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ABSTRACT 

This paper presents an overview and early results of our project to 

build a framework for integrating, aggregating, and analyzing 

heterogeneous personal data streams to build persona and use it to 

recognize evolving personal situation. Using increasing volumes 

of heterogeneous personal data streams, we recognize first 

movements and personal situations for providing individuals 

actionable information and insights. We demonstrate recognition 

of high-level life events through simultaneous use of 

asynchronous observations consisting of continuous GPS and 

accelerometer measurements.  The main contributions of our 

framework will be to develop an architecture to integrate, store, 

and analyze data from heterogeneous data streams; detect low 

level physical activities using various unobtrusive sensors 

embedded in a mobile phone; and design a hierarchical classifier 

that identifies high-level life events using location context and 

physical activity and create a chronicle of life events called 

Personicle. We plan to collect test data sets and make them 

available publicly as a resource to other researchers. 

1. INTRODUCTION 
We are moving towards a Universal Web in which mobile 

communications, social technologies, Internet of Things, and 

sensors are connecting people and the physical world into one 

interconnected network [1]. Personal data plays a vital role in 

countless aspects of our everyday lives. Individuals are using their 

data for self-tracking as a form of accountability, to connect with 

other people with similar interests, and find relevant information 

and services. Physicians use health data to address public health 

issues, better diagnose illnesses, and develop new cures for 

diseases. Businesses are using a wide range of personal data to 

design new products, innovate new services, and improve targeted 

recommendations.  

The promise of the internet of things (IoT) is extensive. The 

increasing adoption and decreasing cost of smartphones, sensors, 

and devices for monitoring physiological and physical activities 

has resulted in the generation of massive multisensory and 

multimodal observational data in many domains including health 

and wellness monitoring, safety monitoring, home rehabilitation, 

sensor surveillance for elderly care, etc. Mobile devices are 

becoming increasingly sophisticated and the latest generation of 

smart cell phones now incorporates diverse and powerful sensors. 

These sensors include GPS sensors, vision sensors (i.e., cameras), 

audio sensors (i.e., microphones), light sensors, temperature 

sensors, direction sensors (i.e., magnetic compasses), and 

acceleration sensors (i.e., accelerometers). The availability of 

these sensors in mass-marketed communication devices creates 

new opportunities for collecting, aggregating, and analyzing 

personal data. The information obtained from sensors varies in 

many respects. Methods to convert data to information and the 

reliability of the reported information could be entirely different 

for different sensors. Usually a sensor measures only a specific 

attribute of a user, which is one of many different independent or 

correlated attributes required to detect the overall state of user in 

the environment. 

The act of observation performed by heterogeneous sensors 

creates an avalanche of data that must be integrated and 

interpreted in order to provide knowledge of the evolving 

situation. The primary challenges of analyzing personal data 

produced by a myriad of sensors are: 

 Data is in the form of data streams. 

 Most data is heterogeneous and multimodal. 

 Data is used to derive high-level knowledge and 

evolving situation of an individual from low-level 

sensor observation. 

As the number and ubiquity of sensors and mobile devices 

continue to grow, the need for computational methods to analyze 

the avalanche of heterogeneous sensor data for deriving situation 

awareness will grow and novel information processing 

architectures should be developed to enable easy handling of the 

produced data from different sources. In this paper we 

demonstrate such architecture and illustrate how to use objective 

data from heterogeneous sensors as a first step towards 

recognition of high-level events as they occur in daily life and 

create a detailed personal chronicle, called Personicle. More 

specifically, we investigate how recognition of low-level physical 

activities can be scaled to the recognition of high-level life events 

using data from desperate sources. Our experimental results 

suggest that it is feasible to recognize certain events such as office 

activities (attending a meeting), and everyday life events 

(shopping, dining) using sensors embedded in mobile phone and 

individual’s calendar entries. In contrast to existing activity 

monitoring systems that typically require users to wear extra 

sensors, our platform leverages on-the-shelf smartphones. As a 

result, it is unobtrusive to users and enables the users to monitor 

and track their living routines on a daily basis, which is often 

difficult to realize in the conventional activity monitoring system. 

We demonstrate that it is possible to perform activity recognition 

with commonly available (nearly ubiquitous) equipment and yet 

achieve highly accurate results. 

Interestingly, a large part of research in Human Activity 

Recognition (HAR) focuses on rather low-level and short-term 

activities [3-5]. However, in many applications ranging from 

 



healthcare and assisted living to modeling of human behavior, the 

analysis and recognition of high-level and longer-term activities is 

important. Let us briefly define the terms low-level physical 

activity and high-level life events as we understand them, since to 

the best of our knowledge there exists no generally accepted 

definition of these terms in the activity recognition and ubiquitous 

computing communities. As low-level physical activities we 

consider activities which can be characterized by a periodic 

sequence of body motions or postures such as walking, sitting, 

standing, ascending stairs, descending stairs, jogging, and 

cycling. High-level life events, on the other hand, are usually 

composed of a collection of low-level physical activities, and 

spans over a longer period of time, from several minutes to 

several hours. Such life events are shopping, attending meeting, 

leisure, watching TV, etc. Combining low-level physical activity 

with other user contextual information derives life events. Here by 

context we mean any common information about user herself or 

her environment that might be useful in determining the ongoing 

life events. For example in shopping event, user’s location is mall/ 

store and activity is mostly walking and standing.   Figure 1 

shows translation process from raw data observations to low-level 

activity detection and finally high-level life event extraction and 

situation recognition. 

The main goals of our proposed framework are: (i) providing an 

architecture to integrate, store, and analyze data from 

heterogeneous data streams; (ii) detect low-level physical 

activities using various unobtrusive sensors embedded in a mobile 

phone; (iii) design a hierarchical classifier that identifies high- 

level activities with simultaneous use of asynchronous 

observations consisting of GPS and accelerometer measurements 

to create a chronicle of life events named Personicle; (iv) tools to 

represent Personicle for a person and derive persona, and (v) 

visualizing and mining persona’s to form societal models.  In this 
paper we address only a partial set of these goals.  

2. ARCHITECTURE 
Translating low-level observation from personal data streams into 

high-level knowledge of a person’s evolving situation is a 
perceptual task and a variety of enabling technologies should be 

incorporated. Figure 2 displays architecture of a multisensory 

evolving personal situation recognition system. This architecture 

has five layers: data ingestion, data processing, visualization, 

repository, and client. First, the data ingestion layer is composed 

of various sensors and sensor fusion component. The sensors 

ranges from smartphone, wearable activity tracking, calendar, to 

physiological sensors that track vital signs (e.g., heart rate, 

respiration rate, skin temperature, skin conductivity, ECG, etc.). 

More sensors can be added to improve the performance of our 

system. Client layer consists an expert and the person/user herself. 

User contributes to data collection and expert’s knowledge is used 

to predefine risky situations for different application domains. For 

example in case of applying this framework to asthma 

management problem, medical expert defines a set of situations 

that might put asthmatic patient at risk (e.g. patient being 

vigorously active more than 15 minutes in a geographical location 

with high pollen count). System monitors patient continuously to 

detect these predefined situations. Also by analyzing history of 

patient’s asthma attack over a period of time, correlations between 
attacks and local and global factors will be detected. In the 

following, major layers in the architecture are explained in more 

details. 

2.1 Data Ingestion Layer 
Sensor fusion is the combination of sensory data or data derived 

from disparate sources so that the resulting information is in some 

sense better than when these sources were used individually [2]. 

Using additional sensors, the amount of data to be processed will 

increase. This data can contain meaningful information and may 

even create a synergy effect when processed properly. With 

significant improvements in mobile sensor technology a new 

chapter in the era of self-aware devices and continuous data 

logging has just started. However, the sensor-packed smartphone 

can’t be beneficial in isolation and shall be as a part of a larger 

platform. For life event recognition we leverage these types of 

sensors as they are providing unobtrusive and continuous 

monitoring, easily available in mass market, and aren’t research 
only devices. Audio sensor in smartphone can be leveraged to 

detect complex events such as watching TV and sleep quality [26, 

15]. High resolution cameras can be employed for food and 

calorie consumption logging [14]. GPS and acceleration sensors 

can also be used to track physical motion and location of users.     

2.2 Processing Layer 
Processing layer has two main components: Personicle creation; 

and Predictive data analytics. Personicle creation involves 

detecting low-level physical activities from activity tracking 

wearable sensors and unobtrusive sensors embedded in a mobile 

phone. Once user’s motion is detected, it can be combined with 
other contextual information to create chronicle of life events. A 

chronicle means “a record or register of historical events in 
chronological order”. Since we detect and store the abstracted life 
events of person through time, we call it Personicle. As data 

ingestion layer allows for accepting data streams from diverse 

sources, processing layer provides appropriate mapping and 

assimilation, as will discuss in the section 3 and 4, to convert this 

data to life events. 

Life events thus detected are independent atomic elements of 

analysis for building persona in predictive data analytics 

component. Persona is the model of person. We will develop 

correlation and co-occurrence based environment in this 

component to detect recurring patterns for a person. This may 

result in insights such as sensitivity to a particular activity under 

specific climatic conditions or the effect of time and duration of 

exercise on one’s sleep pattern and sleep quality. The goal is to 

provide a flexible and powerful analytics environment for 

personal data management.   
Figure 1.  Translating low-level observation to knowledge 



Personicle and Persona such created have enormous potential to 

be used in medical diagnosis, population medicine, behavior 

modeling, and particularly in any field of knowledge that requires 

not only continuous monitoring but also acquiring insight about 

individual’s life style. It doesn’t take much imagination to figure 
out that Personicle is a game changer in health monitoring. 

Today’s healthcare and medication system disregards individual’s 
variability and promotes considerably more unnessacary medical 

testing and procedures. As the first use-case for our personal 

evolving situation recognition system, we chose asthma 

management. Section 4.3 describes this matter in more details. 

2.3 Data Repository Layer 
In data repository and management, we use the powerful NoSQL 

MongoDB1 as our backend database to store raw data from 

different sources. Then the raw data is going through a 

preprocessing module to separate information content and unify 

temporal granularity of observations from disparate sources. 

Different sensors produce data at different time intervals, so it’s 
important to have a temporal granularity conversion module. Data 

streams thus generated will be stored in database. Personicle as 

the output of processing layer will also be stored in form of an 

event steam. In order to provide rich queries base on Personicle, 

we are going to store Personicle to ElasticSearch2 which is a 

flexible and powerful open source, real-time search engine.  

                                                                 
1 https://www.mongodb.org/ 

2 http://www.elasticsearch.org/ 

3. LIFE EVENT RECOGNITION 
High-level life event recognition has great potentials in areas such 

as medical diagnosis and human behavior modeling. However, 

most of the work in activity recognition has centered on 

identification of a specific type of activity in a particular scenario 

such as “opening/closing a window” or “ascending/descending 
stairs”. Less effort has been applied to identification of more 
complex patterns of human activities and behavior, which extend 

over a long period of time. The explicit goal of this section is to 

enable the recognition of longer-term life events. Intuitively, 

recognition of low-level physical activities is a prerequisite to 

recognize more complex and high-level activities. We employed a 

multilevel representation that allows for explanation of multiple 

temporal granularities, by capturing different levels of temporal 

details. In the first level we use a classifier to extract low-level 

physical activity from raw accelerometer data. Also in the same 

level we process raw GPS measurements and map them to 

location categories. The result of these computations will feed as 

features to the second level where life event detection is 

performed.  

Next we describe two phases of data acquisition. Then first level 

which includes low-level activity recognition and location 

category extraction is explained. Section 4 describes life event 

recognition and a use case of Personicle in healthcare domain. 

3.1 Data Acquisition 
An essential first step is to record an interesting and realistic 

dataset of high-level life events. Besides being tedious and time-

consuming, the recording of high-level activities is a non-trivial 

task and data should be as realistic and representative as possible. 

 

Figure 2. Architecture of multisensory personal evolving situation recognition system 
 



Since we couldn’t find an open source dataset for detecting 
complex activities using wearable sensors and mobile phone 

embedded sensors, we had to create our own dataset. This dataset 

that we have collected and will continue to collect can serve as a 

resource to other researchers.   Our data collection has two phases: 

phase one, collects accelerometer measurements related to low-

level physical activities; phase two, collects both accelerometer 

and GPS measurements related to more complex life events.  

3.1.1 Phase One 
In order to collect data for our supervised learning task, it was 

necessary to have a number of participant carry an Android-based 

smart phone while performing certain physical activities. These 

activities are walking, jogging, cycling, sitting, and standing. Data 

collection was controlled by an application we created that 

executed on the phone. This application, through a simple 

graphical user interface, records user’s name, start and stop of 
data collection, and a user defined label for the activity being 

performed. These activities are chosen since they are basic 

motions that people usually have in their daily living. For 

example, user is usually in walking or standing position while 

shopping or in sitting position while dinning. Accelerometer data 

is collected every 1sec, and a non-overlapping window with 10-

second duration is defined to create the number of examples 

shown in table 1. The last row in Table 1 shows the percentage of 

the total examples associated with each activity. Please note that 

in our work the terminology of sitting and standing are different 

from most activity recognition areas. Here by sitting/ standing we 

refer to user being in sit/stand position and NOT the process of 

sitting/standing.  

3.1.2 Phase Two 
In the second phase, two participants from the initial group were 

volunteered to collect labeled life event data using the same 

Android application while they engage in their daily routines. This 

time in addition to raw accelerometer data, GPS measurements are 

captured as well. Initially, events such as attending a meeting, 

shopping, and dining are considered. During all these activities, 

user should place the phone in her front pocket. In activity 

recognition community there is no common definition or structure 

of human activities that would allow us to formulate a clear and 

common problem statement (how a specific activity should be 

characterized). So inspired from events happening in their  natural 

form, we asked participants to perform activities as described in 

table 2. We explicitly started with the recording of these life 

events and later automatically labeled the low-level physical 

activities that were performed during these life events with the 

prediction model described in section 3.2. Each participant 

recorded each life event four times in different days and in natural 

environment.  We call a recording of life event from start time to 

end time a scenario. The length of each scenario varies between 

30 to 90 minutes. The total length of data is 874 minutes. 

3.2 Low-level Activity Recognition 
The topic of accelerometer-based activity recognition is not new. 

Bao & Intille [3] developed an activity recognition system to 

identify twenty activities using bi-axial accelerometers placed in 

five locations on the user’s body. Additional studies have 
similarly focused on how one can use a variety of accelerometer 

based devices to identify a range of activities [4, 5]. Our work 

differs from most prior work in that we use a commercial mass-

marketed device rather than a research-only device; we use a 

single device conveniently kept in the user’s pocket rather than 
multiple devices distributed across the body. Also we are 

interested in physical activities such as walking, jogging, sitting, 

standing, and cycling that person is performing while engaging in 

their daily routines. Figure 3 plots raw accelerometer data for a 

typical user, for all three axes and for the activities concatenated 

together. It is clear that sitting and standing have distinctive 

patterns, based on the relative magnitudes of the x, y, and z, 

values. Walking and jogging activities involve repetitive motions 

and exhibit periodic behavior. Note that for most activities the y 

values have the largest accelerations. This is the contribution of 

the force of gravity, which causes the accelerometer to measure a 

value of 9.8 m/s2 in the direction of the Earth’s center. For all 
activities except sitting this direction corresponds to the y axis. 

In order to obtain useful information from raw accelerometer 

sensor data we should be able to accurately discover the 

characteristics or features of the signal coming from a given 

sensor. To accomplish this we divided data stream into time 

Table 1. Number of examples per user and physical activity 

ID Walk Jog Cycle Sit Stand Total 

1 11 2 3 5 19 40 

2 391 21 0 23 34 469 

3 112 5 2 0 0 119 

4 14 35 0 214 12 265 

5 15 0 0 79 0 94 

6 50 0 18 3 5 76 

7 198 0 201 11 7 417 

8 507 0 0 4 2 513 

9 276 18 744 5 11 1054 

10 82 3 0 83 24 192 

Sum 1656 84 968 427 115 3240 

% 51.1 2.6 29.6 13.1 3.6  

 

 
Figure 3. Plot of a 250-seconds of raw acceleration value 

for each activity 

Table 2. Description of three life events 

Life Event Scenario Definition 

Dinning 

 Walking into a restaurant 

 Standing by the reception desk   

 Sitting behind the table (at least 10 

minutes) 

 Walking out of the restaurant 

Shopping 

 Walking into a store/mall 

 Strolling through the store 

 Waiting in the line to pay  

 Walking out of the store 

Meeting 

 Enter meeting information in Google 

calendar 

 Walking to the meeting room 

 Sitting/Standing behind the desk 

 



segments and then generated features that were based on the raw 

data readings contained within each time segment. We refer to the 

duration of each segment as the window length. Each segment can 

span from seconds to minutes and depending on the activity type, 

it provided sufficient time to capture several repetitions of the 

(repetitive) motions involved in that activity. Although we have 

not performed experiments to determine the optimal example 

duration value, we did compare the results for a 10-second, 30-

second, and the 60-second window length and didn’t find a major 
difference. In this paper we are extracting 22 features from both 

time domain and the frequency domain over each window. These 

features are  

 Mean, Std. Deviation, Median, Range, Max, Min  (for 

all three x, y, and z axes) 

 Root Mean Square  

 Average Resultant Acceleration: Average of the square 

roots of the sum of the values of each axis squared √              

 Spectral Energy: The sum of the squared discrete FFT 

component magnitudes of the signal. The sum was 

divided by the window length for normalization 

 Information Entropy: The normalized information 

entropy of the discrete FFT component magnitudes of 

the signal. 

For each window, derived features and the label assigned to them 

is called a data record. Table 3 summarizes the performance of 

five classifiers for low-level physical activity recognition task. In 

most cases we can achieve high level of accuracy.  Our results 

indicate that there isn’t a significant change between different 
window lengths and none of the five learning algorithms 

consistently performs best, but the random forest does perform 

best overall. Confusion matrix associated with this algorithm is 

presented in Tables 4. 

Although there are very few examples of jogging, we can still 

identify this activities quite well because it involves more extreme 

changes in acceleration. Also sitting and standing are predicated 

with high accuracy since the accelerometer data associated with 

these activities has a significant pattern as shown in figure 3. 

3.3 Location Tracking and Place Categories 
GPS tracking generates a huge amount of geographic data which 

is tricky to handle in its raw form, and requires extraction of 

activity locations. GPS readings are the input to our model—a 

typical trace consists of approximately one GPS reading per 

second; each reading is a point in 2D space. We use reverse geo-

coding to assign location names to raw GPS measurements. 

Reverse geocoding is the process of back (reverse) coding of a 

point location (latitude, longitude) to a readable address or place 

name. Our approach does not return actual addresses, only 

estimates of what should be there based on the predetermined 

range.  We use the same windowing technique discussed in 

section 3.2. So for each GPS measurement within a window, our 

algorithm returns a list of possible locations. We then look at the 

temporal sequence of recorded locations and use a set of decision 

rules based on distance and time to identify place name for each 

window. We have created a taxonomy of place categories from 

Foursquare [9] which then will be used to assign place category to 

each approximate location. In the next section we describe how 

we used place categories to determine life events such as 

shopping, dining, and meeting.  

4. KNOWLEDGE DISCOVERY 
The final goal of this system is to decompose the temporal 

sequence obtained from the sensors in real-time into concepts at 

different levels of abstraction or temporal granularity. The lowest 

analysis level is more sensitive to raw observations and we might 

need to re-train this level to obtain best results for each user. Since 

there isn’t a significant change between different window lengths 

at first level, we chose windows of 10-second to create the new 

feature vector for second level. The feature vector for the second 

level results from the concatenation of low-level activity and 

location categories. Since life events duration expands from 

several minutes to several hours, classification function at the 

second level can produce the output at a lower temporal 

granularity. We chose 1 minute for window length of second level 

classifier. 

4.1 Results 
An important source of influence on the recognition performance 

is the classifier. In this section we evaluate and compare the 

following classification techniques: Support Vector Machine 

(SVM), Naïve Bayse (NB), Decision Tree (J48), and k-NN with 

k=3. For evaluation we compare two schemes, person-dependent 

vs. person-independent leave-one-scenario-out cross validation.  

For person dependent evaluation, for each participant, we leave 

one scenario of data recording out for testing and use the rest of 

the scenarios of the same participant for training. In this case, the 

model in the first level was also trained based on this specific 

Table 3. Summary of classifier results (% of records 

correctly predicted) using 10-fold cross validation over 

different window lengths. 

Classifier 10-

second 

30-second 60-second 

Naïve Bayes 83.27 85.10 85.69 

J48 93.70 94.95 94.73 

Random Forest 96.11 95.87 97.26 

Logistic Regression 87.36 83.40 82.63 

Multilayer 

Perceptron 

91.39 94.49 96.42 

 

Table 4. Confusion matrix of Random Forrest for 10-

second windows 

 Predicted Class 
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walking 1383 22 0 11 3 

cycling 23   739 0 0 0 

jogging 5 0 18 0 0 

sitting 7 0 0 424 0 

standing 6 0 1 0 93 

 



participant’s data. For the person-independent case, we train on all 

scenarios of one participant and test on all scenarios of the second 

participant. Also first level classifier was trained with all 

participants’ data. In both cases, overall recognition performance 

is calculated as the average performance across all cross 

validations. 

Figure 4 summarizes the recognition performance achieved using 

different classifiers. As can be seen from the figure, in person-

dependent case, best results (precision= 94.7, recall= 84.5) 

achieved by SVM and NB exhibits the worst results (precision= 

71.2, recall= 65.6). In person independent case, k-NN and J48 

classifiers achieved better precisions. Despite the fact that results 

are not conclusive between different classifiers, person-dependent 

case lead to better overall performance.  

Figure 5(a) shows Personicle visualization for a 24-hour period 

for one participant. In some cases that we didn’t have enough 
contextual information, life event is either unknown or low-level 

physical activity was shown instead. We also aggregated our life 

event stream with “transport” activity from Moves3 mobile 

application. As demonstrated in the figure, Personicle’s life events 
are color coded. We used Google API timeline visualization for 

this purpose. Discarding unknown activities, distribution of 

Personicle for 24-hour period is shown as a pie chart in figure 

5(b). 

4.2 Asthma Management: A Potential Use 

Case of Personicle 
Initially we plan to create Personicle for real-world application 

domains such as healthcare and long-term behavioral analysis. 

And in healthcare domain we chose asthma management problem. 

An estimated 235 million people worldwide suffer from asthma. 

There are more than 250,000 asthma-related fatalities each year 

[6]. Asthma is a long-term disease that has no cure; so managing 

asthma requires some life style changes. In our previous work 

[10] we suggested the concept of Focused Micro Blogs (FMBs).  

FMBs are on a focused topic and are targeted to a specific source.  

Since topic is fixed, the information in a FMB could be easily 

structured and parsed. Different smartphone apps can be a source 

of FMB to assist its owner in different situations. We have 

developed an asthma management application that collects user 

initiated information such as time, location, and severity of 

asthma attacks. This information is essentially an FMB that feeds 

to our system and represent an asthma attack life event. Also the 

app collects accelerometer and GPS measurements continuously 

in the background and has access to user’s calendar information. 
Using a pre-trained life event recognition model described in 

section 3 and 4, we create Personicle for each user. It’s worth 
mentioning that the data collection is extremely unobtrusive and 

doesn’t impose any burden on user. Personicle thus created has 

enormous impact on managing the disease. Since this is a work in 

progress, asthma attack FMBs were not completed yet to be 

incorporated into our current Personicle visualization in figure 5.  

For asthmatic patients the effect of meteorological factors such as 

pollen count, Air Quality Index, temperature, wind speed, and air 

pollutants is well known. As shown in our architecture, these 

factors combined with Personicle can be used to detect risky 

situations for asthmatic patients. In predictive data analytics 

component, for each user we build a model (persona) that reflects 

                                                                 
3 http://www.moves-app.com/ 

the association between asthma attacks and local (physical 

activity) and global triggers. For example one might get asthma 

attack in spring and fall only by being exposed to high pollen 

count while someone else’s asthma attack might occur while she 
is jogging or exercise outdoor in presence of certain air pollutions. 

5. RELATED WORK 
Until a few years ago, computational facilities limited data 

collection and processing to very narrow aspects of the world. A 

good example is the bold movement of Enterprise Data 

Warehouses towards the end of the last century. These systems 

 

 

Figure 5(a). Personicle visualization 

 

Figure 5(b). Distribution of life events in one day Personicle 

 

 

Figure 4. Life event recognition performance for different 

classifiers 



collected data related to limited aspects of operations of an 

enterprise and tried to gain insights and understanding to create 

business intelligence. Around the same time one saw beginnings 

of stream processing and Complex Event Processing (CEP) that 

dealt with a number of data streams in an organization. In less 

than two decades, the situation has changed dramatically. Now we 

are creating a planetary data warehouse that involves massive 

number of heterogeneous data streams that must be analyzed in 

real time for predicting evolving situations and controlling them. 

Several data streaming management systems (DSMSs) [11 - 13] 

provide a declarative language like SQL, but complex event 

recognition is more naturally expressed using the operational flow 

of an imperative language. Thus, complex event processing (CEP) 

systems provided more promising approach and gained a lot of 

interest. Commercial vendors, such as IBM [16], Oracle [17], 

Tibco [18], Coral8 [19] and StreamBase [20], have built event 

processing systems with functionalities of both DSMS and CEP 

systems. Nonetheless, in traditional CEP systems, events are 

defined as a "change of state," when a measurement exceeds a 

predefined threshold for a specific value, e.g. when body 

temperature exceeds 100.8 °F an event triggers. This approach is 

suitable for recognizing anomalies or burst detection but lacks the 

capability to semantically interpret and characterize data to 

recognize an evolving situation. Our framework focuses on 

occurrences that spans over a time interval and we intend to 

define and detect personal situation by considering a hierarchy of 

operators that can be unambiguously interpreted on life events and 

in general on Personicle. 

Since we are building a chronicle of life events, activity 

recognition is an inevitable part of our system. Complex activities 

are composed of a collection of simple activities and may consider 

contextual information such as time, interaction between people, 

and interaction with objects. Tao Gu et al. [27] build activity 

models by mining a set of emerging patterns from a sequential 

activity trace and used them to recognized sequential, interleaved, 

and concurrent activities.  Hamid et al. [21] represent activities as 

bags of n-grams, cluster them into classes of activities, and 

characterize these classes by frequently occurring sequences. The 

patterns they discover on a set of 150 days of a person’s indoor 
location traces are coarse and relatively difficult to interpret. In a 

more office and desktop-centered setting, [23] combine device 

usage with calendar data and time of day/time of week 

information to infer a user’s availability. The work of Dearman et 

al. [24] shows that it is possible to utilize Yelp reviews to identify 

potential activities. As opposed to defining activity classes a priori 

they parsed for nearby verb-noun pairs to extract activity 

descriptions (e.g. buy book, appreciate art) as they are 

encountered in the textual data. There is a significant amount of 

work that uses location sensors to extract high-level information 

about a person’s activities. Routinely visited locations such as 

home, work, or school can indicate pursued activities such as 

leisure, working, or picking up someone [25]. These works show 

that location is a powerful cue to the high-level structure of daily 

life. However, location is often not enough to identify daily 

routines reliably, as different activities can be performed at the 

same location. As an example at a mall, many people are 

shopping or they might be dinning. Similarly, in an office room 

one might work, hold meetings and even give presentation. 

Therefore, the work that we describe in section 4 is 

complementary to these approaches and the use of accelerometers 

allows detection of more fine-grained activities and can also 

account for different activities performed at the same location. 

Literature is abundant with activity recognition techniques from 

video signals [28-30]. Our work is different since we are using 

heterogeneous multi-modal sensors in real-world scenarios. 

6. CONCLUSION AND FUTURE WORK 
In this paper we presented a multisensory evolving personal 

situation recognition system with focus on creating Personicle, a 

chronicle of life events. Different layers of system’s architecture 
for personal sensor data collection and transformation is 

demonstrated. A multilevel representation is employed which 

allows for explanation of multiple temporal granularities, by 

capturing different levels of temporal details. The experimental 

results suggest that recognition of high-level life events can be 

achieved through simultaneous use of observations consisting of 

GPS and accelerometer measurements. As a use case we 

considered asthma management to explore the power of 

Personicle in transformation of raw data to personal knowledge in 

a specific health application domain. Where our system really 

makes a difference is by gathering anonymous asthma data to help 

understanding the causes and external correlations of asthma and 

thereby, giving researchers visibility to find correlation between 

higher asthma rates in one specific vicinity, time, date, pollutant, 

and climate. The ability to gather this type of data, especially in 

real-time is unprecedented and we hope it would have a great 

impact in advancing asthma research. 

Personicle is an event stream which demonstrated as a timeline of 

all events happened in person’s life. The purpose of the timeline is 
to provide a visual tool for looking at events across a relatively 

long period of time and identify patterns and interrelationships 

involving a broad range of factors. Identification of patterns is 

particularly important when attempting to understand the needs of 

user and offering motivating insights for promoting a healthy 

lifestyle. The emerging field of visual analytics [7] focuses on 

integrating human judgment and visual representations to process 

heterogeneous and dynamic volumes of information.  

It has already been demonstrated that insights from individuals 

can be aggregated for the society to gain societal insights. For 

example Google Flu Trends (GFT)4 is a web service provided by 

Google uses aggregated Google search data to estimate flu 

outbreak. Though there are a lot of critiques why GFT failed [22], 

the fact remains that we need platforms to collect and correlate 

accurate individual data and more importantly, aggregate these 

data for gaining community insights. One solution relies on the 

power of FMBs. By using mobile phone applications designed for 

specific purposes (e.g. asthma management app), individuals can 

contribute information to a situation recognition system [8] and in 

return get a sense of situation at societal level.  
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