ASSESSMENT OF BODY WEIGHT STANDARDS IN MALE AND FEMALE ARMY RECRUITS

U S ARMY RESEARCH INSTITUTE
 OF ENVIRONMENTAL MEDICINE
 Natick, Massachusetts

Approved le public release distribution unlimited
UNITED STATES ARMY
MEDICAL RESEARCH \& DEVELOPMENT COMMAND

$$
9 \% 0619046
$$

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DISPOSITION INSTRUCTIONS
Destioy this report when no longer needed.
Do not return to the originator.

$$
\begin{gathered}
\text { PAGES } \\
\text { ARE } \\
\text { MISSING } \\
\text { IN } \\
\text { ORIGINAL }
\end{gathered}
$$

DOCUMENT

ASSESSMENT OF BODY WEIGHT STANDARDS IN MALE AND FEMALE ARMY RECRUITS

K.E. Fried!, Pil.D.

J.A. Vogsi, Ph.D.
M.W'. Bovee
B.H. Jones, M.D.

Exercise Physiology Division
US Army Research Institute of Environmental Medicine Natick, MA 01760-5007

DISCLAIMERS

The views, opinions, and findings contairied in this report are those of the authors and should not be construed as official Department of the Army position, policy, or decision, unless so designated by other official documentation.

Human subjects participated in this study after giving their free and informed voluntary consent. Investigators adhered to AR 70-25 and USAMRDC Regulation 70-25 on "Use of Volunteers in Research."

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE						Approved No. 0704-0118				
1a. REPORT SECURITY CLASSIFICATION Unclassified			16. RESTRICTIVE MARKINGS							
2a. SECURITY CLASSIFICATION AUTHORITY			3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution is unlimited							
2b. DECLASSIFICATIONTIDOWNGRADING SCHEDULE										
4. PERFORMING ORGANIZATION REPORT NUMBER(S)			5. MONITORING ORGANIZATION REPORT NUMEER							
6a. NAME OF PERFORMING ORGANIZATION U.S. Army Research Institute of Environmental Medicine		\qquad	7a. NAME OF MONITORING ORGANIZATION							
6c. ADDRESS (City, State, and ZIP Code) Natick, MA 01760-5007			7b. ADDRESS (City, State, and ZIP Code)							
8a. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL ORGANIZATION (ff applicable) HQDA, ODCSPER DAPE-MPA			9. Procurement instrument identification number							
8c. ADDRESS (City, State, and 2IP Code) Washington D.C. 20310-0300			10. SOURCE OF FUNDING NUMEERS							
			PROGRAM element no. 6.2	PROJECT NO. $3 E 162787$	TASK NO. AB $79 / \mathrm{BF}$	WORK UNIT ACCESSION DA315433				
11. TITLE (Include Security Classification) Assessment of Body Weight Standards in Male and Female Army Recruits (U)										
13a. TYPE OF REPORT Final\quad136. TIME COVERED FROM Iune 88 TO Dec. 89			14. DATE OF REPORT (Vear, MONTh DAY) 15. PAGE COUNT 1989 December 29 9.5							
16. SUPPLEMENTARY NOTATION										
17. $\operatorname{Cos} 4$ TI CODES		10. SU日EET TEAMS (Continue on revers if necestary and igintify by block number) tody weight; body compositionk tedytfect. anthropometry: physical standarde recruics; - endone echnide physical fitness: weipht loss; attrition' entioncestandards;								
FIELD	GROUP ${ }^{\text {G }}$ SUB-GROUP									
06	N									
06	p									
19. AgSTRACT (Continue on reverte if necessery and bientify by black number) Army enlisted candidates are screened for obesity with height-beight tables (AR 40-501) which exclude few young males but approximately one third of young females in che U.S. population. Anocher regulation (AR 600-9) sets standards for retention in the Artay on the basis of body fas estimated from circumferences. The effects of these two disparate sets of standards were studied in a sample of 1894 recruics starting basic eraining at Fort Jackson In Fall 1988, concluding with a survey conducted through their company comanders 6 months after basic training. (The suitability of accession weight standards with respect to the retention standards was examined by studying the effect of excess fatness on attrition from active duty, physical performance, and ability to achieve fat standards after basic training The data suggest that accession siandards should be based on body fat, the gap between the two male standards should be redured. further study is necessary to deteraine if females could be granted a similar allowance, and female body fat (retention) standards should be ifheralized (still keeping, within the objectives of the Army Keight Control Program).										
			21 assianct security cuassfication Unclassified							
22a. NANE OF RESPOASTBLE INOUVIOUAL CPT Karl E. Fried!			226 TELEPHONE (nchice Mre COde)(508) $651-4847$22C OFFKE SYMIOT SGRD-UE-Pli							

Weight is not a regulaisd quality in any code of laws governing the enlistment of recruits. The circumferen:ze of chest thought to be indispensible as an accompaniment to certain degrees of stature, is carefully laid down in the English regulations, but weight is not even mentioned. It is presumed that the matter is left to the discretion of the examining surgeon, with whom the decision as to the other qualities named might, it is tliought, be also left with advantage. A due proportion in the weight is quite as essential in the soldier as a well-formed chest, and is of greater importance than lofty stature.

Colonel Jedidiah H. Baxter (1875), Chief Medicai Jfricer of the U.S. Provost-Marst-al-General's Bureau

That a member whace weight exceeds the maximum for his or her height will not be utilized as the sole criterion for a classification as obese. Converselv, a member whose weight coes not exceed the maximum miay, in fact, be obese. Evaluation of the body build, muscular development, and bone structure may be necessary to differentiate between these conditions. A view of the entire body shoula be taken, noting the proportions, symmetry of the various parts of the body, chest development, aboominal gith, and the conditicn and tone of the muscles. An overweight member, who is obviously active, of firm musculature, evidentiy vigorous and heakhy, and who presents a satisfaciory military appearance, should not be classified as obese. Obesity will be determined by
 a physician at the medical treatmen! tecility.

AR 600.9, 30 Nov ${ }^{3}$ 3, "The Army Physical Fitness and Weight Control Program*

TABLE OF CONTENTS

List of Figures vi
List of Tables. vii
Foreward ix
Acknowledgments x
Summary 1
INTRODUCTION
Origins of Army entry (accession) weight standards 5
Evolution of an Army weight contro! program 7
Comparison of accession and retention standards. 12
METHODS
Study sample 17
Data collection 18
Data analysis 20
RESULTS
Distribution of nev: recruits by weight and fatness 22
Attrition and fatness. 26
Fhysical performance and fatness. 29
Weight loss and achievable change in body fat 32
DISCUSSION
Effect of accession weight standards on soldier fatness 35
Relationshid of standards to attrition and physical performance 38
Linkage between accession and retention standards on the basis of achieved lat loss. 40
Sex differences in fat distribution and regulation. 42
Comparison to weight control goals and standards of the Navy 46
Conclusions 49
Reterences. 50
Appendices (A-M) 57
Glossary of spocialized terms and abbreviations 93

LIST OF FIGURES

Figure 1. The relationship between weight and body fat standards, illustrated in terms of military appearance. 11
Figure 2. Plotted values from current accession and retention weight tables for men and women in the youngest age category 13
Figure 3. Plotted values from currinnt accession and retention weight tables tor men and women in the second youngest age category 15
Figure 4. Distribution of recruits by accession and retention weight limits. 21
Figure 5. Distribution of recruits by relative body fat 22
Figure 6. Distribution of recruits by proximity to body fat standards. 23
Figure 7. Distribution of attrition rates by proximity to body fat standards 28
Figure 8. The relationship between two mile run times and fatness 31
Figure 9. Weight loss achieved in basic training and between E.AD and six months after basic training 33

LIST OF TABLES

Table 1. Army body fat retention standards 9
Table 2. Data collected on recruits starting with basic training at Fort Jackson in Fall 1988 19
Table 3. Current Army standards of body mass index and fatness by age category. 21
Table 4. Summary of identified separations in the study group 27
Table 5. Mean values of physical performance measures for recruits, compared by retention body fat standards at EAD. 30
Table 6. Percent body fat (actual or equivalent) of recruits, retention and accession standards, and national averages. 36
Table 7. Percent of new male and female recruits affected and total excluded at various allowances above retention body fat limits. 42

FOREWARD

The U.S. Army currently has two separate and different programs addressing body weight limits. The program for on-the-job soldiers (referred to as the retention standard, AR 600-9) utilizes a two tiered system: an initial body weight-for-height limit, followed by a secondary body fat evaluation applied to those exceeding the weight-for-height limit, with the ultimate standard being body fat. In contrast, the system for new entrants into the Army (referred to as the accession standard, AR 40-501), utilizes only a weight-for-height standard. There is currently no connection between these retention and accession standards. Furthermore, the accession hody weight standards are currently set at a level which permits entry of male recruits who are well above retention fat standards, but restrict females to weights which approximate the retention fat standards. These accession standards also exclude nearly one third of young U.S. women from Army service, but exclude few young males.

This study was conducted tc explore the relationship between these two standards. Specifically, in response to a request from Office of the Deputy Chief of Staff for Personnel to The Office of the Surgeon General (28 May 1987), we were asked to study the suitability of the accession standards with respect to the retention standards, and to reexamine the basis of the higher rate of exclusion of females from the national population. This was done by examining the relationship of excess fatness, as defined by current retention standards, to attrition, physical performance, and achievable weight and lat loss in male and female recruits.

ACKNOWLEDGMENTS

We are grateful to SPC Wendy (Robison) Weringo for her management of the data file. The successful completion of this report is due in large measure to her outstanding work and dedication.

We are also grateful to Ms. Doria T. Cardinal for turning a computerized listing of unit addresses into a useable mailing list for the survey.

Members of the onsite (Fort Jackson) study team under the direction of LTC Bruce H. Jonss included SPC Wendi G. (Robison) Weringo, Ms. Debbie Jezior, SGT Jeffery S. Staab, SPC John Kaszuba, Mr. Robert P. Mello, SPC William S. Scott, SPC Christopher Butkovich, CPT Joseph Knapik, SSG Celso Santiago-Morales, SSG David Moore, SPC Julio Gonzales, and MAJ David Cowan.

COL David Schnakenberg provided proactive support and encouragement of this research in his role as the Institute Commander during the time that most of this data was collected.

COL Joseph Denniston, Commander, and LTC Frazier Glenn provided sound advice in the interpretation and presentation of the study resulis.

COL Dale Block and LTC Judy Turcotte ai Office of the Surgeon General provided valuable discussion of Army Weight Control Program issues.

The results of this study were brieted to MG Russell (USAMRDC, 3 Nov 89), MG Lanoue (OTSG, 7 Nov 89), BG Stroup (ODCSPER, 7 Nov 89), and MG Wheeler (USAREC, 14 Dec 89). Some of their comments and questions have been incorporated into this final report.

SUMMAFY

The purpose and methods of Army assessment of body size have changed over time but not all regulations have changed consistemly to reflect these attered goals. The original purpose of height-weight tables was to exclucie underweight candidates from Army sevice. Upper limits of weight emerged in the 1960's to exclude overweight candidates and height-weight accessions standards (AR 40-501) are now the sole basis for exclusion of potentially obese men and women. Separate tables for weight control (retention) standards were issued in 1975. By DOD directive, the weighl control standards further evolved into a program based on body composition instead of body weight standards. The current retention standards (AR 60C-9) are based on percent body fat and use height-weight tables only as an initial screen to determine who is at risk for obesity by established Army standards of peicent body fat. Thus, two regulations assess obesity by iwo different sets of standards and no attempt has been made to link these two standards.

In the past decade, temale representation in the Army has substantially increased and standards of body size and body composition have been applied largely on the basis of male standards. Thus, temales have been held io height-weight standards which are more stringent than male standards, possibly by the reasoning that this compensates for sex differences in physical pertormance. The body fat standards have similarly been linked to the male standards by allowing an 8% body fat urit difterence to account for the estimated difterence in sex specilic essential body fat. The effect of these lemale accession weight standards is to exclude neary one third of otherwise suitable female candidates from Army service (white few males are exciuded). Later lemate soldiers ate held to body fat standards which are more stringent than the mate standards. Thus, the Army physical sandards appear to discriminate against temale soldiers.

In 1985, the Ofice of the Assistant Secretary of Detense, Force Managemert and Persennel (OASD(FMAP)) requested that all services review accession height and weight standarc's, specifically with respect to males and temates. As a resuit this sludy was conducted. The key objectives were to:

1) establish the relation between accession height-weight standards and subsequent military performance (physical performance and success in the Army) as a function of gender, 2) determine the appropropriate relationship between accession standards and retention standards, 3) determine if a measure of percent body fat is the appropriate accession standard, as it is for the retention standard, and 4) further evaluate the appropriateness of the current retention standards.

Male and female recruits were studied at Fort Jackson basic training from the time of entry to active duty (EAD) in the Fall of 1988. Height, weight, circumference measurements, and demographic information were collected by a study team at the reception station for 1894 participating recruits. APFT periormance, unit recorded weights and heights, and all separation actions were recorded for 2623 recruits in participating units. The soldiers were again surveyed through their unit commanders at their first unit, approximately six months (6 m) after the end of basic training. Weight, height, and circumferences were obtained from the units of 75% of the soldiers reached by survey.

The results of this study compared to national survey data suggest that accession weight tables exclude few males who are within fat standards while some young males whio exceed even 30% body fat are accepted. In contrast, the female accession weight tables appear to exclude many females who are not overfat by retention standards. Because the female accession standards are stringent, female recruits are tightly grouped around the reention fat standards with nearly one third of new recruits exceeding the fat standards, but the majority of these females only exceed their standards by a few percent body fat units. Black males and females had significantly lower body fat and were less likely to exceed retention fat standards than non-black recruits.

There was little relation between fatness and attrition, with only a slight trend for overfat males to be overrepresented in the attritees. There was a sigiificantly larger proportion of overweight (by retention screening tables), but not overfat, females retained compared to females attrited, possibly reflecting advantages of a larger body size, related to greater muscle mass.

The current fat standards were reasonable markers of APFI perforn ance in males. However, the relationship between female body fat standards and performance was weaker in this sample and the female standards did not clearly correspond to any inflection points in performance.

Fat males and females at all levels of fatness lost weight in basic training. Males continued to change in the same direction following basic training while females tended to gain weight, regaining all weight lost during basic training and gaining additional weight, over their initial weight at EAD. In terms of body fat, there was no decrease in the proportion of overfat females compared between EAD and 6m. Males had more success in fat reduction and the proportion of overfat males significantly decreased by 6 m . Males up to 4% body fat units overfat were likely to achieve their standards at 6 m . Thus, maies and females were both clearly capable of significant weight loss during basic training but only the overfat males maintained this weight loss. The reasons for this gender difference are unknown but may be attributed to motivational differences related to differences in the current standards, differences in the physical demands of assigned specialties, differences in recreational physical activity and other social $f_{f} \cdot 2 i$ and physiolcyical differences in fat regulation.

The results of this study support a recommendation that accession standards should be based on body fat instead of body weight. Male recruits could be given some allowance (approximately 4% body fat units greater than the retention standards) and be expected to achieve their standards by 6 months after the end of basic training. A change to body fat accession standards with this allowance would have reduced this sample of male recruits by 8.5%, including elimination of the fatest and least physically fit males. Further study is necessary to determine if such an allowance is appropriate for female recruits. Thus, a switch to body fat standards for accession standards would help compliance with the Army Weight Control Program but would also exclude many (31.6%) females who are close to their current standards and who are not measureably less fit or less suited to their military occupational specialties. This suggests that female retention standards need to be reexamined and reset according to some nonarbitrary rationale not linked to male s'andards.

INTRODUCTION

ORIGINS OF ARMY ENTRY (ACCESSION) WEIGHT STANDARDS

As early as World War I, Army accessions were screened with height-weight tables. These standards were designed to exclude underweight males whose underdevelopment may have marked chronic disease such as tuberculosis, and who were nevertheless considered unsuitabie to the physical demands of the Army. The tables gave minimum acceptable weights and "desirable" weights for all soldiers by height. A soldier was considered unfit for military service if general examination proved him to be "undersized, undenweight, undeveloped, pale and emaciated, poorly nourished with thin flaboy muscles, or manifestly lacking in stamina and resistance to disease" (AR 40-105, 29 May 1923). Meanwhile, obese applicants were eliminated only for overt morbidity, or if their weight was excessive for Cavalry service. Thus,

> Variations in weight above the standard are disqualifying if sufficient to constitute such obesity as to interfere actually or potentially with normal physical activity, as may be evidenced by high blood pressure, a beginning nephritis, breaking down of the arches of the feet, or other defects incident to such condition. (AR 40-105, 29 May 1923)

This emphasis on the exclusion of underweight soidiers continued through 1960. Men were routinely accepted for duty if their weight was greater than the standards for height "provided the ovenweight is not so excessive as to interfere with military training" (MR 1-9, and later AR 40-115).

Weight tables for female soldiers emerged in WWII, specifically for Army nurses. As with the standards for males, the emphasis was on the exclusion of underweight applicants. The permissible limit below the tabled "average" weight was 15 pounds. Unlike the male tables, these tables were subdivided into age categories (in 5 -year intervals) and the weight increased with age. As with the male tables, there were no upper weight limits governing acceptance into the Army but the regulation (AA 40-100) recommended that the weights
given for the age group 26-30 were the ideal ones to maintain.

By 1960, the regulation on "Standards of Medical Fitness" (AR 40-501), listerd heicht-weight iables with both minimum weights and age-related maximum weights for men and women (Appendix Table A). No longer were candidates to be evaluated for obesity if they exceeded weight tables; large men and women were excluded absolutely. These stricter standards reflect the difference between the wartime demand for soldiers and a peacetime Army able to apply more arbitrary physical selection criteria.*

In 1983, the maximum allowable weights of the 1960 regulation were further modified, with increased weight allowances for taller men and women and deviecises iur sinorter men and women (Appendix Table B). (Commissioned officers are held to the standards of AR 600-9). The basis of either of these accession tables is uncertain. They do not correspond to any of the major actuarial tables such as the height-weis:it tables of the Metropolitan Life Insurance Company, or wit. previously published recommendations from Army agencies sich as tha Office of the Surgeon General (1) or Quartermaster anthropologists (2), which were based on actual soldier data, nor do they correspond to the oarlier standards used. Ai further example of the arbitrary nature of these tables and the.r periodic changes, two of the 5-year age intervals were collapsed to $21-30$ years for maies, but not for females. These standards have not been changed further during the time in which a separate set of "retention" standards, based on body fat measurement, have been developed and refined for all active duty snidielu.

A recent proposal to change the accessions tables to a cufferent arbitrary standard which would be more equitable between sexes fin terms of proportions excluded) was rejected by the Army. In 1985, a detailed siudy by the Defense Manpower Data Center noted that males 2..." females were nct equally treated by the accession standards of any of the sevices. These standards excluded 32.2% of young women in a nationally representative

[^0]sample, the second cycle of the National Health and Nutrition Examination Survey (NHANESII). In the same sample, only 4.7% of males would be excluded from enlistment by their weight. The proposed solution was to establish new tables which allow entry of both men and women at weights up to 120% of their respective national averages (3)." The propcsed standards would change the percent of excluded U.S. males and females to 8.3% and 12.8%, respectively. A followup report (5) further suggested that these were appropriate standards for males since first enlistment attrition rates were higher for males above these relative weights. For females, there were no discernably higher attrition risk categories, although few females greater than 120% of the national average weights were available for study because of the existing exclusionary standards. This recommended change was a simple and logical proposal, except thai it did not take into account the Department of Defense (DOD) directed move to standards based on body fat assessment.

EVOLUTION OF AN ARMY (RETENTION) WEIGHT CONTROL PROGRAM

In response to perceived problems in an increasingly sedentary Army, weight control regulations for active duty soldiers were revitalized in 1976. A new set of weight standards, unrelated to the tables in AR 40-501, were generated under the personal direction of General Bernard W. Rogers." All active duty personnel were required to remain below the maximum allowable weights (Appendix Table C), regardloss of age, or be assessed by a physician for obesity. If they were judged to be obese, soldiers were to be placed on a prescribed diet and exercise regimen. Now commanders were permitted to apply adverse administrative actions for unsatisfactory progress in weight loss,

[^1][^2]if they found it to be "indicative of apathy, a lack of self-discipline, evasive performance, or other character deficiencies."

The stated objectives of this program were to: "a) maintain the weight of all personnel at a level which is best suited to permit them to perform theirduties in a peacetime or combai environment, and b) present a smart soldierly appearance expected of a combat ready Army." Military appearance was the mainspring of this regulation, as detailed in a singular paragraph:

> The wearing of the Army uniform should be a matter of personal pride and satisfaction. Each soldier is a representative of the United States Government, and should have a physical configura ion and posture when in uniform that is trim and smart. Waistlines that stretch the front of an otherwise well-fitting blouse or shirt, and "pot-bellies" detract from good military appearance. (AR 600-9, 26 Nov 76)

Although it applied to both seyes, this regulation was clearly designed with males in mind. No special mention was made of excess fat distributed in female-specific patterns (e.g. standards of military appearance for bustlines).

A major revision of this regulation in 1983 removed the subjective physician's assessment of obesity by adding direct estimation of body tat and setting age- and sex-related body fat standards. This conversion to the measurement of body fat was specilically directed by DOD. Although they are related within a population, body fat and body weight (tor height) are distinct qualities (see Figure 1). Unlike the accession standards, this allowed solders of above average musculature to be retained without adverse actions. It also objectively quantified an individual's fatness for an aggressive enforcement of body composition standards, instead of retying on a commanders assessment of a soldier's appearance and ability to perform his/her duties.

DOD directive 1308.1 suggested an eventual goal of 20% and 26% body lat for all male and female military personnel. However, for the Ammy retention standards, the most stringent limits were sot at 20% and 28% for the youngest
age category of men and women. This standard of 20% body fat for young males was based partly on soidier data relating aerobic capacity and body fat (7). It was also recommended as a reasonable upper limit which allows a 5\% body fat interval over the average fatness of fit young males (8). Rather than accepting a similar 5% interval over the average fatness of fit young females, the female standards were sstablished relative to the male standards. Thus, the 8% gap between Army male and female standards denotes a sex-specific "essential body fat" difference which is commonly estimated at $8-10 \%$ body fat units (9) although even larger differences are observed between males and female mean values in some studies. The DOD suggested upper limit of 26% body fat was considered too restrictive for young females since mean fatness of female recruits was 28% at the time that the standards were established (10,11). (For comparison, male recruits averaged 16\%). Arbitrary allowances were also made for age to reflect established but poorly quantified maturational changes in body fat (Table 1).

Table 1. Army body fat retention standards.

Age range	Males	Females
$17-20$	20%	28%
$21-27$	22	30
$28-39$	24	32
$40 \&$ over	26	34

from: AR 600-9, 15 April 1983
Initially, body fat was assessed by the Durnin-Womersley equations using skinfold thicknesses measured at four body sites (12). This was chosen as the interim method (13), while body fat prediction equations based on a U.S. Army sample were being developed. This method was selected on the basis of its

[^3]historical use in military populations and its field expediency, compared to other available methods.

The regulation (AR 600-9) was again revised in 1986 to specity a new procedure for body fat measurement. This method was based on a new set of predictive equations developed expressly for the regulation from an active duty Army sample in the 1984-1985 Army Body Composition Study (14). A key feature of the method is that it can be applied accurately at the unit level by simple measurement of body circumferences (Appendix E). For males, the fat component is assessed by an abdominal circumference and adjusted for fat free body mass by a neik circumference and height. For females, the fat component is assessed by weight and by a hip circumference, with adjustments

Figure 1 (facing page). The relationship between weight and body fat standards, illustrated in terms of military appearance. For purposes of comparison, these soldiers are matched by characteristics as young, white, male soldiers of similar height (See Appendix D for specific characteristics of these subjects). They are arranged in columns by approximate weights: 145 lbs (20% under retention weights), 170 lbs (approaching retention weight screen limits), and 195 lbs (approaching accession weight limits). They are arranged in rows by approximate percent body fat (measured by underwater weighing). Ey accossion standards, all of these men could enter the Army, but the two soldiers who are overweight and orerfat by retention standards (c,f) would ha elirrinated if they did not lose fat on the Amy Weight Control Program. The tvio overfat soldiers who approach their retention weight limit (b,e) wiuld also be at fisk if a commander chose to have them assessed for body fat !a commander's prerogative for a soldier who does not present a good military appearance). The other two low weight but overlat soldiers (a, d) could also be identified by a commander although tinis is unlikely, particularly if their job performance is satisiactory. Thus, by using a weight screen first, the emphesis of the retention standards is on large fat soldiers and not on the undermuscular lat soldiers. Accession standards exclude only the most obese males. There is no analogous graph for female soldiers since accession and retention weights are siriular and the sample of females 20% below retention weights is small.

from height, and neck, wrist, and forearm circumferences. This method has the same range of precision ($\pm 3-4 \%$ body fat units) found in other expedient methods based on underwater weighing, including circumferences, skinfold thickness, other anthropometry based methods, and electrical impedance (1415). These methods probably cannot be further improved without a significant technological breakthrough (16).

Height-weight tables are retained in AR 600-9 as a screen to determine which soldiers need to be measured for bouj fat. The use of screening weight tables is a holdover from the earlier method of skinfold measurements, when it would not have been practical to routinely screen all soldiers because the method required trained caliper users, already straining limited resources. The current Army circumference method can be applied routinely at the unit level and by soldiers themselves. However, the continued use of weight tables also provides a margin of safety for the majority of soldiers, recognizing that all indirect methods of body fat measurement are imprecise. Thus, body fat assessment is still reserved only for those soldiers who exceed weight tables.

The screening tables were developed to approximate the relationship between body proportions (height $\&$ weight in a specific relationship of $w t / \mathrm{ht}^{2}$, known as bod; mass index) and fatness, as related to the specific age- and sex-related fat standards. This was achieved by making the 1976 standards the screening weights for the upper age category (40 years \& over) for males and females, and making the body mass index standards more stringent in the younger age categories (Appendix Table F). In tact, these maximum weights from the 1976 regulation formed the basis from which the remaining weights and, by reverse calculation, from which reasonable but arbitrary body fat standards were derived. Following the Ariny Body Composition Study, the female screening weight table allowances were increased by 5% to better align scieening weights to the body fat standards (Appendix Table G).

Figure 2 (facing page). Plotted values from current accession and retention welght tabtes for men and women in the youngest age category (17-20 years). Mean values of the U.S. population (NHANESII) in this age range are shown ± 1 standard deviation in the stippled area (68% of sample).

17-20 YEAR OLD MALES

age ranges for male accesalon standarda and for NHANESII moan valuea: $18-20$

17-20 YEAR OLD FEMALES

age fange for accestion atandetde: $10-20$ ege range for HHANESil dead velut R

COMPARISON OF ACCESSION AND RETENTION STANDARDS

The Army Weight Control Program (retention) regulation has evolved to an assessment of fatness by measurement of body fat, but the regulation governing accessions has not changed from the use of only height-weight tables for the same purpose of identifying overiat candidates. There is no correspondence between the weight tables used in the two regulations and even the age categories are different. Not surprisingly then, the male and female accession weight tables are in arbitrary disagreement with the retention weight screening tables. Their reiationship and the relationship to national averages are shown in Figures 2 and 3 for the two youngest age categories of the retention standards (these age ranges represent approximately 95\% of new recruits). The same relationships exist for accession weight standards, retention weight screening tables, and mean values from the U.S. population at the two upper age categories.

There is no apparent difference in body mass index of young males and females, based on the NHANESII data for the youngest age category (16-20 years). Both have a BMI of approximately $22.3 \mathrm{~kg} / \mathrm{m} 2$, corresponding to mean body fats of roughly 15% for males and 27% for temales. Only the range of heights differs between the sexes while BMI follows the same continuum.

Retention screening weights reflect the retention body fat standards which they approximate. For men, these are well above the national mean while for women the weight screen is close to the national mean. As illustration of this point, the mean of young male recruits is 16% body fat and they are allowed up to 20 or 22% body fat. The mean of young female recruits is 27% body fat and they are allowed up to 28 or 30% body fat. Thus, the mean fatness of temale recruits afe nearly superimposed with retention screening weight limits.

Figure 3 (facing page). Piotted values from current accassion and retentlon weight tables for men and women in the second youngest age category (21-27 years). Mean values from the U.S. population (NHANESII) for age categories in this range are also shown.

21-27 YEAR OLD MALES

age range for ecceselon atanderche: 2f-3
soe range for NHANESII mean valut: 2t-24

21-27 YEAR OLD FEMALES

mote- ege prowdinge tor seceselon stot cevocivide ime elogit arefe grouping

Accession weight standards do not permit females any significant leoway compared to the retention standards, while males obtain a very generous allowance. The female accession tables deviate from the normal physiological relationship of body mass index and give up to a 10 lb weight allowance for the shortest womer but are actually more restrictive than retention weight screens for the tallest women. The male accession tables exclude very few otherwise eligible U.S. males, allowing up to 40 pounds over the retention screening tables. The accession table weights correspond to the average weight predicted for yourig males with 32% bociy fat.

Although any limiting standard drawn through the continuous range of observed body fat is necessarily arbitrary, the drawing of eriforceable lines for fatness has effectively eliminated gross obesity from the U.S. Army. As a result of standards which they know they must meei, soldiers have been driven to exercise more and to be more careful about their eating habits. These positive aspects of the regulation are undermined by the misrnatched accession regulation which injects more fat soldiers into the system. No new data collection is required to determine if there is a discrepancy between accession standards based on height-weight tables and retention standards which are based on body fat. Likewise, there is an obvious difference in the standards which have been set for men and for women.

This study was conducted to explore the relationship between these :wo standards for males and females. This was done by examining the relatonship of excess fatness, as defined by current retention standards, to attrition. physical performance, and achievable weight and fat loss in now male and temale recruits.

METHODS

This study was designed and conducted in response to a request from the Office of the Deputy Chief of Staff for Peisonnel, conveyed through the Office of the Surgeon General. The protocol was approved by the Human Use Review Board on 20 April 1988.

STUDY SAMPLE

The purposes and procedures of this study were explained to approximately 2000 new recruits and 1894 volunteered to participate and gave their written informed consent. Other routinely collected information such as APRT scores was tabulated from unit records for 2623 (96%) individuals in the training companies containing formal study subjects (Appendix H). Subjects were recruited from all female companies formed during the study (approximately 1 company/week). Participation was invited for all male soldiers in one or more companies per week, selected from a larger pooi of subjects in order to roughly match the number of women in the study. initial measurements were obtained between 11 September and 9 October 1988. The last group of recruits was followed through graduation from tasic training on 16 December 88 and a final mailed followup of all subjects was performed approximately six months after the end of basic training.

The mean age of these recruits was 20.1 ± 3.3 (range 17-40) and 20.2 ± 3.5 (range 17-35) years for males and females, respectiveiy. Distribution of the three principal ethinic groups reprasented was: for males - 58.7% white, 30.9% black, and 6.5% hispanic; and for females -46.8% white, 44.6% black, and 6.2% hispanic. National Guard and Army Reserve Components comprised 20.4% of male and 22.8% of female basic trainees. Female recruits were assigned primarily to low aerobic demand specialities (17); three fourths were assigned to: 76 Y (supply), 94 B (cooks), or CMF 33 (signal specialties). No concentration of specialties was evident for male rocruits. Detailed analyses of the diet (at this time) and physical activity (in a 1934 study) of Fort Jackson basic trainees are available in two previous USARIEM technical reporis (18,19).

DATA COLLECTION

Data was collected as follows and as summarized in Table 2.

Reception Station data collected by study team. The consent form and an extensive activity and health history questionnaire (results to be reported separately) were completed by all subjects in groups of 100 or more. Height, weight, grip strength, flexibility, and circumferences for Lody fat estimation were measured directly. Height was measured without shoes. Weight was obtained and recorded for soldiers in stockinged feet, t-shirt, and either jeans or BDU trousers and belt. Circumferences were measured with a Gulick tape measure in accordance with procedures outlined in AR 600-9 (13 Feb 1987). Grip strength was measured with a dynamometer (20) and the mean of three trials was recorded. Flexibility was measured using a sit and reach device (21) and the mean of three trials was racorded.

Abstract

Milltary Entrance Processing Station (MEPS) Information obtained from recrults' medical records screening. Starting within 1-2 weeks after recruit arrival, individual medical records were screened for height, weight, age, and ethnic origin as recorded during the MEPS station inprocessing. These heights and weights are obtained from soldiers wearing only underclothing.

APFT date collected from unit records. APFT test results were obtained from unit records for all recruits who took the test. This test was administered by the third cay of basic training and again in the last week of basic training.

Discharge end recycle data. All separation actions during the basic training period were documenied for study subjecis. This information was also obtained for study recruits continuing with Advanced Individual Training at Fort Jackson.

Six month post basic training followup. Height, weight, and circumference measurements were obtained by surveys mailed to compeny commanders at the soldier's current duty station six nowlths after graduation from basic training (Appendix I). These addresses were obtained from the Army Enlisted Masieffile. The printout from this file was performed at an average of 6.7
months after soldiers' completion of basic training. The disposition of unavailable soldiers was requested, if known. An initial mailing to 100 of the study soldiers was performed to test the questionnaire and the mailing list (using an earlier printout). A subsequent mailing to the remaining subjects was performed within 10 days of the receipt of an updated address list (21 July 89). Commanders were given a 20 day suspense from the date of mailing. A followup mailing to all nonrespondents (using the same address list) was made 20 days after the suspense for the first mailout. All returned surveys were analyzed 60 days after the last mailout (10 November). Surveys wore returned for 75% of the subjects by their units.

DATA ANALYSIS

Data was analyzed with the SPSS-X statistical package (Chicago, ILL), using chi-squared analyses, t-test comparisons, and simple regressions. All EAD and basic training data was analyzed using the entire set of available recruit data. Comparisons between survey data and EAD data were made only for the subset of active duty soldiers with complete anthropometric data. Mean

Table 2. Data collected on recrults starting with basic training at Fort Jackson in Fall 1988.

MEPS station (retrospective)	Reception station (onsite study)	End of training (unit testing)	6-9 month followup (mailed survey)
height weight	haight weight	height weight	height weight
	APFT results	APFT results	
	circumferences		circumferences
	discharges-.......... discharges	discharges	
	flexibility grip strength		

[^4]values are shown \pm standard deviations. All study team measurements were recorded in metric units. These have been converted to English units in the results section of this report for consistency with the regulation (AR 600-9) and to match the units used in other phases of the data collection.

Body mass index ($\mathrm{wt} / \mathrm{ht} \mathrm{t}^{2}$) was calculated for males and females in this study as the most appropriate unitary expression relating body proportion and size to fatness (22). An alternative index, wt/ht ${ }^{1.5}$, has been suggested to be a more appropriate expression in prediction of weight for females; however, based on the results of a stepwise regression using data from the Army Body Composition Study, we found that for both males arid females, BMI is a superior predictor of fatness.

The primary breakdown of data in this study was performed as a dichotomous "within" or "exceed" weight-for-height tables, or "within" or "exceed" fat standards. Distributions around these standards are expressed as a difference from the recruits' individual (age- and sex-specific) standards, in positive (exceed limits) and negative (within standards) BMI or \% body fat units. Cutpoint values used in this data analysis are shown in Table 3.

Percent body iat was calculated according to the relationships listed below. Using English units of measure, these yield the same results as the current computation tables in AR 600-9, for the $1 / 4^{\prime \prime}$ intervals offered:

MALES: \% BODY FAT $=46.89-\left(68.68^{*}\right.$ LOG $($ HEIGMT $\left.)\right)+\left(76.46^{*}\right.$ LOG (ABDOMINAL CIRCUMFERENCE - NECK CIRCUMAFERENCE))

```
FEMALES: % BOOY FAT = (0.44 * HIP CIRCUMFEMENCE) + (105.33*
    lOG (WEIGHT)) - (1.31 * HEIGHT) - (3.99 * FOREARM CIRCUMFERENCE) -
    (1.35* NECK CIRCUMFERENCE) - (0.51 * WRIST CIRCUMFERENCE) - 71.76
```

The reliability of MEPS and survey data was tested using team-measured height as a chock measurement. These measurements by the MEPS and by soldiers' first units overestimated height by 0.9 and 1.1 cm (Apperdix JJ. A 1.0
$\mathrm{cm}\left(0.4^{\prime \prime}\right)$ overestimate in height reduces calculated body fat in the midrange of statures by 0.2% and 0.7% body fat units for men and women. To reduce the influence of this one source of measurement error, all body fat calculations were made using the initial study team measured height.

Table 3. Current Army standards of body mass index (BMI) and fatness by age category. Tables are shown in Appendix B \& G. Note that BMI and \%body fat are not numerically equivalent expressions.

1. Accession - height-weight standards (expressed as BMI)

	$16-20$	$21-30$	$31-35$	$36-40$
	30.9	31.9	31.7	30.8
Male	22.8	23.7	24.4	24.9

2a. Retention - height-weight scieen (expressed as BMI)

	$16-20$	$21-27$	$28-39$	$40+$
Male	25.9	26.5	27.2	27.6
Female	22.9	23.5	24.3	25.0

2b. Retention - body fat standards (percent body fat)

	$16-20$	$21-27$	$28-39$	$40+$
Male	20	22	24	26
Female	28	30	32	34

[^5]
RESULTS

distribution of new recruits by weight and fat standards

Distribution by welght standards (Figure 4, facing page). The distribution of recruits by accession and retention weight limits are shown in Figure 4. These are expressed as body mass index (BMI) units, to express weight-for-height correctly. A small percentage of men (5.5\%) exceeded even the lenient male accession weight tables. A much larger proportion of these men exceeded the retention weight screen (30.8%), reflecting the large gap between the accession and retention weight tables for males. Although none of the overweight temales exceeded the accession standard by much (at most, 3 BMI units), 32.1% were above the standard on entry to active duty and 36.9% exceeded retention screening table weights. (One BMI unit corresponds roughly to 6.7 lbs).

Fatness of new recruits (Figure 5, next page). The distribution of new recruiis by percent body fat is shown in Figure 5. Mean body fat was $16.1 \pm 5.8 \%$ for males and $26.8 \pm 4.2 \%$ for females. Males averaged $-4.6 \pm 5.9 \%$ body fat units below their limit, while temales averaged $-1.8 \pm 4.2 \%$. Breakdowns by age and ethnic origin are shown in Appendix K.

Dlstribution by fat standards, within walght standards (Figure 6). The distribution of new recruits with respect to the proximity to body fat retention standards is shown in Figure 6 . Only 4 males out of 54 who were overweight by accession weight standards were within the retention fat standards. A large portion of the males who fell below accession weight standards, but who exceeded retention weight screen limits, met body fat standards (shacteo portion, below tat limit). The highest body tat measured in a maie recruit, acceptable by accession weight tables, was 34% or approximately 14% body lat units excess.

Compared to mates, a large portion of temales who exceeded accossion weight standards were within retention body fat standards (10.9\%). Theoretically, these women should not have been allowed into the Army, by the

DISTRIBUTKON OF FEMALE RECRUITS BY
ACCESSKN HEGGT-WEIGHT STANDARDS

DISTRIBUTON OF FEMALE RECRUITS BY

\%BODY FAT OF MALE RECRUITS AT EAD
determined by AR 600-9

\%BODY FAT OF FEMALE RECRUITS AT EAD
determined by AR 600-9

FIGURE 5.

FATNESS OF MALE RECRUITS

FATNESS OF FEMALE RECRUITS

directives in force at the time of this study. Presumably, others in this category were turned away by recruiters for failing to meet the accession weight standards.

The distribution of females around their fat standards represents a narrower range than the distribution of men. The minimum portion of new recruits who would qualify for the Army Weight Control Program if they were immediately held to the regulation, are depicted in the shaded (including solid shading) areas which span the overfat region. 19.7% of all new male recruits and 25.4% of the female recruits fall into this category of overweight and overfat.

ATTRITION AND FATNESS

A summary of separations and known reasons for separation is shown in Table 4. Overall attrition rates are estimated as the sum of the basic training rate (all soldiers studied) and all losses in the period following basic training (National Guard \& Army Reserve soldiers not continuing on active duty are censored from the rate). These rates were roughly 15% for males $(5.3 \%$ in BT, 9.7% after BT) and 40% for females (7.2% in BT, 34.1% after BT). Five times as many females as males attrited from active duty atter basic training but before the survey ("Attrited before survey", in Table 4). Thus, attrition in basic raining was higher for females compared to males (relative risk $=1.4$; chisquared analysis, p<0.05), and this risk further increased for females in the 6 months afier basic training (relative risk $=3.5 ; p<0.001$).

The reasons for this attrition are not known but it is evident that ferrale attritees were not fatter than retained soldiers. It is also clear that the relationship between success in the Army (i.e. retention) and body composition is different between males and temales. On a univariate level, there is a trend for increased attrition in males with increasing fatness (correlation coefficient = 0.72 , p<0.01), while the temale relationship, it anything, reflects a decreasing risk of discharge with increasing percent body fat (correlation coefficient $=-0.37$. $p=0.29$)(See Figure 7 which shows altrition rates for the subset of recruits with known body composition).

Table 4. Summary of identified separations in the study group.

	Basic training		First unit	
Chapter/type of separation	M	F	M	F
5-11, Medical fitness*	38	39	4	2
5-13, Personality disorder	0	3	1	6
5-15, Weight control failure	--	--	2	0
5, Unspecified, Convenience of Service	7	5	0	2
6, Hardship/dependency	0	1	1	0
8, Pregnancy	--	-	--	5
9, Alcohol \& Drug Abuse	0	0	1	1
10, Good of the Service	--	--	1	1
11, ELS periormance \& conduct	32	23	2	7
13, Unsatisfactory performance	--	--	2	1
14, Misconduct	0	0	3	0
15, Hornosexuality	2	0	0	0
Unidentifieci separations**	2	7	24	32
Dropped from rolls	0	1	4	1
ATTRITED BEFORE SURVEY	--	--	57	228
Total separations	81	79	102	285
total in each sample	1531	1092	1047	838
\% of each samsple	5.3	7.2	9.7	34.1

- primary diagnoses given for medical discharges during bssic training were: asthma (10 males, 3 females) and pes planus/cavus (8 males, 11 females).
" these were usually surveys retumed from a Separation Point address.

It is not surprising then that males who were overlat by retention standards when they entered the Army had a greater risk of attrition than males who were within standards (relative risk $=1.3, p=0.09$), while overfat females had about the same risk as initially within-standards females (relative risk $=1.1, p=0.32$). The most significant relationship to emerge between body composition and attrition for males or females was that heavy females (high BMI, not necessanily high body fat) were at lower risk of attrition. Thus, the females who exceeded the weight screening tables for retention standards were more likely to be successful in the Army (relative risk $=0.7 ; p<0.001$).

A more sophisticated multivaniate analysis was performed using a logistic regression to compare measures of fitness (2 mile run time, push ups, sit ups), fatness, and BMI against attrition. For males, run time was the only variable associated with attrition, replacing the body composition measures which are weaker factors of the same fitness vaniable. For females, body fat v"ss a significant factor, while situps and BMI were inversely related to attrition. Thus, for males aerobic fiiness is a better predictor of discharge than percent body fat while in females the model indicates that both BMI and body fat are predictive of attrition, with BMI being a protective factor. Thus, females who are strong and overweight (but not overfat) are more likely to succeed during their initial period of Army service.

PHYSICAL PERFORBAANCE AND FATNESS

The relationship between fatness or bocy weight and physical pertormance, as measured primarily by initial APFT performance is shown in Table 5.
Performance measurements were consistently lower fun times were increased) for males exceeding retention fat standards compared to within-standards males, but these differences were less evidemt for females sorted on the basis of their fat standards. Even though all APFT values were markedly improved by the end of basic training tor both males and lemales, and even though substantial weight loss was achieved in the overtat or ovenveight males and temales, ditterences in pertormance between the initial groupings persisted. The differences for males may have been even more pronounced since 22.6\% of overtat mates did not take the final APFT. compared to cnly 12.6% of males

Table 5. Mean values of physlcal performance measures for recrults, compared by retention BODY FAT STANDARDS at EAD.

	Males			Females		
	Within	Exceed	d p	Within	Excee	ed p
Percent body fat	13.7	24.0		24.8	30.8	
	± 4.0	± 2.6		± 2.9	± 1.9	
Push ups (count)	32.0	$26.0<$	<0.001	10.9	8.8	0.001
	± 12.3	± 11.5		± 7.5	± 6.5	
Push ups (count) end of basic training	52.7	$46.7<$	<0.001		26.2	0.005
	± 12.4	± 11.2			± 9.8	
Silups (count)	45.2	$37.7<$	<0.001	35.1	32.0	0.007
	± 10.8	± 12.1		± 14.1	± 13.1	
Situps (count) end of basic training	65.6	$60.7<$	<0.001	61.9	60.4	0.12
	± 11.3	± 10.6		± 10.9	± 12.7	
One mile run (min)	7.37	8.36	<0.001	10.37	10.89	0.018
	± 0.80	± 0.89		± 1.83	± 2.03	
Two mile run (min)	15.97	$17.90<$	<0.001	20.17	20.65	0.08
	± 1.88			± 2.37	± 2.18	
Two mile un (min) end of basic training	13.87	$14.69<$	<0.001	17.31	17.69	0.002
	± 1.08			± 1.50	± 1.40	
Flosibility (inches)	33.4	33.0	0.45	34.2	34.2	0.98
					± 5.9	
Grip strength (lbs)	1:9.4	121.3	0.26	69.0	65.0	<0.001
	± 20.0	± 21.9		± 13.8	± 11.7	

note: probability indicales results of t-fest comparison between groups.

INITIAL RUN TIMES OF MALE RECRUITS

INITIAL RUN TIMES OF FEMALE RECRUITS

FIGURE 8.
below retention fat standards (chi-squared test, $p<0.001$). An even larger proportion of female recruits failed to take the test but there was no difference with respect to retention body fat standards (26.6% "within" vs 27.4% "exceed"). Thus, the fatness of males not represented in the final APFT results was 17.4 ± 6.7 compared to $15.9 \pm 5.6 \%$ body fat for all males taking the test (t-test, p <0.001) while there was no difference in the average fatness of females taking the test ($26.7 \pm 3.7 \%$ body fat) and those not taking the test ($26.9 \pm 3.7 \%$ body fat).

The relationship between run time and fatness at EAD is depicted in Figure 8. For males, run time performance worsens with increasing fatness above $18-20 \%$ body fat. Mean run times for males above this level of body fat did not achieve the minimum 2-mile run time standard set for the youngest men (right hand arrow). Correlations suggest a trend ior both males and females, with a tendency for fattest males and females to produce slower run times, but the slightly bimodal relationship between fatness and run time is much flatter for females. Mean values for female recruits cid not achieve the minimum run time standard set for the youngest age category at any interval of percent body fat.

The relationship between strength, based on grip strength measurements, and BMI is illustrated in Appendix L for within-fat standards recruits. The recnuits with the lowest BMI had the lowest strength measurements.WEIGHT

LOSS AND ACHIEVABLE CHANGE IN BODY FAT

Welght loss in basic training (Figure 9, facing page). Weight loss duting basic training was greatesi in the tattest recruits. Mean change in weight: compared by initial (EAD) fatness is shown for males and females in Figure 9. Females lost weight at ail intervais of fatness but, individually did not lose as much weight as males in the upper ranges of fatness. Thus, overall changes were $-0.4 \pm 6.8 \mathrm{lbs}$ (males) and $-2.5 \pm 5.7 \mathrm{lbs}$ (females) but the changes within subgroups by fat standards were $+1.0 \pm 6.3$ and -5.1 ± 6.4 lbs for within- and exceed-fat standards males, and -1.9 ± 4.3 and
-3.2 ± 4.1 Dos ior females, respectively. DURING BASIC TRAINING \& 6 MTHS LATER

CHANGE IN BODY WEIGHT OF FEMALE SOLDIERS DURING BASIC TRAINING \& 6 MTHS LATER

FIGURE 9.

Weight change between EAD and 6 months after basic training. Following basic training, male weights continued to change in the same direction teken in basic training, while females at all fatness intervals regained lost weight and added more weight (Figure 9). Overall changes (from EAD to 6 months after basic training) were $+1.9 \pm 11.9$ ibs (males) and $+4.8 \pm 7.9 \mathrm{lbs}$ (females). The leanest females lost the least amount of weight during basic training and gained more weight at their first unit, compared to females at higher levels of tatness.

Distribution by fat standards, EAD compared to first unit. Fitty-three percent of male soldiers who were overfat at EAD met their fat standards when sunveyed six months after basic training. The proportion of overfat males decreased from 23.1\% (EAD) to 13.3\% (6 months)($p<0.01$). Males less than 4% body fat units over their fat limit at EAD achieved a mean decrease of $2.9 \pm 3.0 \%$ body fait units, 6 months after the end of basic training. Units reported that 5.8% of all the studied males were on the Army Weight Control Program.

Within the sample of retained females with complete data, 35.4% exceeded fat standards at EAD and 30.7% exceeded standards 6 months after basic training. The proportion of initially overfat females who tater met their tat standard was significantly fess than for initially overiat males (35% of overfat females vs 53% of overfat males, met standards later; $p=0.02$). This was also reflected in a smaller mean decrease of $1.4 \pm 3.7 \%$ body fat units for females initially less than 4% over their fat limit. Units reported that 8.9% of the studied female soldiers were on the Army Weight Control Program, six months atter basic training. Pregnant soldiers were excluded from ail weight and lat analyses.

DISCUSSION

Since the early 1980's, the Army has placed increased emphasis on a trim military appearance. This policy has been implemented and rigidly enforced through an expanded program which has beconie integral to the Army, from mandatory biannual weigh-ins of all personnel to the display of weight and haight on personnel efficiency reports. This emphasis is a result of the leadership's conviction that trim appearance is indicative of a disciplined, motivated and combat-rgady soldier. This program is currently handicapped by the existence of two separately developed and unconnected Army Regulations that bear on weight control, one which allows overfat soldiers into the Army (AR 40-501, Medical Fitness Standards) where they will be in violation of the second (AR 600-9, The Army Weight Control Program). Logic would suggest that the two should be linked, with the accession standard based on the retention standard. The retention standard, in turn, should be based on objective criteria, e.g. physical requirements for a combat periormance test. This is also not the case.

The results of this study not only allow us to address the original issue, gender bias in the accession standards, but aiso allow us to address a number of issues and problems created by these two disparate programs.

EFFECT OF ACCESSION WEIGKT STANDARDS ON SOLDIER FATNESS

The purpose of accession weight tables is to screen out individuals who are unlikely to be successful in the service. This lack of success includes the inability to meet retention lat standards. The current accession weight tables permit entry of virtually all otherwise quallied young males, including some very far males who are unlikely to ever achieve retention fat standards. Even so, the proportion of overfat male recruits who are accepted under these lenient standards is relatively small (23.1%). This is due to the lact that most young males in the U.S. population are considerably below the Army fat standards and fuither opening this wide window does not increase the candidate pool as much as a similar increase would for fenales. Most young fenales in the U.S.
population are clustered near the retention fat standards for females, i.e. the standard is only 1.2% body fat units above the mean fatness of new recruits, a difference which is within the margin of error of most methods of body fat estimation. This results in a considerable spillover into the overfat range. Thus, even though the female accession weight standards are not more lenient than the retention weight screening tables, 30.6% of all new female recruits are overfat by Army standards. None of these recruits are very fat by comparison to national averages and most only slightly exceed the Army standards. One fourth of all female recruits exceeded the standard by less than 4% body fat units (equivalent to 5 or 6 pounds of fat weight in an average female recruit).

These various standards and averages can be better appreciated if the same property (ie. percent body fat) is compared. Body fat is used for individual assessments in the Army Weight Control Program because it more directly reflects obesity than body size (weight-for-height), but the two are somewhat correlated and an average fatness can be predicted for a group of recruits of given body mass index. Accordingly, Table 6, below, shows percent body fat equivalents estimated from body mass index using regressions from our current Army recruit sample. These values for percent body fat demonstrate the sizeable allowance for male fatness between the accossion and retention standards, and again between the retention standards and the national average. Females are not granted a similar allowance. The approximated body fats allowed for females are virtuaily identical to the national average, for both the retention fat limit and the accession fat limit equivalent.

The effect of the proposal from the Defense Manpower Data Center to set accession weight standards at 120% of the national mean (3) can also be dearly obsenved in this comparison. The proposed change would increase the limit by approximately 10 percent body fat units over the rationai mean for both men and women. While this would exclude more equal proportions of males and temales from Army service, it would also produce a very large increase in the proportion of overfat female soldiers by raising the upper range of entry level fatness. Without a change in retention standards, this would substantially increase the propontion of female soldiers, compared to male soldiers, subject to the punitive measures of the Army Weight Control Program (compare

Table 6. Percent body fat (actual or equivalent) of recrults, retention and accession standards, and national averages. Note that percent body fat increases faster than body mass index, thus 2.0% over the average weight (for height) is reflected in this table as a 50.60% increase in fatness of males and a 33% increase in fatness of femaies.

Age category -->	Males			Females		
	17-20	21-27	28-39	17-20	21-27	28-39
Recruits in this study (mean value)	15.6	17.0		26.8	26.3	
Retention fat stds (upper limit)	20	22	24	28	30	32
*Accession weight tables (upper limit)	(32)	(34)	(33)	(28)	(30)	(32)
*NHANESII weight (mean value)	(15)	(19)	(20)	(27)	(30)	(33)
*120\% of NHANESII	(24)	(29)	(30)	(36)	(40)	(44)

* estimated from magression of body nass index and percent body fat estimated by AR 600-9, from all new recruits in this study. Equations: mates: \%body fat=(EM1-14.67) $0.5 i$ i, $r=0.82, n=1048$; females: \%bociy fat=(BMI-9.89) $/ 0.459, r=0.86, n=816$.
"retention fat standards" to " 120% of NHANESI" in Table 6). Besides raising the average fatness of new recruits, this approach represents ari arbitrary quota linked to a gradually changing national average.

Mean weights in the national population have increased over the past decade tor specitic segments of the population. Obssity is variously reported to be epidemic in older black temales (23), increasing in poor:y educated women (24), and more prevalent in hispanic males ard females (25)." Concern is

[^6]expressed about the health of these overweight minorities but this obesity is defined only with respect to national weight averages which reflect the norms of predominantly middle class young white men and women. Its true significance in terms of health risks in minority ethnic groups may not be the same as in the more studied middle class white population and this haalth-related standard is not even theoretically related to the principal goals of sine Army Weight Control Program (combat readine:s and military appearance). Regardless of the health relationship, body weight (BMI) to body fat relationstips vary between ethnic groups (26-28). Thus, linking obesity standards to national weight averages is not only arbitrary and ever changing, it is likely to b.a arbitrarily discriminatory to some minorities, especially non-white females.

RELATIONSHIP OF GCCESSION STANDARDS TO ATTRITION AND PHYSICAL PERFORIAANCE

In this study, fatness did not appear to be a principal reason for attrition from the Army. Nor was fatness or weicht a principal discriminant of attrition in a previous study from this Institute, performed on basic recruits at Fort Jackson in 1978 (29). In that study, mean body fat (as estimated from skintold thicknesses) of the maie and female recruits was 16 and 28%, body mass index was 23 and $22 \mathrm{~kg} / \mathrm{m}^{2}$, and the initial one mile test times were 8.2 and 11.0 minutes (10.11), indicating little charge in the fitness and fatness of recruits over the pas! decade. The principal determinants of attrition at that time were psychological factors, comparative fitness, and age. Atritees scored poorly on psychological inventories (assessing locus of control and tendency to psychosomatic illness) and they tended to be older and had a reduced comparative fitness sevel (lower levels of physical fitness when asked to compare themselves with other men and women their own age), but thase determinants accounted for only a small proporion of the attrition, with must remaining unexplainsd. Despite the similarities in the characteristics of recruits in the previous and current studies, the rates of atitition during basic training were higher (12.1% for men and 11.9% for women) than the rates obtained in the current study (5.3% for men and 9.7% for women). This suggests that attrition rates are determined by policies governing soidier discharges from basic training. in addition to specific characteristics of the recruils.

Our study does not assess attrition due to failure to meet weight control standards since soldiers are generally given six months to achieve standards before any separation actions are initiated. The timing of our followup survey avoided this complication which would have been reflected as an increased attrition in the higher body fat and body weight range. This is a significant reason for attrition atter the first few months of service. Separations from the Army for failure to meet weight control standards have increased sharply in the past three years, with over 2,000 soldiers separated in 1989 (unpublished data, ODCSPER).

Male attritees in the previous study at Fort Jackson (29) also had significantly lower lean body mass. This is similar to our current finding that overweight (but not overiat) females were underrepresented in the attrited sample and it supports the notion that underweight and weak recruits are less likely to succeed than overweight recruits. We also found that recruits with the lowest BMI had the lowest average grip strength for both males and fernales, further illustrating the positive relationship between strength and size.

Using a much larger sample, the Defense Manpower Data Center study found a gradual rise in attrition rate among recruits who exceeded the national average weights, beginning above a BMI of $26 \mathrm{~kg} / \mathrm{m}^{2}$ and, at the other end, with a sharp rise beginning below $16 \mathrm{~kg} / \mathrm{m}^{2}$; the range of female weights was already too constricted to determine the possibility of a similar relationship (5). A relationship at the low end of BMI can be rationalized in terms of inadequate muscie mass for performance of military duties andjor low weight as a symptom of underlying disease. Reasons for male attrition associated with high BMI are unknown but clearly different, and apparently these have diminished over time. A more recent study reexamining weight and attrition from the military reports a sharp decrease in Army attrition rates between FY82-84 and FY85, with essentially a flat line representing atrition rate plotted against BMI in FY85 (30). This is consistent with our findings.

For nearly all components of the APFT, overiat males and females in this study could not periorm as well as those within the retention lat standards. These differences in physical performance were greater for males than for
females. This may reflect basic sex differences in the relation between physical periormance and fatness but it also likely reflects the lower level of physical fitness of the female recruits at any level of fatness and the narrower relative range of fatness of our female recruits. The accession weight standards already exclude females in the higher ranges of body fat and the span of difference between mean fatness of the two groups of females was smaller (6% body fat units) compared to a span of over 10\% body fat units between the two male groups. However, these results are further confounded because overfat males were less likely to take the APFT, compared to within-standards males. The net effect of this is to make scores closer instead of more disparate. While there was no apparent difference in female APFT participation on the basis of fat standards, an even higher proportion of all females than of the overfat males failed to take the test, possibly introducing other unidentified confounders. Within the context of this study's limitations, the current retention fat standards appear to be better discriminators of physical performance in male recruits than in female recruits. Based on initial 2 -mile run times, 20% body fat is an appropriate standard for young males, since this is the breakpoint above which two mile run time progressively increased (ie. aerobic performance decreased) in new recruits. The range of female fatness in this study group does not encompass a break point. In other words, the retention fat standards can be related to physical performance in males, while this remains to be demonstrated for the female standards.

LINKAGE BETWEEN ACCESSION AND RETENTION STANDARDS ON THE BASIS OF ACHEVABLE FAT LOSS

Observed changes in weight and circumference-based fatness provide some rationale for different allowances between retention and accession standards for males and females. Males who exceeded their retention standard by up to 4% body tat were likely to achieve their fat standard by six months after basic training. This suggests that males, young males, as an example, could be allowed 24% for accession and be expected to meet the current retention standard of 20% body fat within a six month period of time after basic training. Males and temales were both clearly capable of significant weight loss during basic training but only the overfat males maintained this weight loss.

Although some overfat females later achieved their standards, a larger proportion of overfat females, compared to overfat males, did not. Others, who were jusi under their fat standards at EAD, exceeded their fat limit by the time of the survey. Thus, the proporion of overfat females at their first unit was no different than the proportion when they first entered active duty, even though some transient weight loss was accomplished in the interim period of basic training. The reasons for this gender difference are unknown but may be attributed to motivational differences related to differences in the current standards, differences in the physical demands of assigned specialties, differences in recreational physical activity and other social factors, and physiological differences in fat regulation. The reasons for this discrepancy need further study before an accession fat allowance above the current retention fat standards could be justified for females.

At least a partial explanation of the weight gain in females following basic training resides in the type of job that recruits were likely to move on to. Nearly all of the assigned job specialties for females in this study group are rated as sedentary, while males were assigned to many jobs which requira a high level of aerobic and/or strength capability and involve a high level of regular physical activity. The temporary weight loss in basic training indicates that the longer term outcome might be improved if effective weight loss assistance in terms of exercise and reduced caloric intake was provided to overfat soldiers. Currently, the level of this assistance is determined by the unit commander; presumably, most programs will be directed as only an extra duty by a soldier who serves as the unit Master Fitness Trainer. Our results suggest that female soldiers fresh from basic training should be prime iargets of an effective fitness program.

Although a change to body fat accession standards would ensure accession of recruits who would be better abie to comply with the standards of the Army Weight Control Program, the avaliability of recruits could change substantially. especially for females. An allowance of 4% over each of the current age standards would exclude 8.5% of the males currently recruited (Table 7). With no allowance (i.e. accession standards = retention standards), 22.7% of current male recnits would be excluded. The effect of an accession allowance is more dramatic for female recruits because of the clustering around the upper limit. If

Table 7. Percent of new male and female recrults affected and total excluded with allowances above retention body fat limits.

\%body fat units above standard	\% Males in group	Cumulative \% excluded	\% Females in group	Cumulative \% excluded
no allowance	--	22.7	\ldots	31.6
+ 0-2\% body fat	8.0	14.7	14.6	17.0
+ 2-4\% body fat	6.2	8.5	11.9	5.1
+ 4-6\% body fat	4.3	4.2	4.4	0.7
+6- \% body fat	4.2	0.0	0.7	0.0

candidates were held to retention body fat standares, 31.6% of all current female recruits would be excludigd (12.6% of the remainder would later become overfat). A 4\% allowance above the current fat standard would exclude only 5.2% of current recruits. This loss of eligible female candidates would be partially offset by an unknown proportion of overweight but within-fat standards females who were excluded from this samf'e of recruits. However, since the time in which our data was collected, recruits are being accepted if they meet either the accession weight tables or the retention body fat standards. Thus, a change to the current female retention body fat standards could only reduce current recruitment.

It is also apparent from this study that the concern about accession standards treating males and temales with equal faimess needs to be extended to the retention standards. Specifically, female retention body fat standards should be reconsidered since the current standards may be physiologitally more stringent for females than for males. As an illusiration, males might have considerably more difficulty in achieving and maintaining their fat standards if their upper limit was only 1.5 percent body fat units above their average fatness, as it is for the young female recnuits. A body tat standard equated on this basis would be 17% instead of 20% for young males. In view of the weaker relationship botween female fat standards and performance, a more appropriate adjusiment is to elevate the standard for young female soldiers from 28\% to 30 or 31% body fat.

SEX DIFFERENCES IN FAT DISTRIBUTION AND REGULATION

Primary conclusions from this study about changes in body fat are derived from the use of the current Army circumference equations for predicting body fat. These equations were developed from a cross-section of soldiers at one point in time and have not been tested for suitability in evaluating small or short-term changes in body fat as employed here. Thus, their suitability for the accurate assessment of body fat change is unknown. Several studies (31-33) indicate that anthropometric estimations of body fat are relatively insensitive and should not be used to predict small or acute change. Furthermore, the male and female equations, using different measurements, may not estimate body fat changes to the same degree of accuracy in both genders or in certain types of individuals.

Despite these limitations and qualifications, other evidence suggests that the differences in the ability of overfat male and female recruits to meet their standards after basic training are real. This evidence comes from other measurements in the study and frem other studies of sex differences and region-specific differences in fat loss. To begin with. females almost certairly lost body fat during basic training. since at all pevels of fatness there was a mean reduction in weight, even while lean body mass may h ve been increasing (34). Following basic training, there was a mean increase in woight at all intervals of fatness. This can be reasonably assumed to be due to fat rather than lean body mass gain, since exercise levels for mosi soldiers would have been greatest during basic training, not after basic training. A gain in tat weight is also consistent with a previous study from this Institute which thlowod a small sample of femade West Point cadets over a two, 'ar perrod, fir ling an initial reduction in body fat when the training was intensive, and :". n a gradual increase to higher than initisl fatness (35). In the current study, hip circumference (weighted against "fat" in the female equation) increased by more than $1 / 2^{*}$ between EAD and 6 months after basic training. Along with the average 5 lb gain in waight, these two factors f .present a theoretical increase of approximately 2% body tat units for the typicai 125 ib female recruit. These estimations are offset by increases in neci, arm, and wrist circumferences which represent lean body mass in the equation. Thus, observed changes in
the actual measurements used in the body fat equation also suggest that there was no significant mean female fat reduction, even though a transient reduction probably occured during basic training.

There is also a physiological rationale why females are less likely to decrease fatness to mest their arbitrarily set retention standards. In contrast to males who may be protected from tat accumulation by their sex steroids, in females fat storage is promoted by estrogens. Estrogens enhe ce accumulation in specific sites such as the gluteotemoral region (buttocks, hips, and thighs), creating the typical female pear shape (36-38). Femaies deficient in estrogen, such as postmenopausal women not treated with estrcgenic steroids, tend to lose the pear shape ior lack of a continued estrogen effect. Normal females also have a different balance of internal and subcutaneous body fat than men, with a greater proportion of subcutaneous fat (39-40); thus, they "wear". more of their fat on the outside. There are signiiicant differences between these various subcutaneous sites in terms of the type of fat and its likely function (which may be protective, structural, or energy storage) and this varies with race as well (41). As an example of these specialized functions, the accumulation and mobilization of breast and thigh tat is largely determined by hormones imporiant in pregnancy and lactation (42). Thus, thigh tat, one of the most immovable fat stores, may be primarily monlized by hormones secreted during lactation, while being relatively uninfluenced by exercise and caioric restriction (43-45).

This also means that the temale ste which is assessed in the female tat equation, the hip circumference, is one which is reasonably susceptible to exercise and diet control both in terms of fat mobilization and accumulation. Fat stores which tnay be under less voluntary cuntrol by the individual, such as thigh lat, ara not. Funthermore, due ts the absence of high levels of male sex normones, normal temales do not have the same capacity to increase muscle mass as mates. This means that, with less vanability from muscle mass, weight is befter associated with total fainess in iemales than it is in males and is also appropriately selected as a component of the tatnass predictior. The waist circumference used in males is probably not appropriate for tat estimation in Army females. Abdominal tat is found in excessively obese women (witen it
would also be measurably increased on the hips and in total body weight), but it is also found in women who are more masculinized, as characterized by excess fat in an "apple" instead of "pear" configuration (46-47). While women with this male type pattern of fat deposition may carry excess fat, these are also some of the women likely to be able to develop the greatest muscularity (48) and upper body strength. An abdominal measurement in females would discriminate against this specific subset of women who may be among those most suited to performance of some standard Army physical tasks.

Differences between male and female fat physiology and the relationship between fatness and milizary goals are not taken into account by the simple addition of 8% body fat to male standards. Excess fatness in males can be shown to be negatively related to military performance (physical performance and military appearance) but female fatness within reasonable limits of non-obesity is not as well correlated. Because different fat sites in females serve different purposes, a true assessment of total body fat is probably not particularly useful in the prediction of fitness, appearance, or health risks, except at extreme levals of obesity ("morbid" obesity) when other indicators would be obvious. Also, because fot in some female sites may be relatively uninfluenced by nutritional and exercise control, some excess fat in females probably does not reflect the poor self-discipline suggested by AR 600-9. In addition to these factors, the military occupational specialties which female soldiers are permitted to be assigned to generally have reduced physical requirements and these differences should be considered in establishing performance related fat standards.

Assessment of body fat ir males is more reliable than in females. In this study, fat males decreased abdominal girth while the leanest males increased this measurement; inis was reflected in their respective body fat changes and paralleled changes in weight. Males deposit excess fat priniarily in the abdominal region $(40,49)$ and this abdominal tat is readily mobilized in most men by exercise ($50-51$). Thus, excess girth serves as a suitable marker for overnutrition and underexercise, or in other words, indicates men who are less likely to be physically fit. Army studiss of weight loss in males during basic training have repeatedly demoritrated that a decrease in this girth is a suitable
marker of increased fitness and appropriate nutrition (52-54). This site is the primary offender of military appearance in males (e.g. the "beer belly"), while fat which is better distributed is less noticeable than a "beer belly" and does not imply the sarne habits or carry the same health risks. Abdominal fat is the fat site most closely associated with reduced HDL-cholesterol (55) and is directly associated with an increased likelihood of coronary artery disease (56-58); this association between disease and waist girth was observed at least 50 years ago by the life insurance industry (59). Thus, it is both practical and accurate to assess fatness in normal males with a method which emphasizos an abdominal circumference. Although the current limits of fatness for males are more stringent than standards which would be set on the basis of health, they can be reasonably defended with physical performance data and on the basis of military appearance.

COMPARISON TO WEIGHT CONTROL GOALS AND STANDARDS OF THE NAVY

The U.S. Navy implemented a weight control program that differs significantly from the Army policy. All personnel in the Navy are assessed for body fat using circumference methods (60-61) every six months (OPNAVIST 6110.1D). This contrasts with the Army policy of biannual weigh-ins, after which only the overweight soldiers are assessed for body fat. If personnel exceed 26 (males) or 36% body fat (females) in three successive assessments, they may be separated from the Navy as weight control program failures. Before this final step is taken, they are further evaluated by a physician who cerifies that they indeed qualify as morbidly obese, with supporting ovidence such as hypertension and elevated serum cholestr, col coicentrations. These upper limits of fatness were translated from the recommendation of the Surgeon General of the Public Health Servica (and the recommendation of the Delense Manpower Data Center) that people are considered to be overweight if their BMI exceeds the 85th percentile for young American adults, or approximately 120 percent of ctasirable weight (4). An eatly screen of 22% and 30% for males and females, also regardess of age, gives Navy personnel an early warning of excess fatness and these individuals are placed on a weight control program to help them achieve fat loss.

The accession standards for the Navy are based on screening height-weight tables which approximate the 22% and 30%, male and female, body fat limits. Candidates exceecing these weight tables are assessed for body fat at the MEPS and are disqualified if they exceed the sex specific iimits of 26% and 36% body fat.

These body fat standards are based on health rather than performance or appearance considerations. Evaluation of military appearance is left to efficiency reports and promotion boards and evaluation of physical performance is left to physical screening tests suited to Navy requirements. The female equation used by the Navy is highly appropriate to this purpose of a health standard since it assesses a waist girth (in addition to a hip circumference), the principal region of excess fat associated with increased health risks in men and women (38). Since the body fat limits are also reasonably liberal and because hip and waist circumferences are equally weighted in the equation, strong females with large upper body configurations ("apples") are not excludod unless they are very fat.

This approach to a weight control program is also in compliance with the DOD directive which initiated the use of body composition evaluations by all services. This highlights the wide range of military goals whict: are thought to be served by accession and retention physical standards. Mcrve specifically, the difference between the Army and the Navy approach demunstrates fundamental differences in the fitness requirements of the two services and in the way in which litness is evaluated.

[^7]
CONCLUSIONS

Accepting that the accession standards should be linked to the retention standards based on achievable fat loss, it is also reasonable to suggest that the same system of evaluation should be used for both standards. Thus, a body fat standard along with an initial body weight screen shculd be used for accession as it is employed for retention. Using body fat instead of body weight as the ultimate accession standard will more effectively exclude male and female recruits who are not likely to meet retention standards after basic training. It will also preserve the accession of some suitable candidates whe are overweight but are not overfat. Males up to 4% body fat units above the retention body fat standard can be expected to successfully lose enough weight to meet the standards within six months after graduation from basic training. However, until temales are observed under similar circumstances (i.e. parallel standards producing similar motivation), it cannot be concluded that overfat females would not be as successful in maintaining a reduced body fat as the overfat males were in this study. It is apparent that a liberalization of female retention fat standards is needed, within the goals of the Army Weight Control Proyram. Ultiriately, retention standards should be astablished from empirical data demonstrating that the method of fat estimation and that specific total or regional body fat standards do indeed optimize combat readiness and military appearance. Appropriate standards for males and females should not be linked and should be determined separately since the difference in male and female periormance cannot be simply described by an interval of 8% brdy fat units.

REFERENCSS

1. Karpinos BD (1958). Weight-height standards based on World War II experience. Amer Stat Assoc J 53: 408-419, 1958.
2. Newman RW (1952). The assessmerit of military personnel by 1912 height-weight standards. Tech Report EP No. 194, Quartermaster Climatic Research Laboratory, Lawrence, MA. November 1952.
3. Laurence MT (1985). Development of a methodology for establishing joint service height and weight standards for enlistment. Defense Manpower Data Center, Arlington, VA. November 1985.
4. U.S. Department of Health and Human Services. The Surgeon General's Report on Nutrition and Health. Summary and Recommendations. 1988. DHHS (PHS) Publication No. 88-50211. GPO. 78 p.
5. Laurence MT (1988). Enlistment height/weight standards and attrition from the military. Defense Manpower Data Center, Arlington, VA April $\$ 988$.
6. Medico-Actuarial Mortality Investigations (1912), as quoted in: Davenport CB (1923). Body-build and its Inheritance. Washington DC: Carnegie Institution of Washington, pub No. 329. p. 19-20.
7. Vogel JA, JF Patton, RP Mello, WL. Daniels (1986). An analysis cf aerobic capacity in a large United States population. J Appl Physiol 60: 494-500.
8. Department of Defense. Office of the Assistant Secretary of Detense for Manpower, Reserve Affairs and Logistics. Study of the Military Sarvices Physical Fitness. 3 Apill 1981, 102 pp.
9. Cureton KJ, PQ Sparling (1980). Distance running performance and metabolic responses to running in men and women with excess woight experimentally equated. Med Sci Sports Exer 12:288-294.
10. Knapik JJ, RL Burse, JA Vogel (1983). Height, weight, percent body fat, and indices of adiposity for young men and women entering the U.S. Army. Aviat Space Environ Med 54:223-231.
11. Patton JF, Daniels L, Vogel JA (1980). Aerobic power and body fat of men and women during Army basic training. Aviat Space Environ Med 51:492-6.
12. Durnin JVGA, J Womersley (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77-97.
13. HQUA (DASG-PSP) Itr 40-83-7, "Army Medical Department (AMEDD) Support of the Army Weight Control Program", 1 April 1983.
14. Vogel JA, JW Kirkpatrick, PI Fitzgerald, JA Hodgdon, EA Harman (1988). Derivation of anthropometry based body fat equations for the Army's weight control program. Tech Report T17/88, USARIEM, Natick, MA. May 1988.
15. Hodgdon JA, P Fitzgerald (1987). Validity of impedance predictions at yarious levels of fatness. Hum Biol 59:281-98.
16. Opplinger RA, MA Looney, CM Tipton (1987). Reliability of hydrostatic weighing and skinfold measurements of body composition using a generalizability study. Hum Biol 59:77-96.
17. Vogel JA, JE Wright, JF Paton, J Dawson, MP Eschenback (1980). A system for establishing occupationally-related gender-free physical fitness standards. Tech Report 5-80, USARIEM, Natick, MA. March 1980.
18. Rose RW, CJ Baker, C Slater, W Wisnaskas, JSA Edwards, MS Rose (1988). Dietary assessment of US Army basic trainees at Fort Jackson, SC. Tech Report 6-89, USARIER, Natick, MA. Dec 1988.
19. Jones B, R Manikowski, J Harris, J Dziados. S Norton, T Ewart. JA Vogel (1388). Incidence of and risk factors for injury and illness among male and
female Army basic trainees. Tech Report 19-88, USARIEM, Natlck, MA. June 1988.
20. Ramos MV, JJ Knapik (1978). Instrumentation and techniques for the measurement of muscular strength and endurance in the human body. Tech Report 2-80, USARIEM, Natick, MA. March 1978.
21. Wells KF, EK Dillon (1952). The sit and reach - a test of back and leg flexibility. Res Quart 23:115-118.
22. Garrow JS, J Webster (1985). Quetelet's index ($\mathbf{w} / \mathrm{h}^{2}$) as a measure of fatness. Int J Obes 9:147-153.
23. Gillum RF (1987). Overweight and obesity in black women: a review of published data from the National Center for Health Statistics. J National Med Assce 79:865-71.
24. Flegal KM, WR Harlan, JR Landis (1988). Secular trends in body mass index and skintold thickness with socioeconomic factors in young adult women. Am J Clin Nutr 48:535-43.
25. NY Times, 12 Dec 1989, "More obesity found among Hispanic Americans."
26. Cronk CE, AF Roche (1982). Race- and sex-specific reference data for triceps and subscapular skinfolds and weightstature2. Am J Clin Nutr 35:347-354.
27. Hatfner SM, MP Stern, HP Hazuda, J Pugh, JK Patterson, R Malina (1986). Upper bocty and centralized adiposity in Mexican Americans and non-hispanic whites: relationship to body mass index and other behavioral and demographic variables. Int J Obes 10:493-502.
28. Schutte JE, EJ Townsend. J Hugg, RF Shoup. RM Maina, CC Blomqvist (1984). Density of lean body mass is greater in blacks than in whites. J Appl Physiol 56:1647-1649.
29. Kowal DM, JA Vogel, D Sharp, J Knapik (1982). Analysis of attrition, retention and criterion task performance of recruits during training. USARIEM Report No. 2-82. 29 pp.
30. Buddin A (1989). Weight problems and attrition of high-quality military recruits. A Rand Note N-2847-FMP, Office of the Assisiant Secretary of Defense for Force Management and Personnel, June 1989. 35 pp.
31. Wilmore JH, RN Girandola, DL Moody (1970). Validity of skinfold and girth assessment for predicting alterations in body composition. J Appl Physiol 29:313-317.
32. King MA, FI Katch (1986). Changes in body density, fatfolds and girths at 2.3 kg increments of weight loss. Hum Biol 58:709-718.
33. Zwiren L, JS Skinner, ER Buskirk (1973). Use of body density and various skinfold equations for estimating small reductions in body fatness. J Sports Med 13:213-218.
34. Vogel JA, JP Crowdy, AF Amor, DE Worsley (1978). Changes in aerobic fitness and body fat during Army recruit training. Eur J Appl Physiol 40:37-45.
35. Daniels WL, JE Wright, DS Sharp, DM Kowal, RP Mello, RS Stauffer (1982). The effect of two years' training on aerobic power and muscle strength in male and female cadets. Aviat Space Environ Med 53:117-21.
36. Rebuffe-Scrive M, P Lonnrotn, P Marin, C Wesslau, P Bjorntorp, U Smith (1987). Regional adipose tissue metabolism in men and postmenopausal women. Int J Obes 11:347-355.
37. Fried SK, JG Kral (1987). Sex dititerences in regional distribution of lat cell size and lipoprotem lipase activity in morbidy obese patients. Int J Obes 11:129-140.
38. Krokkiewski M, P Bjorntorp, L Sjostrom, U Smith (1983). Impact of obesity
on metabolism in men and women: impoitance of regional adipose tissue distribution. J Clin Invest 72:1150-1162.
39. Enzi G, M Gasparo, PR Biondetti, D Fiore, M Semisa, F Zurto (1986). Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography. Aifi J Clin Nutr 44:739-46.
40. Weits T, EJ van der Beek, M Wedel, BM Ter Haar Romeny (1988). Computed tomography measurement of abdominal fat deposition in relation to anthropometry. Int J Obes 12:217-225.
41. Malcom GT, AK Bhattacharyya, M Velez-Duran, MA Guzman, MC Oalmann, JP Strong (1989). Fatty acid composition of adipose tissue in humans: differences between subcutaneous sites. Am J Clin Nutr 50:288-91.
42. Rebuffe-Scrive M, L Enk, N Crona, P Lonnroth, L Ambrahmasson, U Smith, P Bjorntorp (1985). Regional human adipose tissue metabolism during the menstrual cycle, pregnancy, and lactation. J Clin Invest 75:1973-1976.
43. Wadden TA, AJ Stunkard, FE Johnston, J Wang, RN Pierson, TB Van Itallie, E Costello, M Pena (1988). Body fat deposition in adult obese women. II. Changes in fat distribution accompanying weight reduction. Am J Clin Nutr 47:229-34.
44. Rognum TO, K Rodahi, PK Opstad (1982). Regional differences in the lipolytic response of the subcutaneous fat depots to prolonged exercise and severe energy deficiency. Eur J Appl Physiol 49:401-408.
45. Morris DH, A Ward, JP Porcari, K Bell (1989). Fat distribution changes with body mass loss for overweight men and women [abstract]. Med Sci Sports Exerc 21:S100.
46. Evans DJ, RG Hotmann, RK Kalkhoff, AH Kissebah (1983). Relationshlp of androgenic activity to body fat topography, fat cell momhology, and metabolic aberrations in premenopausal women. J Ciin Endocrind Metab 57:304-310.
47. Kissebah AH, N Vydeiingum, E Murray, DJ Evans, AJ Hartz, RK Kalkhoff, DW Adams (1982). Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 54:245-250.
48. Krotkiewski M, P Bjorntorp (1986). Muscle tissue in obesity with dilferent distribution of adipose tissue. Effects of physical training. Int J Obes 10:331-41.
49. Randall FE (1947). Certain considerations of stature-weight relationships of male white army separatees. Climatic Research Laboratory, EPS Memorandum Report No. 16, 31 Dec 1947. 20 pp.
50. Garn SM, iV Sullivan, VM Hawthorne (1987). Differential rates of fat change relative to weight change at different body sites. Int J Obes 11:519-525.
51. Despres JP, C Bouchard, A Tremblay, R Savard, M Marcotte (1985). Effects of aerobic training on fat distribution in male subjects. Med Sci Sports Exer 17:113-118.
52. Randall FE (1949). Dimensiona! changes in Army men between period of induction and completion of basic training. Climatic Research Laboratory, EPS Letter Report No. 5, 7 Jan 1949. 4 pp.
53. Newman RW (1951). Changes in body dimensions during basic training in relation to clothing sizes. QM Climatic Res Lab, EPS Report No. 176, Aug 1951. 25 pp.
54. Best WR, WJ Kuhl (1955). Physical, roentgenologic and chemical anthropometry in basic trainees. Med Nutr Lab Report No. 157, 23 Mar 1955. 37 pp.
55. Terry RB, PD Wood, WL Haskell, ML Stefanick, RM Krauss (1989). Regional adiposity patems in relation to lipids, lipoprotein cholesterol, and lipoprotein subfraction mass in men. J Clin Endocrinol Metab 68:191-199.
56. Vague J (1956). The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout and uric calculous disease. Am J Clin Nutr 4:20-34.
57. Larsson B, K Svardsudd, L Welin, L Wilhelmsen, P Bjorntorp, G Tibblin (1984). Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J 288:1401-1404.
58. Ducimetiere P, J Richard, F Cambien (1986). The pattern of subcutaneous fat distribution in middle-aged men and the risk of coronary heart disease: the Paris Prospective Study. Int J Obes 10:229-240.
59. Metropolitan Life Insurance Company (i937). Girth and death. Statistical Bulletin 18:2-5.
60. Hodgdon JA, MB Beckett (1984). Prediction of percent body fat for U.S. Navy men from body circumferences and height. Naval Health Research Center, San Diego, CA. Report No. 84-11. 22 pp.
61. Hodgdon JA, MB Beckett (1984). Prediction of parcent body fat for U.S. Navy women from body circumferences and height. Naval Health Research Center, San Diego, CA. Report No. 84-29. 26 pp.

APPENDICES

A Height-weight tables, AR 40-501, 1960 59
B Height-weight tables, AR 40-501, 1983 61
C Height-weight tables, AR 600-9, 1976 63
D Height-weight \& body fat standards and military appearance. 65
E Instructions for body fat estimation, AR 600-9, 1987 67
F Height weight tables, AR 600-9, 1983. 75
G Height'-weight tables, AR 60C-S, 1987 77
H Nilitary units and number of soldiers studied. 79
I Survey instrument and cover letters 81
J Distribution of height measurement discrepancies 83
K Study data, comparison by age category \& ethnic origin. 85
L. Summary study data, key variables. 89
M Relationship between grip strength and body mass inciex. 91

APPENDIX A. Helght-weight tables, AR 40-501, 1960.

Table I. Table of Militarily Acceplable Weight (in Pounds) at Reloted to Age and Height for Males-Initial Pracarememe

Helsbl (luches)	$\left\|\begin{array}{c} \text { Mingmum } \\ \text { (regruless of ace) } \end{array}\right\|$	Madmam					
		16-30 yean	21.24 year	2s-50 year	21-3 \%ent	80-40 5048	41 jens and aves
60......-......	100	163	173	173	173	168	164
61.	102	171	176	175	175	171	165
62...---......	103	174	178	178	177	173	169
63.........	16.	178	182	181	180	176	171
64...--	105	183	184	185	185	180	175
65...	106	187	190	191	190	185	180
06...-..........	107	191	196	197	196	190	185
67...--....	111	196	201	202	201	195	190
68...--........	115	202	207	208	207	201	195
09................	119	208	213	214	212	200	200
70.	123	214	219	219	218	211	205
71.	127	219	224	225	223	216	210
72.	131	225	231	232	230	224	216
73.	135	231	239	238	237	230	223
74.	139	237	246	240	243	230	229
75.	143	243	253	253	231	243	235
76.	147	248	268	260	257	250	241
77.	151	254	26%	267	2 ff	250	248
78...	153	260	275	273	271	263	254

Table 11. Tabir of Mthita-ily Acerptable Weight (in Paunds) as Related to Age and Heigh for Femates-In : ial Procurement

Sterpal (inctes)	$\left\|\begin{array}{c} \text { Minimum } \\ \text { (tetguthea ol ace } \end{array}\right\|$	Merinum					
		16-2) jean	21-24 yean	2-30 yean	2.-3y yeas	W-0 pers	fur yent and arex
58...	90	135	137	147	138	135	135
30...	07	137	139	183	140	139	- 138
60	9	139	131	347	142	142	141
61.	99	141	144	150	144	145	141
02.........	102	144	147	15	148	148	147
61...........	105	150	152	157	132	155	150
44.	$\cdot 109$	152	155	150	135	155	154
65.	112	155	160	164	101	159	135
66..............	115	160	165	168	106	204	163
6\%.	119	163	165	173	171	163	:07
68.	122	169	175	67	176	182	171
69.............	135	175	176	162	150	176	175
\%0...	128	181	154	186	135	281	150
i1............	131	186	190	101	100	185	18
12........	125	191	104	195	104	269	158

APPENDIX B. Helght-weight tables, A.R 40-501, 1983.

5 mmos

WEIGHT TABLES FOR ARMY PERSONNEL

Helght (inches)	60	01	62	83	st	6.7	66	67	fis	60	70	71	72	73	74	75	78	77	78	79	80
Weisat (pouncre: Minimum	100	102	103	104	10.7	108	107	111	11.5	119	123	327	131	133	139	143	147	151	153	159	180
Misximum	141	146	150	$1: 5$	160	10.3	150	176	181	185	192	197	203	203	214	220	228	232	238	244	250
					VOM	EN	(Reg	ardl	ess of	Ag											
Hedzbe (tachez)	58	59	co	01	62	6:3	cid	6. 3	60	07	es	69	70	71	72						
Weight (pounds): Midmem	80	92	94	06	98	100	102	104	105	109	112	115	118	122	125						
Maximum	113	117	121	125	130	134	138	142	147	151	158	i66	185	170	12\%						

Note. Height and wetgat data do rot Include allowanecs for shons and other clothing.

APPENDIX D. Height-weight \& body fat standards and appearance.

Characteristics of the individuals in Figure 1 (page 11) are given below. This is constructen from Army Booy Composition Study (1984) data based on 1125 male and 271 female soidiers. Some of this data has been published as a technical report on visual assessment of military appearance and fatness (the study also used side and rear views). The way in which a soldier wears their uniform is a significant component of military appearance. Fatness is more obvious for the same soldiers in swim trunks (next page).

Age
Height (inches)
Weight (pounds)
Percent fat, by underwater weighing

$30-$	26	19	20
\% BODY	68.7 in	57.2 in	69.2 in
FAT	128 lbs	171 lbs	198 lbs
	29.4\%	28.7\%	28.0\%
25 ---	20	19	21
	062 in	67.7 in	68.2 in
	142 lbs	171 lbs	1900 lbs
	25.1\%	26.5\%	25.3\%
20 -.	18	19	19
	69.4 m	68.2 in	68.1 in
	142 lbs	172 lbs	193 lbs
	19.9\%	20.7\%	19.6\%
$15 \ldots$	20	20	21
	68.7 in	68.2 in	69.7 in
	143 lbs	168 lbs	194 los
	14.0\%	16.1\%	17.7\%
	20\% UNDEA	RETENTION	CESSION
	BOD	WEIGHT STA	

Standard Methods for Determining Eody Fat Using Body
Circumferances, Height and
Wolght

-1. Introduction

a. The procedures for the mearurements of height, weight, and apecific body circum. ferences for the entimation of body fat are deacribed in this appendix.
b. Although circumferences may be looked upon by entrained persoanel as eny measures, they can give erroncous reandts if proper precmutions are not followad. The individual taking the measurementa must beve a thorough widertanding of the appropriate body landrnarks and measorement techniques. Unit commanders should reo quire that designated persomacl have handoon training and read the jantructione regarding technique and location, and mactice before official determinations are made. Tyo members of the unit should be utilized in the taking of mewarements, one to plice the tape measurc and determine toeasurements, the other to anure proper plecement and tension of the tape, as well as to record the measurement on the worksheet. The individual aking the measurements should be of the same sex as the coldier being measured; the individual who assists the measurar and does tie recording may be of either sex. The two should work with the soldier between them so the tape is cleariy visible from all sides. Measurements will be made three times, in accoriance with aterdard body measurement procedures. This is neresary for relisbility purposes, since the greater aumber of measuremontis, the leaser the stenderd of deviation. Also, if ouly two measurements were taken, there weuld be no way to tell which mensureprent was the most accurate. If there is greater than $1 / 4$ inch difference berween the messurements. then contipue mansuring until you buve throc mensurements within $1 / 4$-inch of rach other. An average of the ecores that ace within $1 / 4$-inch of ceacin otber will be ured.
c. When mesisuring cirewoferexice, anaprestion of the cof tusuc is a problem that roquine noalent atteation. The tupe will be applied to that it makes contact with the utin and conforms to the tady surface being measured. It ahould not comprest the undeisios wit rimuer Note, bawever, that in the bip circunferese mare from petand is motded to comprest yyto shorts. All mea. sureasentis are wede in tbe barizocin! plapa (i.e. parsiled to the toord, anlest indiculad olherwise
d. The tupe measure ahould be made of a non-itretchable matarin, preferably aberglast; cloth or steel tapes are veroceptabie. Cioth measuring tapes will oxetch with asate and mont ated tapes du not conform to body surfaces. The tape mensure ehorsd be calibrated, i.e., compared vith a yardatick or a metal ruier to ensure validity. This is done by aligning the fibergiass tape measure with the quarter inch markings on the ruier. The markings should match those on the nuler; if not, do not use that tape mesture. The tape should be $1 / 4$ to $1 / 2$-inch wide (not erceeding $1 / 2$-inch) and a minimum of 5-6 feet in length. A retractable fiberglas tape is the beat type for measuring all areas. Tapes currently availsble through the Army Supply Syatem (Federal Stock Number 8315-00-782-3520) may exceed the 1/2inch width limits and could elightly impect on circumferential meaporementu. Brorts are being made to replece the supply syatem tupe with in nerrower retractable tape. In the interim, the current Army supply syuten, or any other tiberglass tape not to exceed $5 / 8$ inch may be veed if retrectable tapes cannot be purchased by unit budget funds available and approved by iastallation commanders.

2-2. Heloht and meloht meacurements

a The teight will be measured with the soldier, in rtocking fsee (without shoes) and standard PT uniform, i.e, gym ahorts and Trehing standiag on t fit surface with the head beld borixantal, looking directly forwand with the line of vision borizontal, and the ehia parallel is the floor. The body shoukd be artright but not rigid, similar to the position of atteation. Unalike the scroening table weight this messurement will be recorded to the setreat 1/4-icich in erder to guther a more accurate description of the oldier'e phyisal chancueristics.
b. The wifill will be manured with the moldir io a tenderd PT uniform, i.e., zyen chort and T Tethin Shoas will not be worn. The memurwment thousd be pasie oat kales sviliteble in unisu and recorded to the peatsent pounco with the following guldetites:
(I) If the wight faction of the wolliter in leas then $1 / 2$-porand, nousd down to the yenreat porused.
(3) If the veight fraction of the meldier bs 1/2-postad or trettet, nound up to the atst whin pousd.

8-3. Deveription of creumference ettes, and their anatomical lendmarke and technique

e. All circumference measurements will be taken thrse times and recorded to the nearest $1 / 4$-inch (or 0.25). Esch sequential measurement should be within $1 / 4$-inch of the sext or previous mearurement. If the measurements are within $1 / \alpha$-inch of each other, derive a muthematical average to the pearest quarter ($1 / 4$) of an inch. If the mes. murements differ by $1 / 4$ inch or more continue measurements until you obtain three measures within $1 / 4$-inch of each other. Then average the three clowesh measures.
b. Each set of mearurements will be completed sequentially to discourage essumption of repeated measurnment readings. For miles, complete 1 set of ahdomen and nect , measurements, NOT three abdomen circumferencis followed by three neck circemferences. Coatinue the process by measuring the abdomen and seck in series until you have three sets of measurements. For females, complete one set of hip, forearm, sock, and wrist measurements, NOT 3 hip followed by three forearm etc. coatinue the process by measuing bip, forearm, neck, and wrist series until you have 3 sets of mataurements.
c Workshecte for courputing body fut are at Agure B-1 (mekes) and Agure B-3 (femules). Local roproduction in authorized. A blank copy of DA Forms $5500-\mathrm{R}$ and 3501-R is located at the baciz of this volurpe. These forms will be reproduced bocally ca BH 311 -inat paper. Sapporting factor tubia are locited at tubles B-i asd B-2 (malea) and tablea B-3 thrcugh B-: (femalea) ead include epsciace uepe for prepar-

2. Afturtrations of each tape menasmement are at Arure B-2 (aubles) and frure B-4 (femalay). A truining videotepe (TVT E-103) is alwo amitable at Vienal Information liborer. ien, sad/or Truinins Audionalual Sesport Conters (TASC).

E-4. Circumfermence eitem and momation for maite.

a Abdomer. The motiler beity meaured will be etardiag whic arms relaced. The eb-
 iscidios with the ridipoiat of the anvel (beliy butwo) with the repe plecod wo that it is level all the way around the woidier being meatured. Record the memaremen! at the and of a normal expiration. It in iemportanl that the maddier does oot attempt to bold tis abdomen in, thus resultiag in a coalles moeasurement. Also the thpe must be tepe kevel acrows the cholomen and tack.
a. Neck. The soldier being meaured will b; atading, looking atruigit ahead, chin parallel to the bloor. The measuremeat is tiken by placing the tape around the neck at a level just below the laryar (Adem's apple). Do not place the tape seneure over the Adnm's apple The tupe will be as close to horizontal (the tape the in the front of the neck should be at the same beight as the rape line in the back of the seck) as anntam. ically feasible. In many cumes the tape will clant down toward the froat of the neck. Therefore, care should be takea so as not to invoive the shoulder/mock muscles (trapezim_{m}) in the messuremeat. This is a pomibility when a soldier has a short sock.

E-5. Chrumference attce and findermente for fommere

a. Neck This procedure is the ame as for malen.
4. Formarm. The soldier beins measured will be atandint with the arme extended ewry from the body so that the forearm is in plain vien of the measures, with the hand pelom up. The toldier abould be allowed to choose which arm he/she prefers to be smensured. Place the tape around the largest forearm circomference. This will be juat bedow the choow. To chause that this is truly - the largeat ctroumference, sinse it is being visually identifiod, ajide the tape along the frearm to find the lisjest circumference.
c. Write The soldier beioy messured will tasd vith the arm ertended awny from the tody so that the wrist is io plinin view of the geasurer. The tape will be piaced around the miat at a point abowe the hand jus beLow the lower end of the boses of the forcerm.
d Hif The woidier tating the meaturement will view tie pervoo beios meanured from the side. Place the tape around the hipa wo that if pames ove the grouted protrmaloe of the elaued muaciet (buttocts) tempien the tape ta a horinotal plape (i.e. perallel to the boor). Chech froat to tact and side to cide to be gare the cape in level wo the fioor on all sifice before the manire.
 mearias for shorth ble tape ond he dorwo saugly to minimixe the infmence of the chorts on the size of the manameneal

	\| 2 気	
	Q 5	
	R ${ }^{3}$	
	8	
	!	

Co-4. Pragesation ef int bery tut
NOTE IT IS EXT TREIELY mPROTANT THAT YOU READ ALI OF THESE IN. STRUCTIONS EEFOFE ATTEMCTING TO COMPLETE THE EODY FAI CONTENI COMPLETE THE BODY FAT CONTENH
WORKSKEETS MARE SLRE THAT YOE HAVE A COPY OF THE WORXSWEET IN FRONT OF YOU WTEEN YOU ARE READ ING THESE INETRUCTIONS
c. The following paragraphs mill provide information noeded to perpere the Body Fat Conten: Workshects for melea and fernules.
DA Form $3500-R$ and $5901-R$. Des Es The worksheets are writen in a stepwise fushon. The meawnemenis and compale. tion procenses me dificant for males and
B. You will ter raponaible for coumpleting - wotksheet for soidiers who exceed the ucroening tuble weight (Table 1) located in of supervisor determines that the individui's oppearance sugeexts thas body fat is excorsive (pars 2010 AR 600-9). The purpose of this form is to thelp you determine the coldier's percent body fat using the circumregulation.
c. Befort you start, you should have :
chorough understanding of she measure. chotough understanding of the measuredix. You will also need acsle for menaring body weighe a heipht monsuring device, and a mesturing lape (hec specifica-
 mosururnents.
8－7．Mepe for propatiy the Male

reme Prim in modiner＇t hat mame fret rave and moder meal on the Mase bloce A ． 10 include Mis Rani and Socisl Gecurity number
Age Print the ege in yert in in AGE tock

 O^{\prime} an wich．and tecord the measurpment in the MEIINT DNOF

 and recerd in the WEIGHT Block
tiole fsicom wit nite to rewnong of mapit and
 cent．

Gejy ：－Axtontion Macuremert
Mel．ss＇t the sotantit abdominal sreumter one？ 10 in marest ounter of an men．and rectid in the bloch rabayd＂FIRST
MeP 2 Mect Monemrenment
Moivure the soidter＇s nece creumbence to the mepost puiter of ten meh．end racord in

 －renteriom
 Pird tre matrerybed wrape of EAST． SECOND，and TMIRD deorminal crocurver． ences by eding then lapetive and croing by
 of en beh，in the bock metred AVERAGE，tor STEPS I End 3

 SECOAD．and THRRO mel craunimencte by adowg then together and divicing by three
 inch in ine block mertud AVERAGE．tor TEPS 2 4nd 4

Gotract me number found in the average Civin of STEP 4 from tie furow iourd in the
 S．ep 4 nect circumenen

Go to Tible 8－1，the Abotomen－Nack Factor
Talm，and iocat the abomen－nech differ－
 －A How number．Le． 15 methe the Abot－

1820 natien tw tocior would be 10 4．I E nimone is 1S．50，it rector 401.02 ．and ye cimence is 15．75，we facter in 101.55

mop 7．Moncm Pudip

 revion the fetor 57.15 ．Whathati is not

 tactor $\frac{1}{7} 77.50$ End the appopnate factor on STEP 7.
 EI Ite meneure or oftivence is a woil mumber
 cecty drow tom the wetwe eatrm Cotume 25

0．1．Furent Budy Fot
sutpract the murner found in the AVERAGE cost of STEP 7 from ter number kound in the AVEAAGE block of STEP ond enter of at
 CENT BOOY FAT

OBrancs Or PM	0.00	$\frac{\Delta y}{(4)}$	$\begin{aligned} & 50 \\ & (W) \end{aligned}$	$\begin{aligned} & 79 \\ & \text { (M) } \end{aligned}$
5	63.44	35.06	3881	5900
0	8050	0985	6216	041
7		S 78	6691	400
8	en 08	700？	7107	7200
0	72.0	7307	7476	720
10	7146	721	7108	2ts
11	746	637	\＄10	114
If	123	420	640	0433
13	817	4181	64	0704
11	1）	$0 \cdot 12$	0 Cl	＊37
15	43	toct	8108	0159
16	407	354	500	C130
17	Otor	Ot 37	4808	
${ }^{\text {＋}}$	est	44	＊ 89	el 3
18	117		＋40	0 ＋08
N0	44	te 0	10030	100
11	10110	W014	10181	103%
85	1023	10108	10130	1095
23	104 12	124 4	104	10814
84	4935	109 ${ }^{2}$	109 ${ }^{\text {2 }}$	40498
83	1046	1078	20735	cept
3	109 is	teat	19404	kfe to
87	\％094	cets	1100s	11083
緟	1 to 4	1168	14134	！1153
34	1118	11210	1183	143＊
30	1184	11383	11364	14\％ 71
81	11403	12130	1tas	14．43
38	P1500	11933	1490	19tse
3	Petil	1183	141410	14＊${ }^{\text {ct }}$
34	11110	173	1978	14789
35	1980	1tato	1×15	
3	t1900	1183	1204	11904
$3 *$	1181	18013	1893	543）
3	20\％	12108	8183	18144
13	81194	12）	Hten	（5）${ }^{4}$
0	4戠第		1建 41	1311

mat	0.00	$\begin{aligned} & \text { su } \\ & (W) \end{aligned}$	$.50$	(\$)
ω	73.33	73.35	75.40	7960
1	7513	754	73.8	7609
42	7821	78.32	743	785
0	78.8	7180	782	87.04
64	7713	7.27	715	7750
4	71.3	7713	776	770
es	78.07	718	73.30	741
17	783	34．03	78.74	78
4	7．ET	707	72.18	78.29
00	740	7140	781	7972
10	710	74．03	2094	0014
71	00.25	00.35	20.46	058
r	tor	0077	20.7	000
13	410	41 1\％	\＄1．20	1130
7	414	E130	418	8178
13	614	－1 0	00	410
1	43	$4{ }^{4}$	487	43：
77	$8{ }^{3}$	48	ces	028
8	1305	4113	420	01.3
7	64）	453	48	13
50	¢\％1	430	43	040
4	8410	4427	431	44t
4	ess	1404	A 7	
6	4t1	4300	Est	411
et	84．4	8435	est 4	4 ${ }^{3}$

－－Elepp for prepering the Femato lody Fat Content Wortaneat DA Form St01－h，Dece 5

Wime Pint the comicri mat neme．and mid－ of intial in tre NAME block．Ano inciude her Rent，and Social Smermy Number

Age Port ter age in yaers on the AGE wock．
whint manaure the solver＇t height is do－ corbed on the eppendia．to the nervel armer of an inch and record of maturemert in the MEIGMT Bloch

Weight Meature the solder＇s maint ex do－ cerbed on the apperthe to the newerd pound． and record on the WEIGNT beact．

 eoverix

8top 1．Welant Pector
Go to Tabla B－3．The werth Factor Tabin．and
 unn，wioh in in to pound mertements it the enght in exactly 120 pounds．ine tector 4 found under the＂t＂coturn 亶的d 147．24．It the wight 121 pounce．the treto e found uncer the＂ 1 ＂column and 147.62 If the
 colyms ind is 149．47．Enier the mporepnation veint trioe in en CALCULATIONS encton． STEP IIA
（nnp 2 Nantit Facter
Qo to Tack Bu，in ment Fector Tidel．and

 Hing Mungh in 8450 rectese．the itactor in

 teto in an CALCUAATIONS suctar STEP 110
ap 2 Mim Manerirmen：
Maveure the witats hip elreurititunce of the nearett puettr of en inch and fucord in the Hook mband＂first．＂
4op 4．Fertarm tiapencoment
 canter of nch，and record in the reat it． Bend＂FMOST．＂

Etap as．Hect Meanmerven
 the nemest quater of an math end record in the bloch monind＂FIRST．＂

Menace the solatis＇s wive to the nuruid air． wof in ncti and record on te liock mbind ＂FIAS：＂

Nole MEDEAT STEPS 3．4．9．and 6．Ma SERES．Un rou Nove congities 3 whe of hat romerm．luack

tang 7．No Facter

Go w Tact B－S．The Hip Fector Tabit．and to Cate the modier＇s AVERAGE Kip Giounmorence
 a whole nmber，La．，is trchet．the Hio Factor a lound in tie 8.00 cotimn ind is 18．3．M nt creumerence is not a thote monber beat in

 ton 11 B

Go to Tadi 8－4．It Fersem Fector Tede

 4．37．Entw ita eppregtato theror is in CAL． CUATIONS， 11 E．

Co to Table B－7，the Man Fertor Tith，and cone the rodits AVEPMCE neot cturnive． ente in tio tepracet eoturn．II themer．
 tetor he tound unime tha 0.00 cotumn end is 16－25．II the cronsmience is not it mate num
 －oranterence it 12.50 nathes，the tector is

 CALCULATKONS extion 11 F

4 mp 18．Mrtat Fettor
Go so Tred B－l．to What Fector Table，and Heme the toctert AVERAGE what croumfor．
 onee te whole turnber，1．e．， 7 meting，the fector is found uncte the 0.00 copund end a

 crouniturance is 7.00 incivet．the factor is
 mexw is 3．44．Enter tie appopitats tactor in en calculations metion il G ．

Celondermaty

Une C．Atatuen of Werght and Nio Factere
Add 11 A murnil Fector，to 11 It．No Factor

 －Mint Fextore
Aad 11 D．Mipit Factor，it E．Forers Fas． tm． 11 F，Noch Factor，and 11 G，Whel Fector

 HAT

Onmo	0	1	\cdots	1	4	4	\bullet	1	\bullet	\bullet
9	134	1343	138 09		190？	18．93	157.03	137.90	137 \％	1344
16	tses	1398	1340	140．3	1420	let 13	14：9	H140	1484	1494
110	14．34	restr	1404	1444	140．4	14935	14540	cmot	H147	14．43
120	44734	1474	847．6	tas37	14.74	14 10	14t4 4	1403	10． 18	18084
110	1800	13128	11190	191．4	148	188	139	49330	1984	12304
140	134＊	19e51		19438	1悤気	1䢕	4星妾	1985	1stas	159.14
160	1474	187．13	tmos	1䟁3	1新影	1940	44＊3	14．5	tE83	1011
140	4＊40	tatis	＊905	14143	181策	$11_{10} 0$	2485	1433	1434	H1＊
182	＋127	ctich	418	109\％	1043	tat 4	P4	ract		1437
840	R建 7	＋194		H434	的易	17804		14193	17）7	$1{ }^{1}+0$
10	vax	8413）	Hera	W奂	1031		献觻	Lemet	47014	1037
800	1709	170．3	1710	1198	17154	1717	－1714	172 ti	17240	1724
110	1720）	1703	173．3\％	1isat	1780	173 ${ }^{\text {¢ }}$	17417	17473	17434	174\％
810	t7an	12380	11341	173成	1834	1200	17272	1782	1748	17142
37	177	178）	1742	1784	，frit	1790\％	178000	1743	4714	17140
$14{ }^{2}$	tre ${ }^{\text {P }}$	174	12145	17894	178 7	1708	10	U030	404	H04
38	18004	1910	stis0	1919	$44^{13} 3$	18183	418	P4te	Hex ${ }^{\text {a }}$	䧉を4
38	4， 03	4681	USE	43） 1	21233	4831	940		thet	14.10
2t	184	t44	1480	134	1 y 0	18380	1题 27	139	festo	1要他

Weight for Height Table (Screening Table Weight)

APPENDIX H. Military units and number of soldiers studied. "Complete data" indicates subjects measured by the study team, "unit data" indicates subjects for which some data was obtained, including some not measured by the study team, "otal in unit" indicates number of soldiers in the training unit.

	$\begin{array}{c}\text { complete } \\ \text { data } \\ \text { (\#soldiers) }\end{array}$	$\begin{array}{c}\text { unit data \& } \\ \text { total in unit } \\ \text { (\#soldiers) }\end{array}$	$\begin{array}{c}\text { Dates of training } \\ \text { start }\end{array}$	
Und				

Female recruits				
Co B. 1-28	136	$209 / 209$	16 Sep	9 Nov
CO D. 1-34	188	$204 / 204$	23 Sept	17 Nov
Co E. $2-13$	190	$210 / 214$	30 Sept	22 Nov
CO D. $2-13$	200	$213 / 228$	7 Oct	1 Dec
CO D. 3-34	46	$156 / 184$	7 Oct	1 Dec
CO E. protrain	86	$100 / 100$	15 Ot	8 Dec

APPENDIX I. Survey Instrument and cover letters.

DhrE-MPR

anvion

DEPARTMENT OF THE ABMAT

S: Aug 89 MEMORANDUM FOR COMMANDERS
subject: 2nd Request for Soldier Height, weight circumferences

1. You were previously requested by Erigadier General Williamson (ODSCPER) co complete and return a survey for tha Army Accession
COMPLEIE THE ATTACTED FORM FOR THE KAMED SOLDIER AND RETURN ASAP.
2. The purpose of thia atudy it to determine the mitability of

wers stuied in basic training at Fozt Jackson at the end of last
Year bersortad as summaries of the 2600 atudied information
wili be reporials.
in ocher words, it will not affect ths individual's career.
3. If the soldier is not availabla for the requested
informaticn in block 2. Wo must identify reasons for any missing
4. Please identify female moldiers who are pregnant under
"other" and do n't complete measurements on those soldiers.
5. If you have aw quastions concerning thia marvey or canno:
return it imadiately. Flease phone me at Av 256-4847 (commercial: 508-651-4847).

KARL E.
CPT, MS
CPT, MS

Distribution of the difference between height reported by MEPS and by soldiers' first units, compared to study team measured height. Positive values indicate overestimated heights compared to study team measurements.

APPENDIX K. Study data compared by age category \& othnic origin.

Male recrults, by age category [in metric units]

Parameter	17-20	21-27	prob
EAD ($\mathrm{n}=$)	751	251	

Age (years)	18.5 ± 0.8	22.9 ± 1.8	
Height (cm)	175.3 ± 6.8 a	175.0 ± 7.9	ns
Weight (kg)	75.1 ± 12.0	77.2 ± 12.9	*
BMI (kg/m2)	24.4 ± 3.6	25.1 ± 3.6	*
Body fat (\%)	15.6 ± 5.8	17.2 ± 5.6	**
Neck circ (cm)	37.1 ± 2.1	37.5 ± 2.2	**
Abd2 circ (cm)	82.4 ± 9.5	84.8 ± 9.5	***
BF std prox (\%)	-4.4 ± 5.8	-4.8 ± 5.6	ns
Strengtin (kg)	45.9 ± 20.5	47.4 ± 22.1	ns
Fiexibility (em)	85.1 ± 17.5	83.3 ± 18.3	ns
Push ups (count)	26.5 ± 15.3	26.8 ± 16.8	ns
Situps (count)	38.7 ± 17.9	36.0 ± 19.0	*
2-mile run (mins)	16.3 ± 2.2	16.5 ± 2.1	ns

6-MTHS POST-BT $303 \quad 82$

Weight ' kg)	75.6 ± 9.5	77.3 ± 11.7	ns
BMI (kg/m2)	24.7 ± 2.8	25.3 ± 3.3	ns
Body fat (\%)	15.2 ± 4.5	16.7 ± 5.1	*
Neck circ (cm)	38.8 ± 9.0	38.5 ± 2.1	ns
Abd2 circ (cm)	82.2 ± 7.1	84.9 ± 8.7	\cdot
BF std prox (\%)	-4.8 ± 4.5	-5.2 ± 5.1	ns
Wt chg (6m-EAD)	$+0.9 \pm 5.5$	$+0.8 \pm 5.1$	ns
Wt chy (BT-EAD)	-0.1 ± 3.1	-0.0 ± 2.8	ns
\%BF chg (6m-EAD)	-0.5 ± 3.2	-0.3 ± 3.2	ns

Note: significant differences by analysis of variance are noted in right column: ns=not significent, ${ }^{*}=p<0.05,{ }^{* *}=p<0.01,{ }^{* * *}=p<0.001$. proportions were compared as 2×2 tables with a chl-squared test.

Female recrults, by age category [in metric units]

Parameter	18-20	21-27	F prob
EAD ($\mathrm{n}=$)	639	208	
Age (years)	18.5 ± 0.9	23.1 ± 1.8	
Height (cm)	161.6 ± 6.4	162.9 ± 6.8	*
Woight (kg)	$57.6+6.2$	59.5 ± 7.2	***
BMI (kg/m2)	22.0 ± 2.0	22.4 ± 2.2	
Body fat (\%)	26.5 ± 3.7	26.9 ± 3.9	ns
Neck circ (cm)	31.4 ± 1.4	31.7 ± 1.5	
Hip circ (cm)	93.4 ± 5.2	94.5 ± 5.6	
Forearm circ (cm)	23.0 ± 1.2	23.3 ± 1.4	*
Wrist circ (cm)	14.8 ± 0.7	14.9 ± 0.7	ns
Abd1 circ (cm)	67.1 ± 4.5	68.7 ± 4.8	***
BF std prox (\%)	-1.5 ± 3.7	-3.1 ± 3.9	***
Strength (kg)	28.9 ± 8.3	30.7 ± 8.8	\cdots
Flexibility (cm)	86.8 ± 15.4	86.9 ± 14.7	ns
Push ups (count)	7.0 ± 7.7	7.0 ± 7.8	ns
Situps (count)	26.5 ± 18.7	26.2 ± 19.5	r cosmer
2-mile run (mins)	20.3 ± 2.4	20.4 ± 1.7	**
6-MTHS POST-BT	203	68	
Weight (kg)	60.3 ± 6.8	60.6 ± 6.7	Ins
BMI (kg/m2)	23.0 ± 2.2	23.0 ± 2.4	ns
Body fat (\%)	26.5 ± 4.1	25.6 ± 4.6	ns
Neck circ (cm)	32.6 ± 2.1	33.1 ± 1.3	ns
Hip circ (cm)	95.1 ± 5.3	95.2 ± 5.5	ns
Forearm circ (cm)	24.1 ± 1.7	24.3 ± 1.6	ns
Wist circ (cm)	15.5 ± 1.1	15.4 ± 0.9	ns
BF std prox (\%)	-1.5 ± 4.1	-4.4 ± 4.6	***
Wt chg (6m-EAD)	$+2.3 \pm 3.7$	$+2.0 \pm 3.3$	ns
Wi chg (BT-EAD)	-1.0 ± 1.9	-1.3 ± 2.3	*
\%BF chg (6m-EAD)	-0.4 ± 3.4	-0.7 ± 2.9	ns

Male recruits, by principal ethnic groups

Parameter	White	Black H	Hispanic prob	
EAD ($\mathrm{n}=$)	615	325 68		
Age (years)	20.1 ± 3.3	20.0 ± 3.0	20.6 ± 3.0	ns
Height (cm)	$175.7 \pm 7.0 \mathrm{a}$	175.8 ± 7.1 a	$171.4 \pm 5.9 \mathrm{~b}$	***
Weight (kg)	76.2 ± 12.3	75.8 ± 12.2	73.0 ± 12.4	ns
BMI ($\mathrm{kg} / \mathrm{m}^{2}$)	24.6 ± 3.5	24.5 ± 3.6	25.8 ± 3.9	ns
Body fat (\%)	17.1 ± 5.7 a	$13.8 \pm 5.3 \mathrm{~b}$	17.7 ± 6.1 a	***
Neck circ (cm)	37.2 ± 2.1	37.2 ± 2.1	36.9 ± 2.0	ns
Abd2 circ (cm)	84.6 ± 9.8 a	$80.1 \pm 8.4 \mathrm{~b}$	84.2 ± 10.5 a	***
BF std prox(\%)	$-3.6 \pm 5.7 \mathrm{a}$	$-6.8 \pm 5.2 \mathrm{~b}$	-3.2 ± 6.1 a	***
\% overut (acc)	4.7	5.2	7.4	ns
\% overwt (ret)	30.9	29.5	36.8	ns
\% overiat	27.0	12.3	32.4	*
Strength (kg)	$44.4 \pm 21.0 \mathrm{a}$	51.5 ± 19.6 b	$44.0 \pm 22.1 \mathrm{a}$	*
Flexibility (cm)	85.1 ± 17.5 a	$84.8 \pm 17.5 \mathrm{a}$	$78.5 \pm 18.3 \mathrm{~b}$	
Push ups (count)	24.9 ± 15.5 a	$29.2 \pm 15.8 \mathrm{~b}$	$27.2 \pm 15.3 \mathrm{ab}$	*
Situps (count)	36.4 ± 19.0 a	41.0 ± 17.1 b	35.9 ± 16.0 a	**
2-mile run (mins)	16.5 ± 2.2	16.1 ± 2.0	16.2 ± 1.7	ns
6-MTHS POST-BT	208	129	23	
Weight (kg)	75.3 ± 9.8	77.3 ± 9.9	75.4 ± 9.0	ns
BMi (kg/m²)	24.6 ± 2.7	25.1 ± 3.0	25.5 ± 2.8	ns
Body fat (\%)	$16.1 \pm 4.5 \mathrm{a}$	$14.0 \pm 4.5 \mathrm{~b}$	17.8 ± 4.4 a	***
Neck circ (cm)	39.4 ± 10.1	37.7 ± 3.1	37.7 ± 1.8	ns
Abd2 circ (cm)	$83.5 \pm 7.4 \mathrm{a}$	81.0 ± 7.1 b	$85.2 \pm 7.5 \mathrm{a}$	**
BF std prox $(\%)$	$-4.4 \pm 4.5 \mathrm{a}$	$-6.6 \pm 4.5 \mathrm{~b}$	-2.7 ± 4.6 a	***
Wt chg (6m-EAD)	$+0.9 \pm 5.0$	$+1.1 \pm 5.8$	$+0.1 \pm 7.1$	ns
Wt chg (BT-EAD)	$-0.4 \pm 3.1 \mathrm{a}$	$+0.4 \pm 3.1 \mathrm{~b}$	$-0.2 \pm 2.7 \mathrm{a}, \mathrm{b}$	**
\%BF chg (6m-EAD) -0.4 ± 3.1	-0.0 ± 3.4	-1.1 ± 4.1	ns

Note: significant differences by ANOVA ($1 t$ col: ns=not significant, $*=p<0.05,{ }^{* *}=p<0.01,{ }^{* * t}=p<0.001$) were pursued with Duncan's multiple range test (same symbols = no difference); proportions were compared as row x column contingency tables with a chi-squared test.

Female recrults, by principal ethnic groups

Age (years)	20.3 ± 3.2	19.9 ± 3.1	20.1 ± 3.1	ns
Height (cm)	$162.1 \pm 6.3 \mathrm{a}$	162.4 ± 6.7 a	$157.8 \pm 5.9 \mathrm{~b}$	**
Weight (kg)	58.8 ± 6.3 a	$57.8 \pm 6.5 \mathrm{~b}$	55.5 ± 6.3 c	**
BMI ($\mathrm{kg} / \mathrm{m} 2$)	22.3 ± 2.0 a	$21.9 \pm 2.0 \mathrm{~b}$	$22.3 \pm 2.0 \mathrm{ab}$ b	
Body fat (\%)	27.3 ± 3.6 a	$25.9 \pm 4.0 \mathrm{~b}$	$27.8 \pm 3.2 \mathrm{a}$	
Neck circ (cm)	$31.4 \pm 1.4 \mathrm{a}$	$31.7 \pm 1.5 \mathrm{~b}$	$31.0 \pm 1.4 \mathrm{a}$	
Hip circ (cm)	$94.5 \pm 5.2 \mathrm{a}$	$93.1 \pm 5.4 \mathrm{~b}$	$92.5 \pm 5.0 \mathrm{~b}$	
Forearm circ (cm)	$23.1 \pm 1.3 \mathrm{a}$	$23.1 \pm 1.3 \mathrm{a}$	$22.4 \pm 1.2 \mathrm{~b}$	*
Wrist circ (cm)	14.9 ± 0.7 a	$14.9 \pm 0.8 \mathrm{a}$	$14.6 \pm 0.6 \mathrm{~b}$	
Abd1 circ (cm)	68.3 ± 4.8 a	$66.8 \pm 4.4 \mathrm{~b}$	$67.5 \pm 5.0 \mathrm{a}, \mathrm{b}$	*
BF std prox(\%)	-1.4 ± 3.6 a	$-2.6 \pm 4.0 \mathrm{~b}$	-0.7 ± 3.3 a	
\% overut (acc)	35.4	29.1	25.0	ns
\% overwt (ret)	40.7	32.7	38.5	ns
\% overfat	34.7	25.2	38.5	*
Strength (kg)	28.4 ± 8.6 a	$30.8 \pm 8.5 \mathrm{~b}$	27.5 ± 4.5 a	\cdots
Flexibility (cm)	87.9 ± 16.3	85.9 ± 15.0	86.9 ± 14.0	ns
Push ups (count)	6.7 ± 7.7	7.4 ± 7.5	7.3 ± 10.0	ns
Situps (count)	24.5 ± 19.3 a	$29.1 \pm 17.8 \mathrm{~b}$	$26.0 \pm 18.5 \mathrm{a}, \mathrm{b}$	
2-mile run (mins)	19.8 ± 2.6 a	20.7 ± 2.5 b	$20.2 \pm 1.9 \mathrm{a}, \mathrm{b}$	

6-MTHS POST-BT	133	129		14			
Weight (kg)	60.8	± 6.9	60.3		59.6	± 7.8	ns
BMI (kg/m2)	23.1	$\pm 2.3 \mathrm{a}$	22.9	$\pm 2.2 \mathrm{a}$		$\pm 2.0 \mathrm{~b}$	
Body fat (\%)	26.6	± 4.3 a	25.5	$\pm 4.0 \mathrm{~b}$		$\pm 4.3 \mathrm{G}$	
Neck circ (cm)	32.6	± 1.6	32.9		32.8	± 1.5	ns
Hip circ (cm)	95.2	± 5.5	95.3				ns
Forearm circ (cm)	24.0	± 1.6 a		$\pm 1.7 \mathrm{~b}$		$\pm 1.4 \mathrm{a}, \mathrm{b}$	
Wrist circ (cm)	15.4	± 0.9	15.6		15.0	± 0.3	ns
BF std prox(\%)	-2.0	$\pm 4.3 \mathrm{a}$	-3.1	$\pm 4.3 \mathrm{~b}$		$\pm 4.6 \mathrm{c}$	
Wt chg (6m-EAD)	+1.8	± 3.3					ns
Wt chg (BT-EAD)	-1.2	± 2.1					ns
\%BF chg (6m-EAD)	-0.7	± 3.0	-0.4	± 4.0			ns

APPENDIX L. Summary study data, key varlables.
Parameter EAD EOC first unit

MALES, $\mathrm{n}=$	1483	1230	546
Height (cm)	$\begin{gathered} 175.2 \pm 7.1 \\ (153.0-208.0) \end{gathered}$	-	*
Weight (kg)	$\begin{gathered} 75.7 \pm 12.2 \\ (48.6-121.7) \end{gathered}$	$\begin{gathered} 74.8 \pm 11.0 \\ (49.0-111.0) \end{gathered}$	$\begin{gathered} 75.9 \pm 10.0 \\ (52.3-113.2) \end{gathered}$
BMI (kg/m2)	$\begin{array}{r} 24.6 \pm 3.6 \\ (17.2-34.4) \end{array}$	$\begin{array}{r} 24.4 \pm 3.1 \\ (17.4-32.9) \end{array}$	$\begin{aligned} & 24.8 \pm 2.9 \\ & (18.4-33.2) \end{aligned}$
Body fat (\%)	$\begin{array}{r} 16.1 \pm 5.8 \\ (2.1-36.1) \end{array}$	N/C	$\begin{aligned} & 15.5 \pm 4.7 \\ & (5.0-32.4) \end{aligned}$
Push ups (count)	$\begin{array}{r} 26.4 \pm 15.9 \\ (0.0-87.0) \end{array}$	$\begin{array}{r} 50.9 \pm 12.2 \\ (18.0-96.0) \end{array}$	N/C
Situps (count)	$\begin{gathered} 36.4 \pm 19.0 \\ (3.0-85.0) \end{gathered}$	$\begin{array}{r} 64.5 \pm 11.1 \\ (31.0-99.0) \end{array}$	N/C
2-mile run (mins)	$\begin{array}{r} 16.4 \pm 2.2 \\ (11.4-26.0) \end{array}$	$\begin{gathered} 14.0 \pm 1.1 \\ (11.0-20.1) \end{gathered}$	N/C
FEMALES, $\mathrm{n}=$	1159	884	298
Height (cm)	$\begin{gathered} 162.0 \pm 6.5 \\ (144.0-189.0) \end{gathered}$	*	-
Weight (kg)	$\begin{array}{r} 58.3 \pm 6.5 \\ (40.0-37.7) \end{array}$	$\begin{array}{r} 56.9 \pm 6.2 \\ (41.8-81.8) \end{array}$	$\begin{array}{r} 60.5 \pm 6.8 \\ (43.2-80.0) \end{array}$
BMI (kg/m2)	$\begin{array}{r} 22.2 \pm 2.0 \\ (16.4-27.2) \end{array}$	$\begin{array}{r} 21.8 \pm 1.9 \\ (15.6-28.4) \end{array}$	$\begin{aligned} & 23.1 \pm 2.2 \\ & (16.4-30.0) \end{aligned}$
Body fat (\%)	$\begin{array}{r} 26.8 \pm 3.8 \\ (15.8-42.6) \end{array}$	N/C	$\begin{gathered} 26.3 \pm 4.2 \\ (11.5-40.8) \end{gathered}$
Push ups (count)	$\begin{array}{r} 7.0 \pm 7.7 \\ (0.0-52.0) \end{array}$	$\begin{aligned} & 27.5 \pm 9.9 \\ & (7.0-79.0) \end{aligned}$	N/C
Situps (count)	$\begin{aligned} & 34.0 \pm 13.8 \\ & (1.0-92.0) \end{aligned}$	$\begin{array}{r} 61.3 \pm 11.4 \\ (10.0-98.0) \end{array}$	N/C
2-mile run (miris)	$\begin{array}{r} 20.3 \pm 2.5 \\ (13.0-29.8) \end{array}$	$\begin{array}{r} 17.5 \pm 1.5 \\ (13.0-30.8) \end{array}$	N/C

notes: values given as mean \pm SD, and range; N/C - data not collected;

* EAD helght was used for all body fat and BMI computations

APPENDIX M. Relationship between grip strength and body mass index.

The relationship between grip strength and body mass index in males and fertales (males: $\mathrm{r}=0.43, p<0.001$; females: $\mathrm{P}=0.29, p<0.001$).

GLOSSARY

Terms and abbreviations used in this report

Accession standards - physical standards prescribed by AR 40-501. These are weight-for-height standards which prevent entry to active duty of candidates who exceed the standards. Waivers can be granted in some cases and, since completion of the data collection in this study, candidatus are being accepted if they exceed these weight tables but meet body fat standards in AR 600-9.

APFI - the Army Physical Fitness Test which is administered to all active duty soldiers biannually. The test includes pushups, situps and two mile run, in that order. At the beginning of basic training a modified APFT, the diagnostic APFT, is administered to new recruits. This may include a one mile instead of two mile run test.

BMI - Body Mass Index: a way to describe body size and proportion from height and weight: weight (in kilograms) is divided by the square of the height (in meters). Weight increases more rapidly with an increase in height so that a normally proportioned 6^{\prime} person will be described by the same BMI as a normally proportioned 5' person. The "average" BMI for young U.S. males and females is approximately $22-23 \mathrm{~kg} / \mathrm{m}^{2}$.

EAD - Entry to Active Duty.

MEPS - Military Entrance Processing Station; a facility which inproce 3 ses new recruits before basic training.

NHANESII. National Health and Nutrition Examination Survoy; the : econd cycle of field data collection from a large representative sample of householes across the United States. This data includes physical measurements of height and weight.

Overfat - exceeding Army retention body fat limits for sex and age.

Recruit - person in basic training, afterwards referred to as a soldier.
Retention standards - physical standards prescribed by AR 600-9. These are fat standards based on circumference measurements which pertain to Army personnel. Weight tables; are only used for screening purposes, to determine who should be assessed for fat.

Screening weight standards - weight-for-height tables in AR 600-9 which identity individuals who are most likely to be overfat. This is used only to identify those soldiers who need to be assessed for body fat.
Addressee Number of copies
Assistant Secretary of Deiense (Health Affairs)1
ATTN: ASD(HA)PA\&QA
Washington DC 20310
Office of Undersecietary of Defense for Acquisition 1
Deputy Undersecretan; for Research \& Advanced Tochnology
Pentagon, Washington D.C. 20301-3100
HQDA 10
ATTN: DAPE-MPA
Pentagon, Washington DC
HQDA
ATTN: SGPS-FP 5
ATTN: DASG-RDZ 2
5111 Leesburg Pike
Falis Church, VA 22041-3258
Commander
U.S. Army Medical Research and Development Command ATTN: SGRD-RMS 2
ATTN: SGRD-PLC 2
Fort Detrick, MD 21701-5012
Commander 1
U.S. Army Training and Doctrine Command
ATTN: ATCD-S
Fi. Monroo, VA 23551
Commander 1
U.S. Army Health Services Command
ATTN: HSHN-I
Fort Sam Houston, TX 78234-6000
Dean1
School of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20814-4799
Commandant
Academy of Health SciencesATTN: HSHA-TTC1
HSHA-CDM 1
Fort Sam Houston, TX 78234-6100
Director 1
Army Physical Fitness Research Institute
U.S. Army War College
Carlisle Barracks, PA 17013
Director 3
Soldier Physical Fitness School
ATTN: ATSG-PF
U.S. Army Soldier Support Institute
Fori Benjamin Harriscn, IN 46216
Director of Physical Education 2
U.S. Military Academy
West Point, NY 10996
U.S. Amy Military Liaison Officar to DCIEM 2
1133 Sheppard Avenue W.
P.O. Box 2000
Downsview, Ontario M3M 3B9 CANADA
Detense Technical Information Center12
ATTN: DTIC-FDAC
Cameron Station
Alexandria, VA 22304-6145
Commander
U.S. Army Natick Research, Development \& Engineering Center Natick, MA 01760-5000
Stimson Librany 2
U.S. Army Academy of Health Sciences
Fort Sam Houston, TX 78234-6100
Director, Blological Sciences Division 1
Office of Naval Research - Code 141
800 N. Quincy Street
Arlington, VA 22217
Commanding Officer 1
Naval Medical Research and Dovelopment Comniand NMC-NMR/ Bldg. 1
Bethesda, MD 20814-5044
Commander 2Naval Health Research CenterP.O. Box 85122San Diego, CA 92138-9174
Commander 2U.S. Air Force School of Aerospace MedicineBrooks Air Force Base, TX 78235-5000
Dr. M.F. Haisman 1
Head. Applied Physiology
Aimy Personnel Research Establishment co RAE Famborough, Hants, GUI4 6TD UNITED KINCDOM
Flight Lieutenant S.J. Legg 1
Detense Environmental Medicine UnitRNZAF Base Auckland
Whenuapai, Auckland NEW ZEALAND

[^0]: - In the current regulation these weight tables pertain only to ino volunteer Army; standards for mobilization do not include height or weight restrictioris.

[^1]: - This is essentially the same detinition of overweight used by the Surgeon General of the Public Health Service: "Peopla are considered ovenveight if their body mass index exceeds the büth persentile for young American adulls (approximately 120 percent of desirable wetghtif(4). This corresponds to BMI >27.8 tor males and $>27.3 \mathrm{~kg} / \mathrm{m}^{2}$ for females, based on the NHANESII data.

[^2]: * The previeus veight control regulation (AR 632-1, Apr 1972) was combined with a plysical fitness regulation (AR 600-9. Jan 1965) and the new weight tables were added. The mate usper limilis were 125% of the "desirable" woights in the WWII standards. These, in tum, wefe from the original 1912 medico-actuarial tables based on maan values of the insured poputation at age 20 (6). These stardards are still with us, as male screening weights for age $40 \&$ over, in AR 600-9.

[^3]: - This was used only as an interim method because of several crawbacks. Skinford measurement cannot be reliably used by untrained observers, turs, obesity assossments were left in the hands of specialized medical personnet who had to be trained and monitored. The equations applied to age intervals which produced distressingly large increments in the estimated body fat for a given sum of skinfold thicknesses at certain birthctays. A third probiern was that the method was developed on a popytation of primarity middi-aged nothem Scottish men and women, pertaps reducing the surim-hility to the U.S. Amy population.

[^4]: - results for the diagnostic Appr administered at the start of basic training are mixed with 1 mile and 2 mite run tests; APFT test resuits were obtained at the end of basic training with 2 mile nun tests only.

[^5]: - 日M relationships ara not consistent for tamate accoession tabies and produce shasp inflections below 64" in height; in this table BMI is given for women $66-67^{\circ}$ but these standands were more precisely detined by haipht for "withtn" and "enceec" standards anatyses in this report. An additional age category for women (21-24 and 25-30) thas boen collapsnd into one calegory to match the male standard in this tabie: the more predise age beerkiowns proscribod in the accesshon waight tables were used in the data analyshs.

[^6]: - Our sample of Army recruts are atreacty selected on the basis of the alcecssion weight tabies and include a younger age sample than thesc obesity studies. Accoodingly, our sample does not reflect these tends; black male and black temale recruits had significantly lower percant body fal in our stucy.

[^7]: - The NHANESII data yields a BMI standard of $27.2 \mathrm{~kg} / \mathrm{m}^{2}$ which equates to approximately 37% body fat for femates predicted by regression (and oxtrapolation) from our recnut sampla. This is essentially the Navy upper limit of 36% body fat.

