ÜBUnGSBLATT 3

Ausgabe bis 25.05.07, Besprechung 04.06.07
Aufgabe 1: Path integral for free particle and harmonic oscillator (10 Punkte)
a) Free particle: The Lagrangian is given by $L=\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}$. The amplitude $U\left(x_{f}, t_{f} ; x_{i}, t_{i}\right)$ traveling from x_{i} at t_{i} to x_{f} at t_{f} is given by the following path integral

$$
\begin{aligned}
U\left(x_{f}, t_{f} ; x_{i}, t_{i}\right) & =\int \mathcal{D} x(t) \exp \left[\frac{i}{\hbar} \int_{t_{i}}^{t_{f}} \frac{1}{2} m\left(\frac{d x}{d t}\right)^{2} d t\right] \\
& =\lim _{N \rightarrow \infty}\left(\frac{m}{2 \pi i \hbar \varepsilon}\right)^{\frac{N+1}{2}} \int d x_{1} \cdots d x_{N} \exp \left[\frac{i m}{2 \hbar \varepsilon} \sum_{j=0}^{N}\left(x_{j+1}-x_{j}\right)^{2}\right]
\end{aligned}
$$

where $x_{N+1}=x_{f}, x_{0}=x_{i}$ and $\varepsilon=\frac{t_{f}-t_{i}}{N+1}$. Show that

$$
\begin{equation*}
U\left(x_{f}, t_{f} ; x_{i}, t_{i}\right)=\sqrt{\frac{m}{2 \pi i \hbar\left(t_{f}-t_{i}\right)}} \exp \left[\frac{i m}{2 \hbar\left(t_{f}-t_{i}\right)}\left(x_{f}-x_{i}\right)^{2}\right] \tag{1}
\end{equation*}
$$

The following integral formula may be useful

$$
\int_{-\infty}^{\infty} d u e^{-a(x-u)^{2}} e^{-b(u-y)^{2}}=\sqrt{\frac{\pi}{a+b}} \exp \left[-\frac{a b}{a+b}(x-y)^{2}\right]
$$

b) Show that the resulting amplitude (1) can be written as the form

$$
\begin{equation*}
U\left(x_{f}, t_{f} ; x_{i}, t_{i}\right)=f\left(t_{f}-t_{i}\right) \exp \left(\frac{i}{\hbar} S_{c l}\right) \tag{2}
\end{equation*}
$$

where $S_{c l}$ is a classical action for a given boundary condition and the function $f(t)$ is determined by the fact that U satisfies the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t_{f}} U\left(x_{f}, t_{f} ; x_{i}, t_{i}\right)=H U\left(x_{f}, t_{f} ; x_{i}, t_{i}\right)
$$

c) Harmonic oscillator: The Lagrangian is given by $L=\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}-\frac{1}{2} m \omega^{2} x^{2}$. Indeed Eq.(2) is generally true as far as the action is at most quadratic in
$x(t)$. Using this fact, show that the amplitude for the harmonic oscillator is given by
$U\left(x_{f}, t_{f} ; x_{i}, t_{i}\right)=\sqrt{\frac{m \omega}{2 \pi i \hbar \sin \omega\left(t_{f}-t_{i}\right)}} \exp \left[\frac{i m \omega}{2 \hbar \sin \omega\left(t_{f}-t_{i}\right)}\left\{\left(x_{i}^{2}+x_{f}^{2}\right) \cos \omega\left(t_{f}-t_{i}\right)-2 x_{i} x_{f}\right\}\right]$.

Aufgabe 2: Scalar QED (Problem 9.1 in Peskin and Schroeder) (10 Punkte)

Consider the theory of a complex scalar field ϕ interacting with the electromagnetic field A_{μ}. The Lagrangian is

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{*}\left(D^{\mu} \phi\right)-m^{2} \phi^{*} \phi
$$

where $D_{\mu}=\partial_{\mu}+i e A_{\mu}$ is the gauge-covariant derivative.
a) Use the functional method to show that the propagator of the complex scalar field is the same as that of a real field:

$$
\leftarrow--=\frac{i}{p^{2}-m^{2}+i \epsilon} .
$$

Also derive the Feynman rules for the interactions between photons and scalar particles; you should find

$$
=-i e\left(p+p^{\prime}\right)^{\mu}, \quad=2 i e^{2} g^{\mu \nu}
$$

b) Compute the contribution of the charged scalar to the photon vacuum polarization, using dimensional regularization. Note that there are two diagrams. To put the answer into the expected form,

$$
\Pi^{\mu \nu}\left(q^{2}\right)=\left(g^{\mu \nu} q^{2}-q^{\mu} q^{\nu}\right) \Pi\left(q^{2}\right)
$$

it is useful to add the two diagrams at the beginning, putting both terms over a common denominator before introducing a Feynman parameter. Show that, for $-q^{2} \gg m^{2}$, the charged boson contribution to $\Pi\left(q^{2}\right)$ is exactly $1 / 4$ that of a virtual electron-positron pair.

