parameters of analog part, for each k =1,2,... 

to the values to satisfying fitting condition (3), results in a 

saturation of CADC will be practically eliminated. This 

permits us to replace the nonlinear model (2) by the linear 

one:  and analyze the converter using 

conventional methods of linear theory of optimization and 

statistical synthesis [4,5].  

kkkk eCy ξ+=~

 

 2.2. Complex algorithm of  conversion  

      Derivation of extended sub-optimal algorithm for 

concurrent computing the estimates V  and amplifier A 

adjusting gives the following group of relationships [6-8]: 
k

ˆ

                                            (4) ; ~ˆˆ       1 kkkk yLVV += −

                                
222

νξ σσ k

kk

k
C

PC
L

+
=                             (5) 

                           1

1

222

222

)(
−

−++

+
= k

kk

k

k P
PC

C
P

νξ

νξ

σσ

σσ
              (6) 

                                       

1

2

−+
=

k

k

P

D
C

νσα
                     (7) 

where α  satisfy the equation: Φ  where Φ  

is known gaussian error function, and initial conditions are 

as follows: V ;  = σ .   

2/)1()( µα −= )(α
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 For each k, algorithm (4)-(7) minimizes the mean square 

error (MSE) of estimates Pk = E [( . Values P])ˆ 2
1−− kVV

µ

k , in 

this case, determines the lower theoretically achievable 

boundary of the conversion errors. Simultaneously, the 

analog part being adjusted according to (2), (7) excludes its 

possible saturation, for each k, with a probability not less of 

. Practical conditions of this  value maintaining during 

each sample conversion are discussed in Section 4.    

µ

 Formulas (5)-(6) can be rewritten in the equivalent form:   
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is a decimal signal-to-noise ratio (SNR) at the output of 

 that is at the CADC analog part output.    InADC

 Formula (9) determines the theoretically achievable 

lower boundary of MSE of sub-optimal conversion at each 

cycle, and generalizes the evaluations given in [9,10]. Under 

<< , that is fulfilled for each converter, there always 

exists the initial interval 1 , where MSE  

diminishes exponentially with a growth of k    

2

vσ 0P
*nk <≤ kP

                        (11) 
k
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For , values  diminish more slowly, as hyperbolic 

functions of conversion cycles number.   Point can be  

estimated by formula:  

∗> nk kP
∗n
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is a number of cycles needed for the achievement of 

conversion accuracy of the V  order. This means, 

value determines, in the main order, a speed of each 

sample conversion and, as result, the band-pass of CADC 

 , where  is a time duration of a single 

cycle of conversion.  

vk V ασ±=ˆ
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 2.3.  Resolution of converters (ENOB) 

 Being fulfilled at each k=1,2,... , fitting condition (3) 

guarantees a validity of following inequalities:   

                                     (13) µασ -1    )    || ( Pr 00 ≥≤−VV

             µα ≥≤− 1  )   |ˆ| ( Pr kk PVV −                          (14) 

Formula (13) permits us to determine the CADC input range 

as the interval [- maxV , maxV ] =[V , V ] of practically 

always appearing values of the input signal. Probability of ap-

pearance of the signal outside of this interval is less than .  

00   - σα 00    σα+

µ
 Formula (14) determines the interval error at each cycle 

of conversion (confidence interval) [
kkkk PVP αα + ˆ ,- V̂ ] . 

For each k=0,1,2,... the probability that each sample value V  

lays in one of corresponding intervals [
kkkk PVP αα + ˆ ,- V̂ ] 

is always not less than 1- . This allows us to consider the 

CADC as a device with more and more accurate, at each 

next cycle of conversion, scale of the measurement of input 

signal value.  A number of the levels the CADC may resolve 

after k cycles is  

µ
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Number of bits necessary for presentation of each resolved 

level among this set is   
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This is a binary expression for resolution of the converted 

which determines simultaneously the length of meaning bits 

in the codes of estimates at CADC output and, and most 

naturally correspond to the frequently used term "efficient 

number of bits" (ENOB).    

 Substituting (7) and (9) into formula (16), one can obtain 

the recurrent equation for resolution of sub-optimal CADC:   
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According to (11), at the initial interval 1 ENOB 

(resolution of CADC)  grows linearly with a number of 

iterations:   
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The rate of resolution growth and diminution of MSE 

 is greater the greater are values of Q  that is, according 

to (10), for greater  and lesser α . However, a 

tendency in CADC design is employment of low-bit 

and shall . Lesser α , in turn, causes greater 

risk of saturation. These dependencies should be taken into 

account in CADC design.  
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which, together with the number , may serve as evaluation 

of main order of expected CADC resolution and a rate of 

conversion.  

n

3. INFORMATION PROPERTIES OF CONVERTERS 

 

  Definition of CADC resolution (16) and other useful 

results can be introduced using information theory approach 

to consideration of the work of converter [11].  

 3.1 Resolution and information capacity   

 Namely, according to known definition [12], information 

 about the samples V delivered by observations 

 is equal to the value of removed uncertainty, i.e. 

difference between the prior and posterior  

entropy of the input signal samples:  
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one can easily calculate value (21):   
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Comparison of (24) and (16) shows that determined by (16) 

resolution is equal to information  in optimal 

estimates (or, that is the same, in observations 
~

)  

about the input sample V.  This value can be treated also as  

kN
~(ˆ

k yV
 )~,( 1

kyVI

)1

k ky1

 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4 

544



 
      Fig.  2.  Current information flow (capacity) of CADC 

      as a function of  k  for different  (NInADC ADC  =1 ÷ 8).  

 

 

mean number of bits necessary for binary presentation of the 

values V  with the accuracy 
kPα± .  This confirms once more 

an equivalence of the terms "resolution" and "ENOB" as the 

converter characteristics.  

 According to (24), addit onal information delivered by 

each processed observation 
~

, is equal to:  
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This value determines the current flow of information 

through CADC, or its capacity in gaussian case.  It presents, 

simultaneously, the increment of CADC resolution (ENOB) 

in successive cycles of approximation.   

 If the gains C are increased according to (7), 

information flow through CADC reaches, for each k, 

maximum value: 

k
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Dependencies on k for CADC with different  are 

presented in Fig. 2.  
k InADC

 

     3.1. Analysis of results  

 1. First term in (26) describes the information capacity of 

, which plays in CADC a role of data-transmission 

channel from the analog to digital part: 
InADC
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Relationship (27) presents known Shannon's formula [12] 

for information capacity of stationary channels with additive 

white gaussian noise. Value W  is a power of 

useful signal at the ADC

22 )( kks eEC=
In output. 
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 In the ideal case of no input and feedback noise (σ = 0; 

P

2

v

kRk /σ  = ), information capacity of CADC 2

v ∞  takes 

maximal, constant value equal to information capacity of 

ADCIn :  Rk = R0   at each cycle of conversion.  

2.  According to estimation and filtering theory [4,5], in 

gaussian case, the residuals e  formed using 

optimal estimates (4), are zero-mean, mutually independent 

random values. This and dependence  (valid 

due to the fitting condition) observations ={ } at 

the ADC
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Setting Ck to maximal admissible values (7) makes the 

observations  the stationary white process with maximal 

achievable variance  (for the greater C

ky1
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µ
)1 (  )~( 222 QyE k += ξσ k a 

probability  of CADC overloading takes unacceptably 

large values). As result, signal-to-noise ratio at the ADCIn 

output and entropy reach maximum value, and  
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The conditional entropy  has the value:   )|( 11
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Using (29), (30), one can calculate the value  

which is equal to maximal information 

R

=),~( kk yyI

)|~()~( kkk yyHyH −
0  delivered to processor by each sample , that is equal 

to the capacity of ADC
ky~

In .  

 This result is identical to the known claim of information 

theory: to transmit maximal information, signal should have 

the form of the stationary white gaussian noise [12]. In this 

case, a number of samples  necessary to deliver some 

quantity of information about V to the processor is minimal. 

That means, this information can be obtained in a minimal 

number of conversion cycles.  

ky~

3.  If CADC is fitted with input signal according to (3), then 

a probability of overloading and rough errors appearance is 

not greater of  for each k=1,2,…, and conversion errors Pµ k  

reach minimal values. This and said above means that 

optimally fitted and controlled according to (7) unit 

“subtracting block + amplifier” realizes, in the analog way, 

the same functions as the optimal coding blocks in data- 

transmitting systems employing channels with Gaussian 

noise.  

 In this case, the input samples converted according to 

algorithm (4)-(7) under fulfilled condition (3) reach, for 

each k, minimal, MSE Pk and information flow equal to 

capacity of CADC under guaranteed probability of rough 

errors appearance not greater of .   µ
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 3.  PRACTICAL DESIGN AND APPLICATION 
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 To apply the analytical results of previous sections to 

CADC design, nominal values of following parameters of 

the analog part should be determined or given:  

− input range  [- maxV  , maxV ] of CADC; 

− permissible probability of saturation µ ;  

− resolution ADCN , of  the internal ADCIn 

− input range of  D of  the internal ADCIn ; 

− variance 
2

νσ  of the summary noise ν ;  k

The input range  [- maxV  , maxV ] of each CADC is determined 

by existing standard (there is assumed V =0 ). According to 

fitting condition (3), saturation of converter will not exceed 

given , if maximal variance σ  of the input signal is not 

greater than σ  = ( . This value should be taken as 

the nominal parameter of algorithm (4)-(7). Parameter D 

does not influence on MSE and can be chosen depending on 

convenience of amplifier realization and gains  C  setting.   

0

µ 2

0
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 In turn, parameter α  is determined by the accepted level 

of saturation probability µ . Dependence  is 

very sensitive. Small enlargement of α  cause fast  

diminution. For instance, setting α =3 ("three sigma" input 

range) gives ; for α =4, ; for α =5, 

; for α =7, , etc. Therefore, if one has 

doubts that the variance of real signal may exceed the value 

, it is enough to diminish σ  for α  percents (i.e. to 

take α +1) to decrease a saturation probability till more than 

order. This will diminish, simultaneously, SNR
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speed of conversion. However, due to logarithmic 

dependence on values Q, increment of value (12) and 

narrowing of CADC band-pass will be not significant.  

 One should remember that according to (10) Q can be 

increased by application of  with greater . 

Final choice of nominal value α  and  requires a 

complex consideration of requirements to CADC. Nominal 

value of 

InADC
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ADCN
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νσ  noise is determined, to the large extent, by the 

noise of feedback DAC. Choice of DAC resolution is 

conditioned by needed final accuracy of CADC and possible 

additional requirements to the cost, stability, etc.  

 Being chosen and introduced into (4)-(7) nominal 

parameters may differ from real parameters of the input 

signal and analog part, as well as may depend on real 

distribution of signal values.   

 One can evaluate deviations of MSE  from nominal 

values  (6), (9) due to the differences between the nominal 

and real 

kP
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0σ variances. Calculations show that, in this 
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This means that the signals with variances 2

0σ  < σ  will be 

converted initially with MSE always less than nominal. For 

greater k, "real" and nominal MSE differ quickly disappears 

as a value of (1  order. Discrepancies between σ and 

2

0

22 )−+Q
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v
2

vσ  variances influence in similar way, but much weaker.   

  

Fig.  3. Static input-output characteristic of analog unit 

"subtracting block -amplifier- internal converter"  

 

Thus, accurate application of CADC to real signals 

conversion needs only to check the requirement: the input 

signal variance should be less than nominal value σ .   2

0

 Formula (31) is valid for each sample independently 

from the form of distribution of input signal values. This 

means it can be used for a numerical analysis of changes in 

MSE both in the case of non-gaussian and deterministic 

input signals including sin-waves.   

 

3 RESULTS OF SIMULATION ANALYSIS   

As it was shown in [9,10], mathematical modeling enables 

performance of fast and reliable analysis of CADC work and 

evaluating its performance depending on input signals, 

parameters of analog part and software, as well as on 

additional conditions and limitations. Important advantage 

of mathematical modeling is a possibility to obtain the exact 

solutions in domains where analytical investigation gives no 

results.  

     The modeling bench was built using real step-wise model 

of the CADC analog part as in Fig. 3. Data processing part 

is modeled by algorithm (4)-(7). The input signals was 

modeled as a sequence of random normally distributed 

samples {V ,...,V }, m=1,…,M , each of the length n 

enabling realization of k =1,...,n cycles of conversion. 

Empirical MSE (EMSE)  of estimates and resolution  

were calculated according to formulas:   
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      (33) 

where V  are estimates of the m-th sample; =σ  is the 

nominal prior value of MSE.   

)(ˆ m

k
2

0

    In the first series of experiments, the main attention was 

paid to analysis of influence of the differences between the 

parameters of real signals and analog elements of CADC, 

and their expected values used as the nominal parameters of 

algorithm (4)-(7) computing the estimates.  

 In Fig. 4, there is shown a dependence of MSE of 

conversion on the errors in analog gains 
kC  setting. The 

plot corresponds to ADC  with = 3. Very important 

for applications is a wide zone of insensitivity of the fastest 

MSE diminution to deviations of 

In ADCN

kC from .  
kC
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Fig. 4. Dependence of MSE of conversion on the errors in analog 

gains 
kC  setting ( C is nominal gain value (7) ). 
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Fig. 2: Dependencies of CADC, RSD and IMT ADC resolution on 

the number of conversion cycles. 

 

This zone is wider for CADC with one-two bits internal 

converters, and quickly narrows with a growth of N  
ADC

 Simulation analysis of MSE dependence on quantization 

noise power evaluation σ  has shown that performance of 

CADC with low-bit ADCIn reaches maximum, if nominal 

value σ  is taken about two times less than ∆2/12 .   

 Resolution of low-bit CADC was compared with 

resolution of known RSD and IMT converters [2,3]. The 

results of simulations are shown in Fig. 5 for the case of σ  

evaluation as σ =  0.45 ∆

2

ξ
2

ξ
2/12.  The plots show that CADC 

with 1-bit ADCIn (comparator) reaches the resolution of the 

same order as two-comparator converter RSD.     

4 CONCLUSIONS 

    The results of investigation show a possibility to increase 

significantly the efficiency of CADC by transition to codes 

computing using model-based signal processing algorithms.  

The presented approach enables complex optimization and 

design of CADC software and hardware that ensures close 

to theoretically achievable, highest increment of resolution 

at each cycle of conversion.  

    The performed simulations confirm the numerical and 

qualitative concordance of theoretical and measured results. 

Moreover, developed simulation tools enable efficient,  fast 

and exact analysis of effects defying to theoretical analysis.   

      Most efficient way of proposed CADC implementation 

seems to be their direct integration with microprocessor or 

computer, and direct calculation of estimates using their 

computing resources.    
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