Math 119 - Quiz 1 Feb. 1, 2008 Wodarz Version 1 Name:_

Section:____

<u>Part 1</u>: (True/False) Circle the correct response. [2 pts each] For the first two True/False questions, assume that t is a real number, and that $\left(\frac{\sqrt{24}}{7}, \frac{5}{7}\right)$ is a point on the unit circle that corresponds to t.

1. T F $\sin t = \frac{5}{7}$.

Solution. TRUE

 $\sin t = y$ where the point on the unit circle is (x, y).

2. T F sec $t = \frac{7}{5}$.

Solution. $\ensuremath{\mathbf{FALSE}}$

 $\sec t = \frac{1}{x}$ where the point on the unit circle is (x, y), provided that $x \neq 0$. We have $\sec t = \frac{7\sqrt{24}}{24}$ and $\csc t = \frac{7}{5}$.

3. T F If we convert an angle of measure $\frac{\pi}{3}$ radians to degrees, we obtain 60°.

Solution. TRUE

Multiply the measure in radians by $\frac{180^\circ}{\pi}$ to obtain degrees.

Part 2: (Short Answer) Fill in each blank/box with the best response.

4. [2 pts] Convert the angle 153.34° to D°M'S" form. Round your answer to the nearest second.

Answer:

Solution. $153^{\circ}20'24''$

5. [2 pts] Use a calculator to approximate the value of sec 3.5 rounded to two decimal places.

Answer:

Solution. -1.07

Compute $1/\cos 3.5$. Make sure that your calculator is computing in radians.

6. [4 pts] The point (3, -2) is on the terminal side of an angle θ . What is $\cos \theta$?

Answer:

Solution. $\frac{3\sqrt{13}}{13}$

If a point (x, y) corresponds to the angle θ on a circle of radius r, then $\cos \theta = \frac{x}{r}$. We find $r = \sqrt{13}$, so the answer follows.

<

7. [2 pts] What is the exact value of $\sin 60^{\circ}$?

Answer:

Solution. $\frac{\sqrt{3}}{2}$

8. [4 pts] If A denotes the area of a sector of a circle of radius 5 cm formed by a central angle of $\frac{\pi}{3}$ radians, find A.

Answer:

Solution. $\frac{25\pi}{6}$ cm

The area of a sector is given by $A = \frac{1}{2}r^2\theta$ where θ is an angle in radians.

Math 119 - Quiz 1 Feb. 1, 2008 Wodarz Version 2 Name:_

Section:____

<u>Part 1</u>: (True/False) Circle the correct response. [2 pts each] For the first two True/False questions, assume that t is a real number, and that $\left(\frac{5}{7}, \frac{\sqrt{24}}{7}\right)$ is a point on the unit circle that corresponds to t.

1. T F $\sin t = \frac{5}{7}$.

Solution. FALSE

 $\sin t = y$ where the point on the unit circle is (x, y). We have $\cos t = \frac{5}{7}$ and $\sin t = \frac{\sqrt{24}}{7}$.

2. T F $\csc t = \frac{7}{5}$.

Solution. FALSE

 $\csc t = \frac{1}{y}$ where the point on the unit circle is (x, y), provided that $y \neq 0$. We have $\sec t = \frac{7}{5}$ and $\csc t = \frac{7\sqrt{24}}{24}$.

3. T F If we convert an angle of measure $\frac{\pi}{3}$ radians to degrees, we obtain 30°.

Solution. FALSE

Multiply the measure in radians by $\frac{180^{\circ}}{\pi}$ to obtain degrees. $\frac{\pi}{3}$ radians converts to 60°.

Part 2: (Short Answer) Fill in each blank/box with the best response.

4. [2 pts] Convert the angle 127.46° to D°M'S" form. Round your answer to the nearest second.

Answer:

Solution. 127°27'36"

5. [2 pts] Use a calculator to approximate the value of cot 3.5 rounded to two decimal places.

Answer:

Solution. 2.67

Compute $1/\tan 3.5$. Make sure that your calculator is computing in radians.

6. [4 pts] The point (3, -2) is on the terminal side of an angle θ . What is $\sin \theta$?

Answer:

Solution. $\frac{-2\sqrt{13}}{13}$

If a point (x, y) corresponds to the angle θ on a circle of radius r, then $\sin \theta = \frac{y}{r}$. We find $r = \sqrt{13}$, so the answer follows.

7. [2 pts] What is the exact value of $\tan 60^{\circ}$?

Answer:

Solution. $\sqrt{3}$

8. [4 pts] If A denotes the area of a sector of a circle of radius 7 cm formed by a central angle of $\frac{2\pi}{3}$ radians, find A.

Answer:

Solution. $\frac{98\pi}{6}$ cm

The area of a sector is given by $A=\frac{1}{2}r^{2}\theta$ where θ is an angle in radians.

<