
Appeared in: Information and Computation 204:920–956, 2006.

A Kleene Theorem and Model Checking Algorithms for

Existentially Bounded Communicating Automata

Blaise Genest∗, Dietrich Kuske†, and Anca Muscholl‡

Abstract

The behavior of a network of communicating automata is called existentially
bounded if communication events can be scheduled in such a way that the number of
messages in transit is always bounded by a value that depends only on the machine,
not the run itself. We show a Kleene theorem for existentially bounded communicat-
ing automata, namely the equivalence between communicating automata, globally-
cooperative compositional message sequence graphs, and monadic second order logic.
Our characterization extends results for universally bounded models, where for each
and every possible scheduling of communication events, the number of messages in
transit is uniformly bounded [15, 17]. As a consequence, we give solutions in the spirit
of [22] for various model checking problems on networks of communicating automata
that satisfy our optimistic restriction.

1 Introduction

Communicating finite-state machines (CFM for short), or equivalently, FIFO chan-
nel systems, are a fundamental model for concurrent systems. Unfortunately, these
machines are too powerful to be amenable for automatic verification since they are
Turing equivalent [8].

Several papers aimed at identifying variants of these machines or approximated
behaviors thereof, that are suited for automated verification methods. For example,
for lossy FIFO systems the reachability problem is known to be decidable [1, 11],
albeit of non-primitive recursive complexity [28].

Another approach to obtain decidability of model checking questions is based on
the representation of the set of reachable configurations, (including channel contents)

∗IRISA, Campus de Beaulieu, Rennes, France
Work done while being affiliated with LIAFA, Université Paris 7, supported by the ACI Versydis.

†Institut für Informatik, Universität Leipzig, Germany
Some of the results were obtained when D. Kuske was affiliated with the Technische Universität Dresden.
Supported by DAAD-PROCOPE D/0333596.

‡LIAFA, Université Paris 7, France
Work supported by the ACI Versydis.

by some finite automaton, see e.g. [4, 5, 6]. Often this approach requires to relax the
operations on channels, which yields an over-approximation of the result.

The approach taken by our paper goes beyond regular representations of reachable
configurations. We use instead partial order methods for describing the behavior of
a CFM. Formally, the behaviors are described by Message sequence charts (MSC for
short), a diagram notation described by the ITU norm Z.120 [16]. The advantage of
reasoning about CFMs using MSCs is both succinctness and comprehension, since
a single diagram subsumes a set of sequential runs of the CFM. Since MSCs are a
partial order formalism, we reason about CFM and MSC properties using partial
order logics such as monadic second order logic (MSO for short) over MSCs.

The MSC model has become popular in telecommunication through its visual
representation, depicting the involved processes as vertical lines, and each message
as an arrow between the source and the target processes, according to their oc-
currence order. The Z.120 standard has also extended the notation to MSC-graphs,
which consist of finite transition systems, where each state is labeled by an MSC. This
formalism actually corresponds to regular expressions over MSCs, and it is not a nec-
essarily executable model. The interest in considering MSC-graphs is their practical
impact in designing communication protocols. CMSC-graphs were proposed in [13]
as a generalization of MSC-graphs, corresponding to regular expressions over com-
munication events. Their introduction was motivated by the fact that MSC-graphs
and CFM are incomparable, however, the language of any CFM can be described by
some CMSC-graph.

An early line of work considered universally bounded MSCs, only. In terms of a
CFM, this amounts to saying that every CFM run can be executed with channels
of fixed size, no matter how events are scheduled. Equivalently, there exists some
(uniform) bound on the number of messages in transit, at any time. Since the size of
the communication channels is fixed uniformly, this constraint turns a CFM into a
finite state device. Checking that a CFM is universally bounded is undecidable, and
recently heuristics were proposed for solving this problem [19]. On the other hand,
universal-boundedness for MSC-graphs can be enforced by a syntactic restriction [2,
25]. Over universally bounded MSCs, the rich theory of regular languages extends
very well: automata (CFMs), logic (monadic second order) and MSC-expressions
(regular MSC-graphs) are all equivalent [15] (see also [21, 17]). Moreover, model
checking in the realm of universally bounded MSC models is decidable.

The drawback of models with universally bounded communication channels is
the limited expressive power. Intuitively, universal channel bounds require message
acknowledgments, which can be difficult to impose in general. For instance, basic
protocols of producer-consumer type (such as e.g. the USB protocol [29]) are not
universally bounded, since the communication is one-way. In this paper we relax this
restriction on channels in order to capture more interesting behaviors, such as USB.
The idea is to require an existential bound on channels. This means roughly that every
MSC run must have some scheduling of events that respects a given channel bound
(other schedules might exceed the bound). In other words, runs can be executed
with bounded channels, provided that we schedule the events conveniently. For
instance, in a producer-consumer setting, the scheduling alternates between producer

2

and consumer actions. This requirement is perfectly legitimate in practice, since real
life protocols must be executable with limited communication channels. When a
channel overflow happens, then the sender stops temporarily until some message is
consumed from the queue.

In a nutshell, we have two objectives in this paper: First, we look for a robust class
of MSC models, i.e., one with equivalent characterizations in terms of logics, regular
expressions and automata. Second, we want a class with decidable model checking
problem, which of course requires some restrictions on the models we consider.

The main result of the paper is that communicating finite-state machines, monadic
second order logic and globally-cooperative CMSC-graphs are equivalent over exis-
tentially bounded MSCs. Thus, we proved an extension of the corresponding result
from [15] to the more complex setting of existentially-bounded MSCs. The MSO
logic used here is based on the MSC partial order and the message relation, as em-
ployed also in [23]. As shown by [7], this logic is in general more powerful than
the existential fragment of MSO using only the immediate process successor together
with the message relation. In particular, it follows from our main result that CFMs
and globally-cooperative CMSC-graphs can be complemented relative to the set of
existentially-B-bounded MSCs for any bound B. We do not know how to prove
this explicitly without exploiting the equivalence to MSO, which is trivially closed
under negation. Another consequence of the main result is that several interesting
model checking instances are decidable in this setting. We can check 1) whether
all existentially-B-bounded MSCs accepted by a CFM satisfy an MSO formula, for
any bound B, and 2) whether the language of a safe CMSC-graph is included in
(intersects, respectively) the language of a CFM.

Overview. In Section 2 we define the formalisms used in the paper – message
sequence charts, communicating automata, MSO, and Mazurkiewicz traces. Section 3
describes the way model checking works using representative executions. This leads
to the restriction of CMSC-graphs to safe and globally-cooperative graphs, and to
an intimate relation between existentially bounded sets of MSCs and Mazurkiewicz
traces. In Section 4 we state the equivalence of several specification formalisms for
MSCs and give some of the transformations. The proof is completed in Section 5
where we present the construction of a CFM from a regular set of representatives.
Finally, Section 6 shows that model checking is possible for all formalisms considered
in this paper.

Related work. Existential channel bounds appear in [18] and implicitly in [13]
(realizable CHMSCs). Our paper generalizes several results about expressivity and
model checking for MSCs with universally bounded channels [2, 25, 15, 17, 21]. With-
out the restriction of universally bounded channels, [22, 23] shows how to use rep-
resentative executions in model checking against MSO properties and [14] does this
against MSC-graph properties. Recall that we use the logic from [15, 23] that talks
about the partial order of an MSC. The paper [7] shows that the existential fragment
of the weaker MSO based on the immediate successor is expressively equivalent to
CFMs without any restrictions.

3

2 Definitions

2.1 Message sequence charts

The communication framework used in our paper is based on sequential processes that
exchange asynchronously messages over point-to-point, error-free FIFO channels. Let
P be a finite set of process identities that we fix throughout this paper. Processes
act by either sending a message, that is denoted by p!q meaning that process p sends
to process q, or by receiving a message, that is denoted by p?q, meaning that process
p receives from process q. Thus we do not use different message contents in our
notation. In the same line, we do not consider local events, that is, events which are
neither send nor receive. This is done for convenience and the reader might convince
himself/herself that proofs work (with small alterations) in the more general setting
as well.

For any process p ∈ P, we define a local alphabet (set of event types on p)
Σp = {p!q, p?q | q ∈ P \ {p}} and set Σ =

⋃
p∈P Σp. For the rest of the paper,

whenever a pair of processes p, q ∈ P communicate, we will implicitly assume that
p 6= q.

We introduce now the notation of (compositional) message sequence charts, that
is usually employed for describing scenarios of communication. The message sequence
chart notation (MSC for short) corresponds to the Z.120 standard of the ITU. The-
oretical work has revealed several deficiencies of the standard notation of MSCs and
MSC-graphs, which motivated the extended notation of compositional message se-
quence charts, CMSC for short. We will be mainly interested in MSCs as a complete
formalism, but we will use CMSCs as a kind of technical tool.

Definition 2.1 A compositional message sequence chart (CMSC) is a tuple M =
(E, λ,msg, (<p)p∈P) where

• E is a finite set of events

• λ : E → Σ maps each event to a type, and we set

– Ep = {e ∈ E | λ(e) ∈ Σp} the set of events of process p,

– S = {e ∈ E | ∃p, q ∈ P : λ(e) = p!q} the set of send events, and

– R = E \ S the set of receive events

• <p is a total strict order on Ep, for any p ∈ P

• msg : S → R is an injective partial mapping satisfying

– if msg(s) = r, then there are p, q ∈ P distinct such that λ(s) = p!q and
λ(r) = q?p,

– if s1 <p s2, λ(s1) = λ(s2) = p!q, and msg(s1), msg(s2) are defined, then
msg(s1) <q msg(s2),

such that the relation ≤:= (
⋃

p∈P <p ∪{(s,msg(s)) | s ∈ S})∗ is a partial order,
called visual order.

A message sequence chart [16] is a CMSC (E, λ,msg, (<p)p∈P) such that the
message mapping msg : S → R is defined everywhere and surjective.

4

For a CMSC M , we will write P (e) = p if e ∈ Ep, i.e., λ(e) ∈ Σp. Moreover,
we write e⋖p f if e is the immediate predecessor of f on process p, i.e., e <p f and
e <p g ≤p f implies g = f .

The second requirement on the function msg of the definition above ensures that
it is order preserving on its domain. Intuitively, messages are received in the same
order in which they are sent, i.e., we deal with FIFO-channels. For this reason, we
will refer to this property of CMSCs as FIFO.

This definition of a CMSC differs from the original one in [13] in that we do not
consider message contents (called “names” in [13]), as done e.g. in [15, 17]. As already
noted there, one could add message contents to the formalism without sacrificing any
of the results.

Figure 1 depicts an MSC. In that picture, there are two processes named p and q.
The two vertical lines denote the time axis of these two processes, i.e., the relations<p

and <q, respectively. For simplicity, the picture only indicates whether a given event
is a sent or a receive event, since we have only two processes, it should be obvious,
which process is sending to (is receiving from) which process. Arrows between events
on distinct process lines indicate the mapping msg. Hence, the MSC from Figure 1
denotes the sending and receiving of three messages from process p to process q and of
two messages from process q to process p. Both processes first send their respective
messages before they receive anything. The MSC does not specify the content of
these messages.

p q

!

!

!

?

?

!

!

?

?

?

Figure 1: A message sequence chart M

5

We can view a CMSC M = (E, λ,msg, (<p)p∈P) as a poset (E,≤, λ). For a
given poset, elements from E are called events. Any linear extension of ≤ is called
a linearization of M . We represent it as a word u = u1 · · ·un over the alphabet Σ.
Thus, the set Lin(M) of linearizations of the CMSC M is a subset of Σ∗. For a set
(or language) of CMSCs M, we write Lin(M) =

⋃
M∈M Lin(M). Note that we can

recover an MSC from any of its linearizations, thanks to the FIFO condition.
Let B be some positive integer. A word (linearization) w ∈ Σ∗ is B-bounded if

for any prefix u of w and any p, q ∈ P, the number of occurrences of p!q in u exceeds
that of occurrences of q?p in u by at most B. An MSC M is existentially B-bounded
(∃-B-bounded for short) if it has some B-bounded linearization w ∈ Lin(M). Let
LinB(M) ⊆ Lin(M) denote the set of B-bounded linearizations of M – by definition,
this set is non-empty iff M is ∃-B-bounded. An MSC M is universally B-bounded if
Lin(M) = LinB(M).

As an example, the word (q!p)2 [(p!q) (q?p)]3 (p?q)2 is a 2-bounded linearization
of the MSC M from Fig. 1, i.e., M is ∃-2-bounded. But the MSC M is not ∃-1-
bounded: suppose w ∈ Lin(M) is 1-bounded. Let u be the minimal prefix of w
containing two occurrences of p!q. Since, in w, any occurrence of p!q has to precede
any occurrence of p?q, there is no occurrence of p?q in u. Since w is 1-bounded, u
has to contain an occurrence of q?p. Since w is a linearization of M , the word u
contains two occurrences of q!p. Since u does not contain any occurrence of p?q, the
word w is not 1-bounded, a contradiction. Hence the MSC M is ∃-2-bounded, but
not ∃-1-bounded.

The class of all CMSCs, resp. MSCs and ∃-B-bounded MSCs, will be denoted
CMSC, resp. MSC and MSCB. An algorithm for checking whether an MSC M =
(E, λ,msg, (<p)p∈P) is ∃-B-bounded is based on the following relation ≺B ⊆ E ×E,
see [18]:

Let ≺B = msg∪
⋃

p∈P <p ∪ rev, where rev is given as:

rev(r) = s′ iff msg(s) = r, λ(s) = λ(s′), and

|{x ∈ E | s <p x ≤p s
′, λ(s) = λ(x)}| = B

That is, the relation rev maps a receive r with r = msg(s) to the send s′ that is
the B-th event with λ(s′) = λ(s) and s < s′ (if such an event exists).

Lemma 2.2 [18] An MSC M is ∃-B-bounded iff the relation ≺B= msg ∪
⋃

p∈P <p

∪ rev is acyclic.

We say that M ⊆ MSC is an ∃-B-bounded set of MSCs if M ⊆ MSCB ; M is
existentially-bounded (or ∃-bounded) if M ⊆ MSCB for some B. Similarly, M is
called universally B-bounded if every M ∈ M is universally B-bounded; and M is
universally-bounded, if it is universally B-bounded for some B.

2.2 Communicating finite-state machines

The most natural formalism to describe (asynchronous) communication protocols are
communicating finite-state machines (CFM for short) that we define in this section.

6

CFMs are a basic model for distributed algorithms based on asynchronous message
passing.

Definition 2.3 [8] A communicating finite-state machine (CFM) is a tuple A =
(C, (Ap)p∈P , F) where

• C is a finite set of message contents or control messages.

• Ap = (Sp,→p, ιp) is a finite labeled transition system over the alphabet Σp × C
for any p ∈ P (i.e., →p ⊆ Sp × (Σp × C) × Sp) with initial state ιp ∈ Sp.

• F ⊆
∏

p∈P Sp is a set of global final states.

The first approach to define the behavior of a CFM considers these machines as
sequential devices that accept linearizations of MSCs. More precisely, one defines
from the CFM A = (C, (Ap)p∈P , F) a (Σ × C)-labeled, infinite transition system
as follows. A configuration of A consists of a tuple of local states and of channel
contents, i.e., it is an element ((sp)p∈P , (wp,q)p,q∈P) of

∏
p∈P Sp×

∏
p,q∈P C

∗. For two
configurations, an action a ∈ Σp, and a control message c ∈ C, we have

((s1p)p∈P , (w
1
p,q)p,q∈P)

a,c
−→ ((s2p)p∈P , (w

2
p,q)p,q∈P)

if

• s1p
a,c
−→p s

2
p is a transition of the local machine Ap and s1q = s2q for q 6= p.

• Send events: if a = p!q, then w2
p,q = w1

p,qc (i.e., message c is inserted into
the channel from p to q) and w1

p′,q′ = w2
p′,q′ for (p′, q′) 6= (p, q) (i.e., all other

channels are unchanged)

• Receive events: if a = p?q, then w1
q,p = cw2

q,p (i.e., message c is deleted from
the channel from q to p) and w1

q′,p′ = w2
q′,p′ for (q′, p′) 6= (q, p) (i.e., all other

channels are unchanged).

A sequential run of A is a sequence d1, (a1, c1), d2, (a2, c2), . . . , (an, cn), dn+1 with

di configurations, ai ∈ Σ and ci ∈ C such that di
ai,ci
−→ di+1 for all suitable i. It

is accepting if d1 = ((ιp)p∈P , (ε)p,q∈P) and dn+1 = (f, (ε)p,q∈P) for some f ∈ F .
Finally, L(A) ⊆ Σ∗ is the set of words a1a2 · · · an such that there exists an accepting
sequential run d1, (a1, c1), d2, (a2, c2), . . . , (an, cn), dn+1.

The alternative definition of the semantics of a CFM A uses MSCs for represent-
ing successful runs. This idea goes back to Mazurkiewicz traces and asynchronous
automata (see [30], where it is used for obtaining the equivalence between MSO and
asynchronous automata). Here, we define a partial order run of a CFM as an MSC,
the events of which are labeled consistently by local states of the CFM. To this pur-
pose, let M = (E, λ,msg, (<p)p∈P) be an MSC and ρ : E →

⋃
p∈P Sp be a mapping

labeling each event on process p by some local state from Sp. For this mapping, we
define a second mapping ρ− : E →

⋃
p∈P Sp as follows. Let e ∈ Ep. If there is e′ ∈ Ep

such that e′ ⋖p e then ρ−(e) = ρ(e′). Otherwise (i.e., if e is minimal in (Ep, <p)),
we set ρ−(e) = ιp. The idea behind these notations is fairly simple: ρ(e) is the state
of the local machine Ap after executing event e, whereas ρ−(e) is the state the local
machine was in before executing e. Then the mapping ρ is a run if for any s ∈ E

7

with λ(s) = p!q and msg(s) = r, there is some control message c ∈ C such that

ρ−(s)
p!q,c
−→p ρ(s) and ρ−(r)

q?p,c
−→q ρ(r).

Now let ρ be a run on the MSC M . If Ep 6= ∅, let sp = ρ(ep) where ep is the
maximal event in (Ep, <p). Otherwise, define sp = ιp. The run ρ is successful if the
tuple (sp)p∈P belongs to the set of global final states F . An MSC is accepted by
the CFM A if it admits a successful run. We will denote by L(A) the set of MSCs
accepted by A. Clearly, an MSC can admit several (accepting) runs of a CFM.

It is straightforward to prove the relation between the two languages of a CFM:

Proposition 2.4 Let A be a CFM. Then L(A) = Lin(L(A)).

2.3 CMSC-graphs

An MSC stands for a single communication scenario. In order to specify the behavior
of a communicating system, it is necessary to describe (finite or infinite) sets of MSCs.
The simplest way is to list all possible scenarios in a library (possibly distinguishing
between positive and negative scenarios). However, such libraries are huge, therefore
hard to manipulate. Another simple way to do this was proposed in the Z.120
standard through high-level MSCs (denoted here as MSC-graphs). We define now
the more general CMSC-graphs [13], that can be viewed formally as a kind of regular
expressions over communication events.

We need first to define the composition of two CMSCs. Intuitively, to compose
CMSCs M1 and M2, we glue the corresponding process lines together and draw the
second CMSC below the first one. Since we deal with CMSCs instead of MSCs, the
composition is slightly more subtle, and we need to make it formal. First we need the
restriction of a CMSC M = (E, λ,msg, (<p)p∈P) to a subset F ⊆ E of events: It is
the CMSC M |F = (F, λF ,msgF , (<F

p)p∈P) with λF = λ|F , msgF (s) = r if msg(s) = r

and s, r ∈ F , and <F
p = <p ∩ (F × F).

Definition 2.5 Let Mi = (Ei, λi,msgi, (<i
p)p∈P) for i = 1, 2 be CMSCs. The com-

position M1 ·M2 is the set of CMSCs M = (E1 ⊎E2, λ,msg, (<p)p∈P) such that

• M |Ei
= Mi for i = 1, 2, and

• e ∈ E2 and e ≤ e′ imply e′ ∈ E2 for any e, e′ ∈ E1 ⊎ E2 (i.e., the process
lines are glued putting M1 above M2 and at most messages from M1 to M2 are
added).

This composition can naturally be extended to a binary operation on sets of CMSCs
by M1 · M2 =

⋃
M1∈M1,M2∈M2

M1 ·M2.

As an illustration of this definition, consider the two CMSCs M1 and M2 depicted
in Figure 2. Figure 3 shows some more CMSCs (the first one is actually an MSC). The
common feature of all these six CMSCs is thatM1 is a downwards closed substructure,
M2 is an upwards closed substructure, and there are no further events. Hence all
these CMSCs are compositions of M1 and M2 (and there are no further ones). Thus,
Figure 3 depicts the set M1 ·M2.

8

Note that the set M1 ·M2 is non-empty for any CMSCs M1 and M2 (in any case,
one can just put the two CMSCs one after the other and concatenate the process
lines). If e is an unmatched send in M2, then it is unmatched in any CMSC M from
M1 ·M2 as well: if there was a matching receive e′, then it would have to be an event
of M2 by the second item in the definition. But M2 is a substructure of M , i.e.,
there are no additional edges between events from M2. Similarly, any unmatched
receive in M1 remains unmatched in M . Thirdly note that the concatenation of
CMSC-languages is associative. Last but not least, as we saw in the illustrating
example in Figure 3, the product M1 ·M2 ·M3 · . . .Mn can contain more than one
CMSC. However, it can contain at most one MSC for the following reason: for any
two distinct MSCs N1 and N2, there exists a process p ∈ P such that N1|E1

p
and

N2|E2
p

differ (where Ei
p is the set of events of process p in the MSC Ni). But if N1

and N2 belong to the product above, then Ni|Ei
p

is the concatenation of the words

Mj |Ej
p
. Hence N1|E1

p
= N2|E2

p
.

CompositionsM1⋆M2 of CMSCs were also defined in [13, 23]. Differently from our
considerations here, they considered only the first CMSC from Figure 3 as a legitimate
composition. The definition from [13, 23] differs from ours in several other aspects.
First, it is only a partial operation. In particular, it is not defined if the first factor
contains an unmatched receive event. In addition, the composition from [13, 23] is,
even if defined, not associative. But in relevant cases, the two definitions are closely
related: (· · · ((M1 ⋆M2)⋆M3) · · ·⋆Mn) is defined and an MSC iff M1 ·M2 ·M3 · · · ·Mn

contains an MSC, in which case these two MSCs are equal.

p q

!

!

M1

p q

?

?

M2

Figure 2: CMSCs M1 and M2

Definition 2.6 A CMSC-graph is a labeled graph G = (V,→, λ, V 0, V f) where

• V is the finite set of vertices.

• V 0, V f ⊆ V are sets of initial/final vertices respectively.

9

p q p q p q p q

p q p q

Figure 3: All compositions of M1 and M2

• → ⊆ V × V is the set of edges.

• λ : V → CMSC labels a node v with the CMSC λ(v).

A path in the CMSC-graph G is a sequence v1, . . . , vn of nodes in V such that
vi → vi+1 for all i. It is accepting if v1 ∈ V 0 and vn ∈ V f . An MSC is accepted by G
if it labels some accepting path of G. The set of all MSCs accepted by G is denoted
L(G). A CMSC-graph is an MSC-graph, if all nodes are labeled by MSCs.

CMSC-graphs have been considered in [13] and [23]. Here, we deviate from the
definition in [13] by introducing final states. Madhusudan and Meenakshi’s version
of CMSC-graphs [23] has final states like ours. On the other hand, they require that
any path starting in an initial node admits some composition that is a CMSC without
unmatched receive events. Thus, our definition is more general than those considered
in [13, 23] (although, later, we will consider safe CMSC-graphs that coincide with
the CMSC-graphs from [23]).

Figure 4 depicts a CMSC-graph. Here, we have two processes named host and
function. In the leftmost node of the CMSC-graph, one finds a CMSC. This CMSC
describes that host first sends an initialization message, and then another message to
function. Immediately after receiving a message, function acknowledges. While the
sending of these acknowledgments is part of the current CMSC node, their receiving
by host is located in the next node. Thus, after executing this CMSC, the channel
from function to host contains two acknowledgments, while the other channel is
empty. Altogether, the CMSC-graph describes all MSCs where function immediately
acknowledges messages it gets. The first message from host to function initializes
the transfer. Host then starts sending the actual message. Since it does not get the
acknowledgment in time, it must resend it, before getting the first acknowledgment.

10

Then it iterates between sending a message and receiving the acknowledgment from
the message before, and at the end the channel is empty.

host function

!

!

?

!

?

!

host function

!

?

?

!

host function

?

?

Figure 4: A CMSC-graph specifying transactions of USB 1.1.

The size |M | of a CMSC M is the number of its events. The size |G| of a CMSC-
graph G is

∑
v∈V |λ(v)|.

2.4 Monadic second order logic

Logic is a classical formalism used to describe properties of various structures, like
words, trees, pomsets, graphs etc. This also applies to structures like MSCs. Thus,
after CFMs and CMSC-graphs, logic is another means for specifying sets of MSCs.
We consider here monadic second order logic, that is the classical formalism over the
structures mentioned above. The syntax is defined as follows.

Definition 2.7 For a set R of binary relations, MSO(R)-formulas over the alphabet
Γ are defined by the syntax

ϕ ::= va(x) | R(x, y) | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃Xϕ | ∃xϕ

where R ∈ R, a ∈ Γ, x, y are first order variables, and X is a second order variable.

The relations in R used in the paper are the message relation msg, the visual
order ≤, the process order (<p)p∈P and the immediate process successor (⋖p)p∈P . An
MSO(R)-formula over the alphabet Σ is interpreted on an MSC M = (E, λ,msg, (<p

)p∈P) as expected. We have M |= va(x) if λ(x) = a, M |= x ≤ y if x ≤ y in the visual

11

order on M , and M |= msg(x, y) if x ∈ S and msg(x) = y. Moreover, M |= (x <p y)
if x <p y and M |= (x⋖p y) if y is the immediate successor of x w.r.t. <p.

For an MSO-formula ϕ over Σ without free variables, let L(ϕ) denote the set of
MSCs that satisfy ϕ. We will also consider existential monadic second order logic
(EMSO). An EMSO formula is of the form ∃X1 . . .Xnϕ with ϕ a first order formula.

An MSO(≤)-formula over an alphabet Γ can be interpreted on Γ-labeled partial
orders M = (E,≤, λ) with λ : E → Γ as usual, by letting M |= va(x) if λ(x) = a and
M |= x ≤ y if x ≤ y. Note that words over Γ can be considered in a natural way as
Γ-labeled linear orders. Using this interpretation, we write w |= ϕ to denote that the
word w (more precisely: the associated linear order) satisfies ϕ. By L(ϕ) we denote
the set of words over Γ that satisfy ϕ.

We discuss now some subtle differences between the logics MSO((⋖p)p∈P ,msg)
and MSO(≤,msg) when applied to MSCs: Note that x ⋖p z is equivalent to x <
z ∧ ∀y(x < y ≤ z → y = z) ∧

∨
p∈P

∨
a,b∈Σp

va(x) ∧ vb(z). Hence any formula

ϕ from MSO((⋖p)p∈P ,msg) can be translated into an equivalent formula ψ from
MSO(≤,msg). Note that ψ is an existential formula whenever ϕ is existential.

Conversely, the formula x ≤ y is equivalent to ∀X(x ∈ X ∧ ∀z, z′(z ∈ X ∧
(
∨

p∈P z ⋖p z
′ ∨ msg(z, z′)) → z′ ∈ X) → y ∈ X). Hence, it is also possible

to translate any formula ψ from MSO(≤,msg) into an equivalent formula ϕ from
MSO((⋖p)p∈P ,msg). But even if ψ is existential, the resulting formula ϕ is not
existential anymore.

Thus, the full logics MSO(≤,msg) and MSO((⋖p)p∈P ,msg) are equally expres-
sive, but the existential fragment of the former could be more expressive than the
existential fragment of the latter (which is actually the logic considered in [7]).

2.5 Mazurkiewicz traces

We will establish a relationship between the expressive power of the different MSC
formalisms presented until now. The main tool will be Mazurkiewicz traces [24, 9]
that we introduce next.

A trace alphabet is a pair (Ω, I) consisting of an alphabet Ω and a symmetric and
irreflexive relation I ⊆ Ω2. The relation I will be referred to as the independence
relation; its complement D = Ω2 \ I is the dependence relation.

Let ∼I ⊆ Ω∗ × Ω∗ be the congruence on the free monoid Ω∗ generated by the
equations ab ∼I ba for all (a, b) ∈ I. A trace is an equivalence class [w]I of this
equivalence relation. Further, the I-closure of a set L ⊆ Ω∗ is the set [L]I =

⋃
w∈L[w]I

of all words that are ∼I -equivalent to some element of L. If L = [L]I , we say that L
is closed under I-commutation (or I-closed for short).

An alternative way to define traces is via labeled partially ordered sets. Any word
u = a1a2 · · · an with ai ∈ Ω defines a labeled poset tu = (E,≤I , λ) where

• E = {1, . . . , n},

• λ(i) = ai, and

• ≤I is the least partial order on E such that i ≤I j whenever i < j and λ(i)Dλ(j).

12

It belongs to the very basics of trace theory that two words u and v are equivalent
w.r.t. ∼I iff the two labeled partial orders tu and tv are isomorphic. This implies
in particular that [u]I is the set of linearizations of the labeled poset tu. At places,
it will be useful to consider a trace not as an equivalence class of words, but as
(an isomorphism class of) labeled partial orders tu. This allows in particular to
interpret MSO(≤I)-formulas in a trace and thereby to define notions like [u]I |= ϕ
for a trace [u]I .

Let (E,≤, λ) be an Ω-labeled partially ordered set. Then there exists a word
u ∈ Ω∗ with tu ∼= (E,≤, λ) iff we have for any e, f ∈ E

• e⋖ f implies (λ(e), λ(f)) ∈ D, and

• if e and f are incomparable, then (λ(e), λ(f)) ∈ I.

We end this section by recalling some fundamental results from Mazurkiewicz
trace theory (cf. [9]). Below, we say that a finite automaton A is D-loop-connected if
for every loop of A, the set of letters labeling the loop induces a connected subgraph
of (Ω, D). By loop we mean a (not necessarily simple) cycle. Asynchronous automata
are defined at the beginning of Section 5.

Theorem 2.8 Let (Ω, I) be a trace alphabet and let L ⊆ Ω∗ be I-closed.

1. (Ochmański’s theorem [26]) L is regular iff there exists some D-loop-connected
automaton A with L = [L(A)]I .

2. (Zielonka’s theorem [31]) L is regular iff it is accepted by a deterministic asyn-
chronous automaton.

3. L is regular iff L = {u ∈ Ω∗ | tu |= ϕ} for some MSO(≤I) formula ϕ [30, 10].

3 Model checking CMSC-graphs

In this section, we single out classes of CMSC-graphs such that both questions L(G)
?
⊆

L(G′) and L(G)∩L(G′)
?
= ∅ become decidable (cf. Prop. 3.7). Recall that in general,

these problems are undecidable for unrestricted CFMs or CMSC-graphs.

3.1 Strategy and definitions

Let M be a set of MSCs. A set of representatives (or representative set) of M is a set
X ⊆ Σ∗ such that X ⊆ Lin(MSC) and M = {M ∈ MSC | X∩Lin(M) 6= ∅}. If X is a
regular set of representatives, then there exists B such that X consists of B-bounded
linearizations only [23]. So, if such a set exists, M is ∃-bounded. Conversely, for
any ∃-B-bounded set M, the set LinB(M) of B-bounded linearizations is a set of
representatives (but not necessarily regular).

Representative sets based on B-bounded linearizations can be used e.g. to do
model checking beyond regular MSC languages, as shown in [23, 14]. The basic
ideas are as follows: let B ∈ N and suppose M ⊆ MSCB and M′ ⊆ MSC are sets
of MSCs where the former is assumed to be ∃-B-bounded. Then M ∩ M′ = ∅ iff

13

LinB(M) ∩ LinB(M′) = ∅ and M ⊆ M′ iff LinB(M) ⊆ LinB(M′). Now suppose
that

(1) M has a regular set of B-bounded representatives accepted by the automaton
A, and

(2) LinB(M′) is accepted by the automaton A′.

Then we can decide both the questions “M∩M′ ?
= ∅” and “M

?
⊆ M′” since they

are equivalent to the corresponding questions for the languages of A and A′.
In order to use this observation, we therefore need mechanisms for the specifica-

tion of sets of MSCs M that allow to calculate an automaton

(1) that accepts some regular set of B-bounded representatives of M, or

(2) that accepts LinB(M).

Let G = (V,→, λ, V 0, V f) be a CMSC-graph. For any node v ∈ V , choose a lin-
earization ℓ(v) ∈ Σ∗ of the MSC λ(v) and set

KG = {ℓ(v1) · · · ℓ(vn) | (v1, . . . , vn) is an accepting path of G}

Then KG is regular and, for any M ∈ L(G), we have KG ∩ Lin(M) 6= ∅. But
KG can contain words that are no linearizations of MSCs. Hence, in general, KG

is not necessarily a set of representatives. For instance, consider the CMSC-graph
G consisting of two nodes v0, v1 with v0 labeled by a CMSC consisting of a send
p!q and v1 labeled by a CMSC consisting of a receive q?p. The transitions are
v0 → v0, v0 → v1 and v1 → v1. Moreover, v0 is the initial state and v1 the final one.
We have KG = (p!q)+(q?p)∗ ∋ p!q(q?p)2. Since p!q(q?p)2 is no linearization of any
MSC, the set KG is not the representative set of any set of MSCs. The definition
below ensures that KG is a representative set:

Definition 3.1 A CMSC-graph G = (V,→, λ, V 0, V f) is safe if for any accepting
path (v0, v1, . . . , vn) in G (i.e., v0 ∈ V 0 and vn ∈ V f), the set λ(v0) · λ(v1) · · ·λ(vn)
contains an MSC.

Note that the MSC whose existence is required above is uniquely determined since
any product of CMSCs contains at most one MSC. Safe CMSC-graphs are precisely
the CMSC-graphs considered in [23] (called “CMSG” there).

Lemma 3.2 Let G be a safe CMSC-graph. Then KG is a regular set of |G|-bounded
representatives of L(G). In particular, L(G) is ∃-B-bounded for any B ≥ |G|.

Proof. The regularity of KG is obvious by the very definition. Next, let M ∈
L(G). Then there exists an accepting path (v0, v1, . . . , vn) in G with M ∈ λ(v0) ·
λ(v1) · · ·λ(vn). Since λ(vi) is a convex substructure ofM , the word ℓ(v0)ℓ(v1) . . . ℓ(vn)
is a linearization of M . Hence KG ∩ Lin(M) 6= ∅. Conversely let M ∈ MSC with
KG ∩ Lin(M) 6= ∅. Then there exists an accepting path (v0, v1, . . . , vn) in G with
ℓ(v0)ℓ(v1) . . . ℓ(vn) ∈ Lin(M) implying M ∈ λ(v0) · λ(v1) · · ·λ(vn). Hence, indeed,
KG is a regular set of representatives of L(G).

14

Now we show that the set KG consists of |G|-bounded linearizations only. So let
π = (v0, v1, . . . , vn) be an accepting path in G with w = ℓ(v0)ℓ(v1) . . . ℓ(vn) ∈ KG

and let u be some prefix of w. Let i be minimal such that u is a prefix of u′ =
ℓ(v0)ℓ(v1) . . . ℓ(vi). We first “shorten” the word u′. Suppose |u′| > |G|. Since |G|
is the sum of the number of events of MSCs λ(v) for v ∈ V , we obtain i > |V |.
Hence there are 0 ≤ a < b ≤ i with va = vb. Then the number of p!q-events
in ℓ(va)ℓ(va+1) . . . ℓ(vb−1) equals that of q?p-events (otherwise, the successful path
(v0, v1, . . . , (va, va+1, . . . vb−1)

2, vb, . . . vn) would not define any MSC). Deleting all
loops in this path repeatedly, we find a path π′ = (v′0, v

′
1, . . . , v

′
k) with mutually

distinct nodes, v0 = v′0 and v′k = vi such that, for any p, q ∈ P distinct, the dif-
ference of p!q- and q?p-events in π equals that in π′. In addition, the length of
v′ = ℓ(v′0)ℓ(v

′
1) . . . ℓ(v

′
k) is at most |G| since the nodes v′j are mutually distinct. Re-

call that there is a suffix u′′ of ℓ(vi) such that u′ = uu′′. Hence there is a word v with
v′ = vu′′. Since |v| ≤ |G|, the number of p!q-events and that of q?p-events differ by
at most |G|. Hence the same holds for u. ✷

Note that the lemma says that safe CMSC-graphs satisfy requirement (1) above
(namely, the construction of an automaton accepting a regular set of representa-
tives). Next, we define another restriction on CMSC-graphs that allows to satisfy
requirement (2).

Definition 3.3 The communication graph of a set A ⊆ Σ is a graph whose vertices
are the processes involved in A, and there is an (undirected) edge between vertices
p, q iff A contains both a send p!q from p to q and a receive q?p on q from p. The
communication graph of a CMSC M = (E, λ,msg, (<p)p∈P) is the communication
graph of A = λ(E). A path (v1, v2, . . . , vn) in a CMSC-graph is connected if any
CMSC from ℓ(v1) · ℓ(v2) · · · ℓ(vn) has a connected communication graph. A CMSC-
graph G is loop-connected if every loop of G is connected.

A globally-cooperative CMSC-graph (or gc-CMSC-graph for short) is a CMSC-
graph that is safe and loop-connected.

Since any MSC-graph is clearly safe, it is globally-cooperative if and only if it
is loop-connected which was the intention of the definition of globally-cooperative
MSC-graphs in [14].

The CMSC-graph in Figure 4 is globally-cooperative.
Prop. 3.6 will show that, indeed, LinB(L(G)) is (effectively) regular for any

globally-cooperative CMSC-graph for a suitable B ≤ |G|. Before we can embark
on this proof in Section 3.3, we investigate in Section 3.2 the relation between ∃-B-
bounded sets of MSCs and traces. This connection will be crucial in the proof of the
regularity of LinB(L(G)) for G an gc-CMSC-graph. It will reappear later when we
investigate the relation between MSO, CFMs, and gc-CMSCs.

3.2 Existential bounds and traces

Let B be a positive integer that we fix for this section. We define a trace alphabet
(Ω, I) with Ωp = Σp × {0, . . . , B − 1} for p ∈ P and Ω =

⋃
p∈P Ωp. The dependence

relation D ⊆ Ω×Ω is given by (x, i)D(y, j) if either P (x) = P (y) or {(x, i), (y, j)} =

15

{(p!q, n), (q?p, n)} for some p, q, n. Then I = Ω2 \ D is symmetric and irreflexive,
hence (Ω, I) is a trace alphabet.

We define now a mapping ˜ : Σ∗ → Ω∗ by numbering the events of the same type
modulo B. Let ˜x1 · · ·xm = (x1, n1) . . . (xm, nm), with ni = |{j ≤ i | xj = xi}| mod B,
i.e., modulo B, there are ni occurrences of the letter xi in the prefix x1x2 . . . xi. We
also consider the projection π : Ω∗ → Σ∗ given by π(x, n) = x for (x, n) ∈ Ω. A word
u ∈ Ω∗ is B-bounded if π(u) ∈ Σ∗ is B-bounded. We denote L̃ = {ũ | u ∈ L} for
L ⊆ Σ∗.

Let M = (E, λ,msg, (<p)p∈P) be an MSC. For e ∈ Ep, let λI(e) = (λ(e), n) with
n = |{f ∈ E | f ≤p e, λ(f) = λ(e)}| mod B (i.e., n is the number of events below e
labeled by the same element of Σ, modulo B). We associate with M the structure1

tr(M) = (E,≺∗
B , λI). Figure 5 depicts the result when applying this operation to

the MSC M from Figure 1 with B = 2. Note that there is one additional edge
from the first occurrence of (q?p, 0) to the second occurrence of (p!q, 0), this edge is
an rev-edge. Since M is ∃-2-bounded, the relation ≺2 is acyclic by Lemma 2.2 and
tr(M) := (E,≺∗

2, λI) is an Ω-labeled partial order. The reader can easily check that
≺1 is not acyclic.

p q

(p!q, 0)

(p!q, 1)

(p!q, 0)

(p?q, 0)

(p?q, 1)

(q!p, 0)

(q!p, 1)

(q?p, 0)

(q?p, 1)

(q?p, 0)

Figure 5: Trace tr(M) associated with the MSC M of Fig. 1.

Lemma 3.4 Let M = (E, λ,msg, (<p)p∈P) be an ∃-B-bounded MSC.

1. The labeled poset tr(M) is a trace over (Ω, I).

1Recall that ≺B = msg∪
⋃

p∈P <p ∪ rev.

16

2. If u is a B-bounded linearization of M , then tr(M) = tũ and LinB(M) =
π([ũ]I).

Proof. To show that tr(M) is a trace, let e, f ∈ E be distinct. If e ≺∗
B f and there is

no event properly between these two, then e ≺B f and therefore λI(e)DλI(f) by the
very definition of ≺B and D. Now let e and f be incomparable w.r.t. ≺∗

B and suppose
λI(e)DλI(f). Then e and f are executed by distinct processes, i.e., we get w.l.o.g.
λI(e) = (p?q, n) and λI(f) = (q!p, n) from the definition of D. Let msg(f) = e′ hence
f ≺B e′. Since λ(e) = λ(e′), these two events are related by <p and therefore by ≺∗

B .
Since e and f are incomparable, we obtain e <p e

′. Since msg(f) = e′, there are as
many p?q-labeled events below e′ as there are q!p-labeled nodes below f . But this
number equals n (modulo B) and therefore the number of p?q-labeled events below
e. By the very definition of ≺B, this implies e ≺B f contradicting our assumption.
Hence tr(M) is indeed a trace [9].

Next consider a B-bounded linearization u of M . Since u is B-bounded, it is also
a linearization of (E,≺∗

B , λ). Hence ũ ∈ Lin(E,≺∗
B , λI). Since tr(M) is a trace we

obtain tr(M) = tũ.
Now let v be another B-bounded linearization of M . Then [ṽ]I = Lin(tr(M)) =

[ũ]I implies ṽ ∼I ũ and therefore v = π(ṽ) ∈ π([ũ]I) which proves LinB(M) ⊆ π([ũ]I).
Conversely let v ∈ π([ũ]I). Then there exists v′ ∼I ũ with π(v′) = v. Hence
v′ ∈ Lin(tr(M)). Since the relation ≺∗

B contains the visual order < of M , the word
v′ is also a linearization of (E,≤, λI). Hence v = π(v′) ∈ Lin(M). Furthermore,
v′ ∈ Lin(E,≺∗

B , λI) implies that v is also a linearization of (E,≺∗
B , λ). ✷

3.3 Model checking

Let G be a safe CMSC. Then we saw that the language KG is a regular set of
representatives. In particular, L(G) is ∃-B-bounded for some B ∈ N. In general, this
does not imply that LinB(L(G)) is regular (the desired property (2) as explained in
Section 3.1). We now exhibit the relation between ∃-B-bounded MSCs and traces to
show that LinB(L(G)) is regular provided G is a gc-CMSC-graph.

Lemma 3.5 Let G be a gc-CMSC-graph, let KG be the regular language described in
Section 3.1, and let |G| ≤ B ∈ N. Then there exists a D-loop-connected automaton
B with |G|B2|P| many states such that

1. L(B) = K̃G and

2. if ti, uj ∈ Ω∗ are non-empty words with tiIuj for i < j such that w = t0u1 · · · tk−1uktk
labels some path in B, then k < k0 = (|P|2B + |P|)|G|.

Proof. In the proof of Lemma 3.2, we saw that there is a finite automaton A with
|G| states that accepts KG ⊆ Σ∗. From A, we construct an automaton B as follows:
states of B are tuples (r, (na)a∈Σ) where r is a state of A and na ∈ {0, . . . B − 1}
are counters. The initial state consists of the initial state of A together with all

counters being 0. There is a transition (r, (na)a∈Σ)
(b,n)
−→ (r′, (n′a)a∈Σ) of A iff r

b
−→ r′

in B, n = n′b = (nb + 1) mod B, and na = n′a for a 6= b. A state (r, (na)a∈Σ) is final

17

in B if r was final in A. In B, there is an u-labeled path from the initial state to

(r, (na)a∈Σ) iff na = |u|a mod B, π̃(u) = u and there is a π(u)-labeled path in A from

the initial state to r. Hence B accepts L̃(A) = K̃G. From Lemma 3.4, we therefore
get π([L(B)]I) = LinB(G). Now let u be the label of some loop in B. Since B accepts
only words of the form ṽ with v a linearization of some MSC, we get

• for any p, q ∈ P and n ∈ {0, . . . , B−1}, (p!q, n) appears in u iff (q?p, n) appears
in u and

• for any n,m ∈ {0, . . . , B − 1} and a ∈ Σ, (a, n) appears in u iff (a,m) appears
in u.

Furthermore, π(u) labels a loop in A, too. Since G is globally-cooperative, the
alphabet of π(u) has a connected communication graph. Thus, the alphabet of u is
connected, i.e., B is D-loop-connected.

To show the second statement by contradiction, assume k ≥ (|P|2B + |P|)|G|.
By the construction of B from A, there is an π(w)-labeled path in A. Since A
has |G| states, we have a set J of |P|2B + |P| indices such that the subpath la-
beled by π(ti) starts in the same node v of A for all i ∈ J . In particular, for
any two consecutive i, j ∈ J , π(ti · · ·uj−1) labels a loop around v. Since G is
globally-cooperative, for each such loop there is either some process occurring in
both π(ti · · · tj−2) and π(ui+1 · · ·uj−1) (shared process) or some p!q in π(ti · · · tj−2)
and q?p in π(ui+1 · · ·uj−1), or vice-versa (shared channel). There are at most |P|
such loops where π(ti · · · tj−2) and π(ui+1 · · ·uj−1) share a process, since tiIuj for
every i < j (the same process cannot be shared in two different loops). Therefore, we
have at least |P|2B loops that share a channel (second case above). Thus, there are
p, q ∈ P and n ∈ {0, . . . , B − 1} and at least two loops such that the corresponding
t- and u-subpaths contain (p!q, n) and (q?p, n), resp. (or vice versa). But this means
that some ti in the first loop is not independent from some uj in the second loop,
contradicting tiIuj for all i < j. ✷

Proposition 3.6 Let G be a gc-CMSC-graph and |G| ≤ B ∈ N. Then LinB(G) is
regular and one can construct an automaton of size at most |G|5|P|4B2|G| recognizing
it.

Proof. Let B be the automaton constructed in Lemma 3.5. By Lemma 3.5(2)
and [25], there exists an automaton accepting [L(B)]I , of size (|B|22|Ω|)k0 , which is at
most (|G|2B4|P|2|Ω|)(|P|B+1)|P||G|. One can check that the last value is asymptotically
less than |G|5|P|4B2|G|. ✷

Now, we get the first decidable model checking problem. This statement was
known for MSC-graphs in the case where both G and G′ are globally-cooperative [14].

Proposition 3.7 The following problems are decidable
input: safe CMSC-graph G and gc-CMSC-graph G′

questions: Is the intersection L(G) ∩ L(G′) empty? Does L(G) ⊆ L(G′) hold?

18

Proof. Let B = max |G|, |G′|. Then, by Lemma 3.2, the set L(G) admits a regular
setKG ⊆ LinB(MSC) of representatives. By Prop. 3.6, the set LinB(L(G′)) is regular.
Since L(G) is ∃-B-bounded, we get L(G)∩L(G′) = ∅ iff LinB(L(G))∩LinB(L(G′)) =
∅. Since KG is a set of B-bounded representatives of L(G), this is equivalent to the
emptiness of KG ∩ LinB(L(G′)). But this last question is decidable since both sets
are effectively regular.

Similarly, L(G) ⊆ L(G′) iff LinB(L(G)) ⊆ LinB(L(G′)) since L(G) is ∃-B-
bounded. But LinB(L(G)) ⊆ LinB(L(G′)) iff KG ⊆ LinB(L(G′)) since KG is a
set of B-bounded representatives. Since these two sets are effectively regular, the
inclusion problem is decidable as well. ✷

Remark 3.8 The complexity of the two model checking instances in Proposition
3.7 is PSPACE for the intersection and EXPSPACE for the inclusion. The reason
is that the automaton recognizing LinB(L(G′)) is exponential in both |G| and |G′|
(whereas the automaton for the representative set KG is polynomial).

Similar model checking problems can be formulated for CFMs and MSO-sentences.
To show their decidability, we will proceed as above, i.e., compute regular sets of
representatives and automata for the set of all B-bounded linearizations. These cal-
culations are the core of the following two sections. In Section 6, we will come back
to the model checking problem (see Cor. 6.1).

4 A Kleene theorem for existentially bounded

MSCs

The main result is stated in the following theorem, which generalizes the results
of [17, 15, 21] from universally bounded to existentially bounded sets of MSCs. We
use a unified proof technique, interpreting MSCs as traces and applying known con-
structions for traces.

Theorem 4.1 Let B ∈ N and M ⊆ MSCB be a set of ∃-B-bounded MSCs. Then
the following assertions are equivalent:

(1) M = L(A) for some CFM A.

(2) M = L(ϕ) for some EMSO(⋖p,msg) formula ϕ.

(3) M = L(ϕ) for some MSO(≤,msg) formula ϕ.

(4) M = L(G) for some gc-CMSC-graph G.

(5) LinB(M) is a regular set of representatives for M.

Similar results were known before: [15] proves the equivalence of (1), (3), and (5)
for universally bounded sets of MSCs. In addition, they show that in this case of
universally bounded sets of MSCs, deterministic CFMs have the full expressive power
(we do not know whether this is the case for existentially bounded sets of MSCs as
well). Their proof uses ideas from the theory of Mazurkiewicz traces, but these ideas

19

have to be reproved in the more complex setting of MSCs. The main focus of [17]
are universally bounded sets of infinite MSCs where, again, the equivalence of (1),
(3), and (5) is shown. In particular, it is shown that deterministic CFMs with Muller
acceptance have the same expressive power as monadic second order logic. The
proofs in [17] are based on trace theory but, differently from [15], it uses a different
technique to transfer known results directly from traces to CFMs. This technique is
based on the encoding presented in Section 3.2 and it allows to preserve determinism
of distributed automata. In particular, this gives an alternative proof of results in
[15]. Sections 3.2 and 5.1 extend Kuske’s technique [17] to existentially bounded sets.
For arbitrary sets of MSCs, [7] proves the equivalence of (1) and (2). They also show
that the logic MSO(≤,msg) is properly more powerful and that deterministic CFMs
are properly weaker than general CFMs. The paper [23] proves in particular that a
set of MSCs has a regular set of representatives iff it is the language of some safe
CMSC-graph (note that both these notions are weaker than those in (4) and (5),
resp.). In [21], it is shown that a finitely generated MSC language is the language of
a loop-connected MSC-graph (called c-HMSC there) iff it is definable in MSO(≤).

Recall that the equivalence of (1) and (2) was shown (even for arbitrary sets of
MSCs) in [7]. The implication (2) to (3) is immediate. Proposition 3.6 shows the
implication (4) to (5). We will show that (3) implies (5), that (5) implies (4), and
finally that (5) implies (1).

The proofs use the trace alphabet (Ω, I) and in particular Theorem 2.8 at crucial
points: For showing that (3) implies (5), we use the equivalence between MSO(<I)
and regular sets of traces [30, 10], i.e., Theorem 2.8(3). To prove that (4) and
(5) are equivalent, we will use Ochmański’s Theorem 2.8(1) [26]. We provide here
an alternative proof to the one in [23]. Finally, to prove (5) implies (1), we will use
Zielonka’s Theorem 2.8(2) [31] and simulate asynchronous automata by CFMs. More
precisely, we first build a CFM A′ such that L(A′)∩MSCB = M. Then we construct
a CFM A′′ that generates precisely the set of ∃-B-bounded MSCs (this is actually the
most difficult part of the proof). Since the intersection of CFM-accepted languages
can be accepted by a CFM, (1) follows.

From a logical point of view, the implication (3)⇒(2) is of particular interest
since it states the collapse of the quantifier alternation hierarchy. This collapse
was known before for words and for traces [30]. A subtle point here is the use of
the predecessor relation ⋖p vs. the partial order relation ≤. As discussed before,
any MSO(≤,msg)-formula can easily be translated into an equivalent formula from
MSO((⋖p)p∈P ,msg). Thus, the nontrivial part of this implication concerns the col-
lapse of the quantifier alternation hierarchy of the logic MSO((⋖p)p∈P ,msg) into its
existential fragment. To do this translation, we proceed indirectly, as for words or
traces, by showing (3)⇒(1)⇒(2): the MSO formula is transformed into a CFM whose
behavior can be described by a formula of EMSO((⋖p)p∈P ,msg). A weaker conse-
quence is that the logic MSO(≤,msg) also collapses into its existential fragment. It
is likely that this weaker consequence can be shown using the trace alphabet (Ω, I)
and the corresponding statement for traces [30].

Note also that the implication (5)⇒(3) is shown indirectly via CFMs. An alter-
native proof based on the trace alphabet (Ω, I) and Theorem 2.8(3) seems possible

20

as well.

4.1 From MSO to regular sets of representatives

We start proving the implication (3)⇒(5), i.e., we show that the set of B-bounded
linearizations of M is regular whenever M = L(ϕ) ⊆ MSCB for some MSO(≤,msg)
formula ϕ and some B. This fact was already shown by [23] for model checking
CMSC-graphs against MSO(≤,msg), but with a different proof technique. Here, for
the sake of completeness, we apply trace theory, using a result that allows to go from
an MSO formula over traces to a regular set of words [10, 30].

Proposition 4.2 Let ϕ be an MSO(≤,msg) formula and B ∈ N such that L(ϕ) ⊆
MSCB. Then LinB(L(ϕ)) is a regular set of representatives.

Proof. We recall that ≤I denotes the partial order of the trace tr(M) associated
with the ∃-B-bounded MSC M .

Since the visual order ≤ of MSCs is the reflexive and transitive closure of msg ∪⋃
p∈P <p, we can assume that ϕ only uses the message relation msg and the process

order <p, p ∈ P.
With the formula ϕ over MSCs we associate an MSO formula ϕ̃ on traces over

(Ω, I) as follows. Every predicate va(x) in ϕ is replaced by
∨

0≤n<B v(a,n)(x) in ϕ̃.
Every predicate msg(x, y) is replaced by

x ≤I y ∧
∨

a=p!q,b=q?p

0≤n<B

v(a,n)(x) ∧ v(b,n)(y) ∧ ∀z : (v(b,n)(z) ∧ x ≤I z) → y ≤I z .

This formula expresses that for x labeled by (p!q, n), the node y is the smallest
one labeled by (q?p, n) with x ≤I y. Then, for M ∈ MSCB , we have M |= ϕ iff
tr(M) |= ϕ̃.

Finally, we define the formula ϕ̂ as the conjunction of ϕ̃ with a formula expressing
that the trace over (Ω, I) is associated with an ∃-B-bounded MSC. For this, it suffices
to state that for each event type a ∈ Σ and each node labeled by some (a, n), the
next node labeled by (a,m) satisfies m = n + 1 mod B, and that the msg relation
is a bijection between sends and receives (for the last condition we use the formula
given above for msg(x, y)).

By Thm. 2.8(3), L = {u ∈ Γ∗ | tu |= ϕ̂} is a regular language. The construction
of ϕ̂ ensures tu |= ϕ̂ iff there exists M ∈ MSC with M |= ϕ and tu = tr(M). Hence,

from Lemma 3.4, we get L = ˜LinB(L(ϕ)). Hence, LinB(L(ϕ)) is the projection
of the regular language L and therefore regular as well. LinB(L(ϕ)) is a set of
representatives of L(ϕ) since this set is ∃-B-bounded. ✷

4.2 From regular sets of representatives to CMSC-graphs

We now demonstrate the implication (5)⇒(4).

21

Proposition 4.3 Let M be a set of ∃-B-bounded MSCs such that LinB(M) ⊆ Σ∗

is regular. Then there exists a globally-cooperative CMSC-graph G with L(G) = M.

Proof. Since the mapping ˜ is a rational transduction (see e.g. [3]), the set L =
˜LinB(M) ⊆ Ω∗ is regular as well. By Lemma 3.4, the set L is I-closed. Thus, we

can apply Ochmański’s Theorem 2.8 (1) for obtaining a D-loop-connected automaton
B with [L(B)]I = L. From B we obtain an automaton A over the alphabet Σ by
replacing each label (a, n) ∈ Ω by a. Since all words in L are of the form ũ for

some u ∈ Σ∗, we get L̃(A) = L(B) ⊆ L and therefore L(A) ⊆ LinB(M). Thus,
all successful paths in A are labeled by B-bounded linearizations of MSCs from M.
Conversely, if M ∈ M, then there is u ∈ LinB(M) with ũ ∈ L(B) and therefore
u ∈ L(A). Thus, L(A) = LinB(M).

Now let ρ be a loop in the automaton A and let A ⊆ Σ be the set of labels
appearing in this loop. Then ρ is also a loop in the automaton B with label set
A′ ⊆ Ω. Since B is D-loop-connected, A′ is a connected subset of (Ω, D). Since
B accepts only words of the form ũ for some linearization u of an MSC, we have
that (p!q, n) ∈ A′ iff (p?q, n) ∈ A′. Hence the D-connectedness of A′ implies the
connectedness of the communication graph of {a | ∃n : (a, n) ∈ A′}.

To obtain a CMSC-graph, we transform A in such a way that labels move from
transitions to nodes. The resulting CMSC-graph G is safe since A accepts only
linearizations of MSCs, and globally-cooperative since loops in A are labeled by sets
A ⊆ Σ whose communication graph is connected. ✷

5 From regular representatives to CFM

In order to obtain a CFM from a regular set of representatives, we will use Zielonka’s
theorem, which characterizes regular trace languages by a distributed automaton
model, namely by asynchronous automata2.

Definition 5.1 An asynchronous automaton over the trace alphabet (Ω, I) is a tuple
B = ((Ke, δe, k

0
e)e∈Ω,Acc) such that for any e ∈ Ω:

• Ke is a finite set of local states,

• δe :
∏

(e,f)∈D Kf → Ke is a local transition function,

• k0
e ∈ Ke is a local initial state,

and Acc ⊆
∏

e∈ΩKe is a set of global accepting states.

The idea is that an asynchronous automaton consists of local components, one
for each letter e ∈ Ω. When the e-component executes the action e, its new state
results from the current states corresponding to the letters depending on e. Only at
the very end of a run, there is a global synchronization through final states.

Next we define runs of asynchronous automata. Intuitively, a run can be seen as a
labeling of the pomset by local states, that is consistent with the transition relations.

2The definition we give actually corresponds to deterministic asynchronous cellular automata, see [31, 9].

22

Let (E,≤, λI) be a trace over (Ω, I), θ : E →
⋃

e∈ΩKe a mapping, and t ∈ E with
λI(t) = e. For f ∈ Ω with (e, f) ∈ D, we define θ−f (t) = θ(tf) if tf is the maximal

f -labeled event of E properly below t. If no such event exists, θ−f (t) = k0
f is the

f -component of the initial state of B. The mapping θ is a run if for any t ∈ E with
λ(t) = e, we have θ(t) = δe((θ

−
f (t))(e,f)∈D). Next, for e ∈ Ω let ke = θ(te) where te

is the maximal e-labeled event of E (if such an event exists), and ke = k0
e otherwise.

The run θ is successful provided that (ke)e∈Ω ∈ Acc is a (global) accepting state.
The set of traces L(B) accepted by B is the set of traces that admit a successful run.
By Thm. 2.8(2), an I-closed set of words L is regular iff there exists an asynchronous
automaton B with L = Lin(L(B)).

5.1 A CFM recognizing regular representatives

Since we will construct several CFMs in this and the subsequent section, we start
with a general result that extracts the common part of all these constructions. Let
K be a finite set, M = (E, λ,msg, (<p)p∈P) an MSC. Furthermore, let γ : E → K
be a mapping and (k0

p)p∈P ∈ KP be a tuple of initial values. For each event t ∈ Ep,
we define the values γ−(t), γm(t) as values associated with two events below t. Let
γ−(t) = γ(s) if s is the predecessor of t on the same process, namely p. If no
such predecessor exists, then γ−(t) = k0

p. Furthermore, let γm(t) = γ(x) if either
msg(x) = t or rev(x) = t. If t is a send of type λ(t) = p!q, but there is no x ∈ Eq

with rev(x) = t, then let γm(t) = k0
q .

Let updt be an (update) function from Σ×K2 to 2K . We say that γ : E → K is
a good labeling of M with respect to updt and the (initial) values (k0

p)p∈P if γ(t) ∈
updt(λ(t), γ−(t), γm(t)) for any t ∈ E.

In the following, we will need an auxiliary mapping extract : Ωp × KΩp ×
{0, . . . , B − 1}Σp → K given by extract(e,mem, cnt) = mem(e). This mapping
extracts from the local state (e,mem, cnt) of a CFM the value stored in mem for the
last event of type e.

Proposition 5.2 Let updt : Σ × K2 → 2K be a mapping and k0
p ∈ K for p ∈ P.

Then there exists a CFM A with local state set Ωp×K
Ωp ×{0, . . . , B−1}Σp for p ∈ P

with the following properties for any MSC M :

(1) if ρ is a run of A on M , then γ = extract ◦ ρ is a good labeling of M with
respect to updt and (k0

p)p∈P .

(2) if γ is a good labeling of M with respect to updt and (k0
p)p∈P , then there exists

a run ρ of A with γ = extract ◦ ρ.

Proof. We construct a CFM A that guesses a labeling and accepts only if this
labeling is good with respect to updt and (k0

p)p∈P . The set of message contents is
K ×K. A local state (e,mem, cnt) ∈ Sp has the following meaning:

• cnt counts the number of occurrences modulo B of each type in Σp. This allows
to compute the Ω-label of events.

• e is the Ω-symbol of the last event on process p,

23

• mem records the last K-value for each symbol in Ωp.

The initial state of process p is s0p = (ep, k0
p, 0) for all p, where x is the constant

function taking value x for all arguments and ep is an arbitrary (but fixed) label
from Ωp.

We next define the transition relations: for two states (e,mem, cnt) and (e′,mem′, cnt′)

from Sp, a ∈ Σp, and m ∈ K × K (the message set), we have (e,mem, cnt)
a,m
−→

(e′,mem′, cnt′) if

(a) cnt′(a) = cnt(a) + 1 mod B, and cnt′(b) = cnt(b) for all b 6= a,

(b) e′ = (a, cnt′(a)),

(c) mem′(f) = mem(f) for all f 6= e′,

(d) m = (val, gss) with

• If a = p!q, mem′(e′) ∈ updt(a,mem(e), gss) and val = mem′(e′).

• If a = p?q, mem′(e′) ∈ updt(a,mem(e), val) and gss = mem(e′).

To understand this definition informally, consider an action a ∈ Σp and let (e,mem, cnt)
be the p-local state before process p executes a. Then e = (a′, n) ∈ Ωp where a′ is the
last action on process p before a and n counts the number of occurrences of a′ before
that last p-event (modulo B). Hence, mem(e) is the value of the guessed labeling at
the last p-event.

If a = p!q is a send action, the current event is the target of a rev-edge. Process p
guesses the value gss of the guessed labeling at the source of this edge. Furthermore, it
guesses the value val of the guessed labeling at the current event. Since the guessed
labeling shall be good, val has to belong to updt(a,mem(e), gss). Then the pair
(val, gss) is sent to process q.

If a = p?q is a receive action, let (v, gss) be the message received. Note that v is the
value of the guessed labeling at the source of the current msg-edge. Process p chooses
a value of the guessed labeling val ∈ K. To ensure that this guessed labeling is good,
the only restriction is val ∈ updt(a,mem(e), v). Since e′ = (a, cnt(a) + 1 mod B),
mem(e′) is the value of the guessed labeling at the Bth receive p?q before the current
one. Because of the intended meaning of gss (see above), process p has to check
whether gss = mem(e′). If this is not the case, the machine deadlocks.

If the machine does not deadlock, the new p-local state is obtained by updating
the counting-information in cnt and recalling the value of the guessed labeling val in
the memory cell mem(e).

Let M = (E, λ,msg, (<p)p∈P) be an MSC and let γ : E → K be a good labeling
with respect to updt and (k0

p)p∈P . We define a run ρ of A as follows: for t ∈ Ep, let
ρ(t) = (e,mem, cnt) with

• cnt(a) = |{s ∈ E | λ(s) = a, s ≤p t}| mod B for a ∈ Σp.

• For (a, n) ∈ Ωp, mem((a, n)) = γ(s) if s ∈ Ep is maximal with s ≤p t and
λI(s) = (a, n). If no such s exists, mem((a, n)) = k0

p.

• e = λI(t).

24

Then it is not hard to check that ρ is a run of A on M . This shows the second
statement.

Now let ρ be a run of A on the MSC M = (E, λ,msg, (<p)p∈P). Let s, r ∈ E
be two nodes with msg(s) = r and λ(s) = p!q. We write ρ(s) = (e′s,mem′

s, cnt′s),
ρ−(s) = (es,mems, cnts), ρ(r) = (e′r,mem′

r, cnt′r), and ρ−(r) = (er,memr, cntr).
Recall that ρ−(t) is the local p-state just before executing event t ∈ Ep. Furthermore,
let t ∈ E with rev(t) = s and ρ(t) = (et,memt, cntt). If no such t exists, define
(et,memt, cntt) = (eq, k0

q , 0). Since ρ is a run, there are val, gss ∈ K such that

(1) (es,mems, cnts)
λ(s),(val,gss)

−→ (e′s,mem′
s, cnt′s) and

(2) (er,memr, cntr)
λ(r),(val,gss)

−→ (e′r,mem′
r, cnt′r).

Then we have gss = memr(e
′
r) from (2). The definition of rev implies memr(e

′
r) =

memt(et) = γm(s). Hence γ(s) = mem′
s(e

′
s) ∈ updt(λ(s),mems(es), gss) =

updt(λ(s), γ−(s), γm(s)) by (1) ensuring that γ is good at node s.
Furthermore, val = mem′

s(e
′
s) = γ(s) = γm(r) by (1). By (2), we get γ(r) =

mem′
r(e

′
r) ∈ updt(λ(r),memr(er), val) = updt(λ(r), γ−(r), γm(r)). Thus, γ is also

good at r. Since any node of E is either a send or a receive, we showed that γ is
good w.r.t. updt and (k0

p)p∈P . ✷

Now let M ⊆ MSCB be an existentially bounded set of MSCs such that LinB(M)
is regular. We will construct a CFM A that accepts an ∃-B-bounded MSC iff it
belongs to M (the behavior on MSCs that are not ∃-B-bounded is of no concern
here and will be dealt with in the subsequent section).

The general line of argument is as follows. First, it is shown that the set of traces
tr(M∩ MSCB) can be accepted by an asynchronous automaton B. From this asyn-
chronous automaton, we will construct a function updt and a tuple of initial values
such that good labelings on M ∈ MSCB correspond to runs of the asynchronous
automaton B on tr(M). Thus, from the previous proposition, we will get a CFM A
whose runs on M correspond to runs of the asynchronous automaton on tr(M).

Proposition 5.3 Let B ∈ N and M a set of ∃-B-bounded MSCs with LinB(M)
regular. Then there exists a CFM A with L(A) ∩ MSCB = M.

Proof. Since the mapping ˜ is a rational transduction, the set L = ˜LinB(M) ⊆ Ω∗

is regular as well. By Lemma 3.4, the set L is I-closed. Hence there exists an asyn-
chronous automaton B = ((Ke, δe, k

0
e)e∈Ω,Acc) accepting [L]I by Theorem 2.8(2).

We now associate with B a mapping updt that mimics the local transition func-
tions of the asynchronous automaton. The set of values is K =

⋃
p∈P Kp with

Kp =
∏

f∈Ωp
Kf . Thus, each Kp describes the local states of events on process p.

Let a = pθq for θ ∈ {!, ?}, kp, k
′
p ∈ Kp and kq ∈ Kq. Then updt(a, kp, kq) ⊆ Kp. We

define k′p ∈ updt(a, kp, kq) iff there exists 0 ≤ n < B such that

1. k′p[(a, n)] = δe((kp[f])f∈Ωp
, kq[(a

′, n)]) (where a′ is the event matching a = pθq),
and

2. k′p[f] = kp[f] for f ∈ Ωp \ {(a, n)}.

25

Furthermore, updt(a, k1, k2) = ∅ if a = pθq, but k1 /∈ Kp or k2 /∈ Kq.
Let M = (E, λ,msg, (<p)p∈P) ∈ MSCB and γ : E → K a mapping. Let further-

more p ∈ P and e ∈ Ωp and define ke = γ(t)[e] if t is the maximal element of Ep.
If Ep is empty, then set ke = k0

p[e]. We say that γ is accepting if the tuple (ke)e∈Ω

belongs to Acc, i.e., is accepting in the asynchronous automaton B. We show that
tr(M) is accepted by B iff there exists a good labeling γ that is accepting.

First, let γ be an accepting good labeling. For t ∈ E, let θ(t) = γ(t)[λI(t)].
Since updt mimics the transitions of B, the mapping θ is a run of the asynchronous
automaton B on tr(M). Using (2) in the definition of the function updt, we obtain
that the final global state of this run θ is precisely (ke)e∈Ω as defined above. Hence
θ is accepting, i.e., tr(M) is accepted by B.

Conversely, assume θ is an accepting run of B on tr(M). We define a labeling γ
from θ. For an event t on Ep and f ∈ Ωp, let γ(t)[f] = θ(u), where u is the last event
of tr(M) before t that has type f .

Since updt mimics the transitions of B, the mapping γ is a good labeling of M
w.r.t. updt and the initial states of B. We can define easily a run ρ of the CFM
on M such that for any event t with ρ(t) = (e,mem, cnt), we have γ(t) = mem(e).
Moreover, (γ(tp)[f])f∈Ωp

= (θ(tf))f∈Ωp
, where tf is the last event of type f in tr(M),

that is, ρ is an accepting run of the CFM.
To conclude, let A be the CFM from Prop. 5.2. Its accepting states can be changed

such that a run is accepting iff the associated good labeling is accepting. Hence, A
acceptsM ∈ MSCB iff tr(M) is accepted by B iffM ∈ M. Thus, L(A)∩MSCB = M.

✷

Thus, we managed to construct a CFM that checks membership in M ⊆ MSCB

provided that the input MSC is ∃-B-bounded. The following two sections explain
how to build a CFM A′ which accepts precisely MSCB. Taking the direct product of
these two machines will show that M can be accepted by a CFM whenever LinB(M)
is a regular set of representatives.

5.2 Characterizing ∃-B-bounded MSCs

Lemma 2.2 provides a characterization for ∃-B-bounded MSCs via the relation ≺B =
msg∪

⋃
p∈P <p ∪ rev. Although this characterization was very useful to establish the

relation between ∃-B-bounded MSCs and traces, it is global and it does not provide
directly a way to check ∃-B-boundedness using finite and distributed memory. This
section refines the characterization such that a CFM can test it.

First, we replace the order relations <p on processes by type functions δa (a ∈ Σ).
For an MSCM = (E, λ,msg, (<p)p∈P) and a type a ∈ Σ we define the partial function
δa : E → E by δa(e) = f iff for some p ∈ P we have e <p f , λ(f) = a and for every
g with e <p g <p f , λ(g) 6= a. That is, δa(e) is the first event after e on the same
process of type a ∈ Σ. Let R = msg ∪

⋃
a∈Σ δa ∪ rev. Since (

⋃
a∈Σp

δa)
∗ =<p, the

MSC M is ∃-B-bounded iff the relation R is acyclic. Note that <p has unbounded
outdegree whereas δa has unbounded indegree but outdegree at most one.

Besides the partial functions δa, we also use a partial function δ♯ = msg ∪ rev
(note that this is well-defined since the domains of these two functions are disjoint).

26

By induction, we define δσσ′ = δσ′ ◦ δσ for σ, σ′ ∈ (Σ ∪ {♯})∗. For the empty word,
we set δε(e) = e for all e.

Lemma 5.4 Let τ ∈ (Σ ∪ {♯})∗. Let furthermore M be an MSC with e, f ∈ E such
that λ(e) = λ(f).

(1) Assume that δτ (e) and δτ (f) are defined. Then they have the same type, i.e.,
λ(δτ (e)) = λ(δτ (f)).

(2) Let f ≤ e be such that δτ (e) is defined. Then δτ (f) is defined too, and δτ (f) ≤
δτ (e).

Proof. We first prove (1) by induction on the length of τ . The base case τ = ε is
trivial. Now let τ = aσ with a ∈ Σ ∪ {♯}.

If a = ♯ and λ(e) = p!q is a send event, then δa(e) = msg(e) implying λ(δa(e)) =
q?p. Since λ(f) = p!q, we similarly get λ(δa(f)) = q?p.

Now suppose a = ♯ and λ(e) = p?q is a receive event. Then δa(e) = rev(e)
implying, as above, λ(δa(e)) = λ(δa(f)).

If a ∈ Σ, then λ(δa(e)) = a = λ(δa(f)).
Now we can apply the induction hypothesis to σ, since δσ is defined on δa(e) and

on δa(f) and these two nodes carry the same label. This finishes the proof of (1).
The second statement is shown similarly by induction on the length of τ where,

again, the base case τ = ε is trivial. As before, let τ = aσ with a ∈ Σ ∪ {♯}.
First suppose a = ♯ and λ(e) = p!q = λ(f). Since M is an MSC, there exists

r ∈ E with msg(e) = r. Hence δ♯(f) ≤ r is defined.
Now suppose a = ♯ and λ(e) = p?q = λ(f). Since s = δ♯(e) = rev(e), the node s

is the send event associated with the receive event number B after e. Since f ≤ e is
also a receive event of the same type, there exist B − 1 receive events after f , and
because of FIFO, δ♯(f) = rev(f) ≤ rev(e) = δ♯(e).

If a ∈ Σ, since δa(e) is defined, there is an event of type a after e. Since f ≤ e,
there is also an event of type a after f , and δa(f) ≤ δa(e).

We can apply the induction hypothesis to τ ′, since δσ is defined on δa(e), λ(δσ(f)) =
λ(δσ(e)) and δa(f) ≤ δa(e). ✷

Now let e ∈ E be an event of type λ(e) = x0 and τ ∈ (Σ ∪ {♯})∗. We say that
e defines a (x0, τ)-cycle of length |τ | if the event δτ (e) exists and satisfies δτ (e) ≤p e
for some p ∈ P. That is, the start and endpoint of the cycle are on the same process
p, with the endpoint preceding the starting point. Clearly, this implies a cycle for
the relation R.

The next lemma shows that it suffices to test (x0, τ)-cycles of bounded length for
knowing whether an MSC M is ∃-B-bounded or not.

Lemma 5.5 Let M be an MSC. Then M is not ∃-B-bounded iff there exists an event
e defining a (x0, τ)-cycle, for some x0 ∈ Σ and τ ∈ ♯(Σ ♯)∗ with |τ | ≤ 2|P|.

Proof. If there exists such an (x0, τ)-cycle, then the relation R is not acyclic implying
that M is not ∃-B-bounded.

27

Conversely, suppose that M is not ∃-B-bounded, hence the relation R contains
some cycle. We choose σ = a1a2 · · · an ∈ (Σ ∪ {♯})∗ of minimal length such that
there exists x0 ∈ Σ and an event e1 defining a (x0, σ)-cycle. Set ei = δa1a2···ai−1

(e1)
and suppose n > 2|P|. Then there exists some process p ∈ P and i < j < k
with ei, ej, ek ∈ Ep. If ek ≤p ei, then δai+1ai+2···ak

(ei) = ek ≤p ei, i.e., ei defines
a (λ(ei), ai+1 · · · ak)-cycle properly shorter than σ, a contradiction. Hence ei <p ek.
Consider the sequence τ = a1a2 · · · ai λ(ek)ak+1ak+1 · · · an of length i+1+(n−k) < n
since i+1 < k. Then δλ(ek)(ei) ≤p ek implies δτ (e1) = δλ(ek)aj+1···an

(ei) ≤ δaj+1···an ≤
e1 by Lemma 5.4, again giving rise to a shorter cycle. Thus, we showed n ≤ 2|P|.

It remains to show that τ ∈ ♯(Σ ♯)∗. Assume first that ai, ai+1 ∈ Σ. Since
δσ(e1) is defined, in particular δaiai+1

(ei) is defined. Hence ei, ei+1, and ei+2 belong
to the same process which allows to derive a contradiction as above. Second, let
ai = ai+1 = ♯. Then ei ≤p ei+2 allows to argue as above, i.e., to replace σ by
τ = a1a2 · · · ai λ(ei+2)ai+3 · · · an, again contradicting the minimal length of σ. Thus,
letters from Σ alternate with ♯ in σ.

If a1 ∈ Σp, then δσ(e1) ≤p e1 <p δa1
(e1). Hence δa1

(e1) defines a (a1, a2a3 · · · an)-
cycle. This allows to cancel all types from the beginning of σ thereby leaving a word
from ♯(Σ ♯)∗. Similarly, we can cancel all letters from Σ from the end which finally
shows σ ∈ ♯(Σ ♯)∗ as required. ✷

Let M = (E, λ,msg, (<p)p∈P) be an MSC, e ∈ E, x0 ∈ Σ, and τ ∈ (Σ ∪ {♯})∗ be
a word. We call event e a (x0, τ)-marker, if it satisfies the following conditions:

• λ(e) = x0,

• λτ (e) is defined, and

• for every event f ∈ E with λ(f) = x0, e <p f , and such that δτ (f) is defined,
we have δτ (e) 6= δτ (f).

In particular, (x0, τ)-markers are mapped to mutually distinct nodes δτ (e). More-
over, if for some node e ∈ E, δτ (e) is defined, then e is below some (λ(e), τ)-marker f
with δτ (e) = δτ (f). Let Mark(x0, τ) ⊆ E denote the set of (x0, τ)-markers in M . The
image of the mapping δτ (restricted to x0-labeled nodes) is denoted CoMark(x0, τ).
Nodes from CoMark(x0, τ) are called comarkers. Note that δτ is an order-preserving
bijection from Mark(x0, τ) onto CoMark(x0, τ). In particular, the number of markers
equals the number of comarkers. The next lemma characterizes MSCs that are not
existentially B-bounded through the number of markers e that are still in transit, in
the sense that δτ (e) did not yet happen on process p.

We write in the following past(e) for the set {f ∈ E | f ≤ e} of events below e.

Proposition 5.6 Let M = (E, λ,msg, (<p)p∈P) be an MSC. Then the following are
equivalent

(1) M is not ∃-B-bounded

(2) There exist a sequence τ ∈ ♯(Σ ♯)∗ with |τ | ≤ 2|P|, p ∈ P, x0 ∈ Σp, and a
marker e ∈ Mark(x0, τ) such that

(2a) λ(e) = x0 and δτ (e) ∈ Ep, and

28

(2b) The difference |past(e) ∩ Mark(x0, τ)| − |past(e) ∩ CoMark(x0, τ)| is either
≤ 0 or > 2|P|B.

Proof. First suppose (1). Then, by Lemma 5.5, there exist x0 ∈ Σ, τ ∈ (Σ ∪ {♯})∗

with |τ | ≤ 2|P|, and e ∈ E such that δτ (e) ≤p e for some p ∈ P. Hence, in particular
(2a) holds. Since, by Lemma 5.4, the set Mark(x0, τ) is mapped order-preservingly
onto CoMark(x0, τ), we get |past(e) ∩ Mark(x0, τ)| − |past(e) ∩ CoMark(x0, τ)| ≤ 0
proving (2b).

Conversely, suppose (2) holds, i.e., there are τ , p, x0, and e satisfying (2a) and
(2b). If, in (2b), we have |past(e) ∩ Mark(x0, τ)| − |past(e) ∩ CoMark(x0, τ)| ≤ 0,
then δτ (e) ≤p e. Hence e is an (x0, τ)-cycle implying (1) by Lemma 5.5. So suppose
|past(e)∩Mark(x0, τ)|−|past(e)∩CoMark(x0, τ)| > 2|P|B. Then there exist (x0, τ)-
markers e0 < e1 < e2 · · · < e2|P|B ≤ e with δτ (ei) 6≤ e. By (2a) and Lemma 5.4, this
implies e < δτ (e0) < δτ (e1) < · · · < δτ (e2|P|B).

Let τ = a1a2 · · · ak and define τi = a1 · · · ai for 0 ≤ i ≤ k. We show that there
exist sequences σi ∈ (Σ∪{♯})∗ such that δσi

(δτi
(e0)) = δτi−1

(e(i+1)B) for all 1 ≤ i ≤ k.
Since the events δτ (ej) form a properly increasing sequence, we get δτi−1

(eiB) <q

δτi−1
(eiB+1) <q · · · <q δτi−1

(eiB+B) for some process q ∈ P and all these events are
of the same type c (i.e., carry the same label w.r.t. λ) by Lemma 5.4. Now let a = ai.
By case distinction, we choose σi ∈ (Σ∪{♯})∗ such that δσi

(δτi
(eiB)) = δτi−1

(eiB+B):

• If a = ♯, then set b = ♯. Again, we have to distinguish two cases depending on
whether the type c is a send or a receive event.

– First, let c be a send event. Hence, properly above δτi−1
(eiB) and below

δτi−1
(eiB+B), there are at least B send events of the same type b. Thus,

cp(δτi−1
(eiB)) = δb(δτi−1

(eiB)) ≤ δτi−1
(eiB+B). To obtain σi, extend b by

the appropriate number of λ(δτi−1
(eiB+B)).

– Now suppose c is a receive event. Hence, properly above δτi−1
(eiB) and

below δτi−1
(eiB+B), there are at least B receive events of the same type.

Thus, rev(δτi−1
(eiB)) = δb(δτi−1

(eiB)) ≤ δτi−1
(eiB+B). To obtain σi, extend

b by the appropriate number of λ(δτi−1
(eiB+B)).

• Now suppose a ∈ Σp. Since δτi−1
(eiB) <p δτi

(eiB) <p δτi
(eiB+B), we get

δτi
(eiB) ≤p δτi−1

(eiB+B). This time, σi consists of the appropriate number
of λ(δτi−1

(eiB+B)).

Thus, we have

δσ1
δσ2

· · · δσk−1
δσk

δτk
(e0) =

δσ1
δσ2

· · · δσk−1
δτk−1

(eB) =
δσ1

δσ2
· · · δτk−2

(e2B) =
...

δτk−k
(ekB) = ekB <p δτk

(e0) .

Hence, δτk
(e0) is a (δτk

(e0), σ)-cycle with σ = σkσk−1 . . . σ1 implying that the relation
R is not acyclic. Thus, we proved that M is not ∃-B-bounded. ✷

29

5.3 A CFM recognizing MSCB

In this section we show how to construct a CFM checking the non-existence of cycles
in (E,R) using the characterization by bounded cycles provided in Section 5.2. We
will exclude these (x0, τ)-cycles one by one. So let us fix some type x0 ∈ Σp and a
sequence τ ∈ ♯(Σ ♯)∗. Consider some MSC M . If there is some node e ∈ E of type
λ(e) = x0 and such that δτ (e) exists, but is not in Ep, then by Lemma 5.4(1), no
MSC will ever admit a (x0, τ)-cycle. Thus, it suffices to consider a pair (x0, τ) where
δτ (e) ∈ Ep whenever defined and λ(e) = x0 ∈ Σp. We will construct a CFM that
accepts an MSC M iff M does not contain any (x0, τ)-cycle.

Let τ = a1a2 · · · ak and τi = a1 · · · ai for all i ≤ k. A weak (x0, τ)-marker is a node
s such that for some i ≤ k, node s is an (x0, τi)-marker and either i = k or δτi+1

(s)
is undefined. Note that in particular, any marker is a weak marker (set i = k).

For two events s and t and a number 0 ≤ i ≤ k, we write R(s, t, i) if one of the
following holds
R1(s, t, i): δτi

(s) = t or
R2(s, t, i): i < k, ai+1 ∈ Σq, δτi

(s) <q t and, if δτi+1
(s) is defined,

then t <q δτi+1
(s).

Intuitively, we have R(s, t, i) if and only if either δτi
(s) = t, or else the event δτi

(s)
has been already located on process q before event t, and the next event δτi+1

(s) is
expected after t on q.

We let K = {0,♥, †}{0,1,...,k} be a set of functions. For an MSC M , a mapping
γ : E → K is a valid marking if the following hold for any t ∈ E and 0 ≤ i < k:

(V1) γ(t)(i) ∈ {♥, †} iff there is s ∈ E satisfying λ(s) = x0 and R(s, t, i).

(V2) γ(t)(i) = ♥ iff there is s ∈ E satisfying λ(s) = x0, γ(s)(0) = ♥ and R(s, t, i).

(V3) If γ(t)(0) = ♥, then t is a weak (x0, τ)-marker.

(V4) If t is a (x0, τ)-marker, then γ(t)(0) = ♥.

Valid mappings will encode a search for all markers. In order to do this, the nodes
δτi

(s) for nodes s with λ(s) = x0 have to be found. Thus, the intuitive meaning of
γ(t)(i) ∈ {♥, †} is that the node δτi

(s) has been found and we are searching for the
node δτi+1

(s). Moreover, γ(t)(i) = ♥ means that search started in a node s which
was a (weak) marker.

In several steps, we will construct an update-function whose good labelings are
precisely the valid markings. This, in conjunction with Prop. 5.6, will then be used
to check for the non-existence of (x0, τ)-cycles.

Lemma 5.7 Let M = (E, λ,msg, (<p)p∈P) be an MSC and γ : E → K a mapping.
Then γ satisfies (V1) for all t ∈ E and 0 ≤ i ≤ k iff for any t ∈ E and 0 ≤ i < k,
the following hold

(L1) γ(t)(0) ∈ {♥, †} iff λ(t) = x0

(L2) γ(t)(i+ 1) ∈ {♥, †} iff

• ai+1 ∈ Σ, λ(t) = ai+1 and γ−(t)(i) ∈ {♥, †}, or

• ai+1 = ♯ and γm(t)(i) ∈ {♥, †}, or

30

• λ(t) 6= ai+2 ∈ Σ and γ−(t)(i+ 1) ∈ {♥, †}.

Proof. Informally, the first two cases in condition (L2) correspond to R1(s, t, i+ 1),
whereas the third case corresponds to R2(s, t, i+ 1).

The lemma is shown by induction on i.
Base case i = 0. Since a1 = ♯, R(s, t, 0) holds iff δτ0

(s) = t and λ(s) = x0. Since
δτ0

(s) = s, we showed the equivalence of (L1) and (V1) for i = 0.
Next suppose that the lemma has been shown for all t ∈ E and for some i with

0 ≤ i < k. We have to prove the equivalence of (V1) for i+ 1 and (L2).
So suppose (V1) holds for i + 1 and let γ(t)(i + 1) 6= 0. Then, by (V1), there

exists s ∈ E with λ(s) = x0 and R(s, t, i+1). The first two alternatives of (L2) arise
from R1(s, t, i+ 1), i.e., δτi+1

(s) = t:

• First suppose ai+1 ∈ Σp. Then i+1 < k and ai+2 = ♯. Since δτi+1
(s) = t, we get

λ(t) = ai+1. Furthermore, there exists e ∈ E with δτi
(s) ≤p e ⋖p δτi+1

(s) = t.
Hence, by (V1), γ(e)(i) 6= 0 and therefore γ−(t)(i) 6= 0.

• Next suppose ai+1 = ♯. Setting e = δτi
(s) yields δ♯(e) = t and therefore

γm(t)(i) = γ(e)(i) 6= 0 by (V1).

Now suppose R2(s, t, i + 1) with ai+2 ∈ Σq. Then δτi+1
(s) <q t. Hence there exists

e ∈ E with with e⋖p t. Then R(s, e, i+ 1) holds implying γ(e)(i+ 1) 6= 0 from (V1)
and therefore γ−(t)(i+ 1) 6= 0. This finishes the proof that (L2) follows from (V1).

It remains to infer (V1) for i + 1 from (L2). To this aim, let (by contradiction)
t ∈ E be minimal (wrt. the visual order ≤) such that γ(t)(i+ 1) 6= 0, but there is no
s ∈ E with λ(s) = x0 and R(s, t, i+ 1).

• If λ(t) = ai+1 ∈ Σ and γ−(t)(i) 6= 0, let e ∈ E with e ⋖q t. Then γ(e)(i) 6= 0
which, by the induction hypothesis, implies the existence of s ∈ E with λ(s) =
x0 and R(s, e, i). Since t is the successor of e on process q, we get t ≤q δτi+1

(s).
Now λ(t) = ai+1 implies t = δτi+1

(s). Hence R1(s, t, i + 1) contradicts our
assumption.

• If ai+1 = ♯ and γm(t)(i) 6= 0, then let e ∈ E with δ♯(e) = t. Then we get
γ(e)(i) 6= 0. Thus, by the induction hypothesis and ai+1 = ♯, there exists
s ∈ E with λ(s) = x0 and R1(s, e, i), i.e., δτi

(s) = e. Now δ♯(e) = t implies
δτi+1

(s) = t, again contradicting our assumption.

• Finally consider the case λ(t) 6= ai+2 ∈ Σ and γ−(t)(i+ 1) 6= 0. Let e ∈ E with
e ⋖p t. Then γ(e)(i + 1) = γ−(t)(i + 1) 6= 0. Since we chose t minimal, there
exists s ∈ E with λ(s) = x0 and R(s, e, i + 1). Since λ(t) 6= ai+2, we obtain
R(s, t, i+ 1) which again contradicts our assumption.

This finishes the indirect proof. Thus, (V1) for i+ 1 follows from (L2). ✷

In a similar way, the following lemma can be shown:

Lemma 5.8 Let M = (E, λ,msg, (<p)p∈P) be an MSC and γ : E → K a mapping
satisfying (V1) (i.e., (L1) and (L2)). Then γ satisfies (V2) iff, for any t ∈ E and
0 ≤ i < k, we have

(L3) γ(t)(i+ 1) = ♥ iff

31

• ai+1 ∈ Σ, λ(t) = ai+1 and γ−(t)(i) = ♥, or

• ai+1 = ♯ and γm(t)(i) = ♥, or

• λ(t) 6= ai+2 ∈ Σ and γ−(t)(i+ 1) = ♥.

Informally, condition (L4) in the next lemma states that if s is a (weak) marker,
then for every i, whenever node δτi

(s) has already been found and δτi+1
(s) is searched

later on the same process, no other event δτi
(s′) can occur on this process before

δτi+1
(s) is eventually found.

Lemma 5.9 Let M = (E, λ,msg, (<p)p∈P) be an MSC and γ : E → K a mapping
satisfying (V1) and (V2) (i.e., (L1), (L2) and (L3)). Then γ satisfies (V3) iff, for
any t ∈ E and 1 ≤ i < k, we have

(L4) γ−(t)(i) = ♥ and λ(t) 6= ai+1 ∈ Σ imply γm(t)(i− 1) = 0

Proof. First assume (V3) holds. Let t ∈ E and 1 ≤ i < k with γ−(t)(i) = ♥
and λ(t) 6= ai+1 ∈ Σp. Since every other letter in τ is ♯, this implies ai = ♯.
Furthermore t ∈ Ep. Since γ−(t)(i) = ♥, we have γ(e)(i) = ♥ for the node e ∈ Ep

with e ⋖p t. Hence, by (V2), there exists s ∈ E with λ(s) = x0, γ(s)(0) = ♥ and
R(s, t, i). Since λ(t) 6= ai+1, this ensures in particular that δτi+1

(s) = δai+1
(t) or none

of them is defined. Furthermore, by (V3), s is a weak marker. Suppose, towards
a contradiction, γm(t)(i − 1) 6= 0. Then, for node f ∈ E with δ♯(f) = t we have
γ(f)(i− 1) 6= 0. Hence, by (V1), there is s′ ∈ E with λ(s′) = x0 and R(s′, f, i− 1).
Since ai = ♯, R2(s

′, f, i − 1) is impossible, i.e., δτi−1
(s′) = f implying δτi

(s′) = t.
Thus, by what we showed above, δτi+1

(s′) = δai+1
(t) = δτi+1

(s). Since s is a weak
marker, this implies s′ ≤ s. Hence, Lemma 5.4(2) implies t = δτi

(s′) ≤ δτi
(s) ≤ e⋖p t,

a contradiction. Thus, we inferred (L4) from (V3).
Conversely, assume (L4). Towards a contradiction, let s ∈ E with γ(s)(0) = ♥,

but s is not a weak marker. By (V2), we obtain λ(s) = x0. Since s is no weak
marker, there exist a weak marker s′ ∈ E and 0 < i ≤ k such that s < s′, λ(s′) = x0,
and δτi

(s) = δτi
(s′). Let 0 ≤ j < i be maximal with δτj

(s) 6= δτj
(s′) and therefore

δτj
(s) < δτj

(s′) by Lemma 5.4(2). Note that, since j < i and δτi
(s′) is defined,

the events δτj+1
(s) and δτj+1

(s′) are defined. First suppose aj+1 = ♯. Then, by
the definition of δ♯, we get δτj+1

(s) < δτj+1
(s′) contradicting the maximality of j.

Thus, aj+1 ∈ Σp for some process p. Since every odd letter in τ equals ♯, we get
aj = ♯ and j ≥ 1. Since δτj+1

(s) = δτj+1
(s′) is defined, the nodes δτj

(s) and δτj
(s′)

belong to Ep implying δτj
(s) <p δτj

(s′) =: t. Then there exists e ∈ Ep with e ⋖p t
implying δτj

(s) ≤p e ⋖p δτj
(s′) <p δτj+1

(s). Hence, by (V2), we get γ(e)(j) = ♥
implying γ−(t)(j) 6= 0. Furthermore, t = δτj

(s′) lies properly between δτj
(s) and

δτj+1
(s). Hence λ(t) 6= aj+1. Let f = δτj−1

(s′) implying δ♯(f) = t and, by (V1),
γ(f)(j− 1) = γm(t)(j− 1) 6= 0. Hence, by (L4) we have † = γ−(t)(j) = γ(e)(j). But
this contradicts γ(e)(j) = ♥ as shown before. ✷

The condition (L5) in the next lemma states that δτ (s) is labeled by ♥ only when
s is a marker.

32

Lemma 5.10 Let M = (E, λ,msg, (<p)p∈P) be an MSC and γ : E → K a mapping
satisfying (V1), (V2), and (V3) (i.e., (L1), (L2), (L3) and (L4)). Then γ satisfies
(V4) iff, for any t ∈ E, we have

(L5) γ(t)(k) 6= †

Proof. Suppose (V4) holds and let t ∈ E with γ(t)(k) 6= 0. Then, by (V1), there is
s ∈ E with λ(s) = x0 and R(s, t, k) implying δτ (s) = t. Choose s maximal subject to
these restrictions. Then s is a (x0, τ)-marker. Hence, by (V4), γ(s)(0) = ♥ implying,
by (V2), γ(t)(k) = ♥ 6= †.

Conversely, let s be a marker. Then t := δτ (s) is defined. Hence, by (V1),
γ(t)(k) 6= 0 implying, by (L5), γ(t)(k) = ♥. Thus, by (V2), there exists s′ ∈ E with
λ(s′) = x0, γ(s

′)(0) = ♥, and δτ (s
′) = t. Since s is a marker, we get s′ ≤ s. By (V3),

s′ is a weak marker. Since δτ (s
′) is defined, it is actually a marker implying s ≤ s′.

Thus, we showed s = s′ and therefore γ(s)(0) = ♥. ✷

For the next proposition, recall that an update function updt : Σ × K2 → 2K

takes as arguments the Σ-label of the node, the value of the immediate predecessor
on the same process, and the value of the predecessor w.r.t. the msg or rev arc, resp.

Proposition 5.11 There is a function updt : Σ×K2 → 2K such that, for any MSC
M = (E, λ,msg, (<p)p∈P) and any mapping γ : E → K, the following are equivalent

1. γ is a good mapping w.r.t. updt and
−→
0

2. γ is a valid mapping.

Proof. For a ∈ Σ and f, g, h ∈ K, let f ∈ updt(a, g, h) iff the following hold for any
0 ≤ i < k:

(U1) f(0) 6= 0 iff a = x0.

(U2) f(i+ 1) 6= 0 iff

• a = ai+1 ∈ Σ and g(i) 6= 0, or

• ai+1 = ♯ and h(i) 6= 0, or

• a 6= ai+2 ∈ Σ and g(t)(i+ 1) 6= 0.

(U3) f(i+ 1) = ♥ iff

• a = ai+1 ∈ Σ and g(i) = ♥, or

• ai+1 = ♯ and h(i) = ♥, or

• a 6= ai+2 ∈ Σ and g(t)(i+ 1) = ♥.

(U4) g(i) = ♥ and a 6= ai+1 ∈ Σ imply h(i− 1) = 0.

(U5) f(k) 6= †.

Since (U1-5) are just reformulations of (L1-5), the mapping γ is good iff it satisfies
(L1-5) and therefore (by the previous lemmas) (V1-4). ✷

Lemma 5.12 Let M = (E, λ,msg, (<p)p∈P) be an MSC. Then the following are
equivalent

33

(1) For any e ∈ Mark(x0, τ), we have

|past(e) ∩ Mark(x0, τ)| − |past(e) ∩ CoMark(x0, τ)| ∈ {1, 2, . . . , kB}

(2) There exists a good labeling γ w.r.t. the function updt from the previous propo-

sition and
−→
0 and an event s with λ(s) = x0 such that

|{e ∈ E | e ≤ s, γ(e)(0) = ♥, λ(e) = x0}| − |{e ∈ E | e ≤ s, γ(e)(k) = ♥}|

= |{e ∈ E | e > s, γ(e)(k) = ♥}|

and

|{e ∈ E | e ≤ t, γ(e)(0) = ♥, λ(e) = x0}| − |{e ∈ E | e ≤ t, γ(e)(k) = ♥}|

∈ {1, . . . , 2|P|B}

for any t ≤ s with λ(t) = x0.

Proof. First suppose (1). Let γ be the unique mapping satisfying (V1), (V2) such

that γ(t)(0) = ♥ iff t is a marker. Then γ is a good labeling w.r.t. updt and
−→
0 .

Furthermore,

Mark(x0, τ) = {s ∈ E | γ(s)(0) = ♥}

CoMark(x0, τ) = {s ∈ E | γ(s)(k) = ♥}

With s the maximal marker in M , the first condition in (2) follows by elementary
arithmetic. Let t ≤ s with λ(t) = x0. By (1), the difference of the number of markers
below t and that of comarkers below t belongs to {1, . . . , 2|P|B}. This ensures the
second condition in (2).

Conversely, let γ be a good labeling and s ∈ E with λ(s) = x0 such that the
conditions in (2) are satisfied. Let wmark(x0, τ) denote the set of weak (x0, τ)-
markers in M . Then Mark(x0, τ) ⊆ wmark(x0, τ) since any marker is a weak marker.
Furthermore, by Lemma 5.4, the set of markers Mark(x0, τ) is downwards closed in
the set of weak markers wmark(x0, τ).

Set X = {s ∈ E | γ(s)(0) = ♥} and Y = {t ∈ E | γ(t)(k) = ♥}. Then, since γ
satisfies (V1-4), Y = CoMark(x0, τ) and Mark(x0, τ) ⊆ X ⊆ wmark(x0, τ). Hence
Mark(x0, τ) is downwards closed in X and

{e ∈ E | e ≤ s, γ(e)(k) = ♥} = {e ∈ CoMark(x0, τ) | e ≤ s} and

{e ∈ E | e ≥ s, γ(e)(k) = ♥} = {e ∈ CoMark(x0, τ) | e ≥ s}

Since the number of markers in M equals that of comarkers, the first condition in
(2) implies

{e ∈ E | e ≤ s, γ(e)(0) = ♥, λ(e) = x0} = Mark(x0, τ)

That is, a node s is a marker iff γ(e)(0) = ♥.

34

Now let t be some (x0, τ)-marker in M . Then t ≤ s and λ(t) = x0. By the above
remark we get

{e ∈ E | e ≤ t, γ(e)(0) = ♥, λ(e) = x0} = {e ∈ Mark(x0, τ) | e ≤ t} and

{e ∈ E | e ≤ t, γ(e)(k) = ♥} = {e ∈ CoMark(x0, τ) | e ≤ t}.

By the second condition in (2), the difference of the sizes of these sets belongs to the
set {1, 2, . . . , kB}. Thus, M satisfies (1). ✷

Proposition 5.13 There exists a CFM A that accepts an MSC M iff M satisfies
condition (1) in Lemma 5.12.

Proof. Let updt be the function from Proposition 5.11 and let A′ be the CFM from
Prop. 5.2. Since this CFM computes all good labelings, it can check condition (2)
from Lemma 5.12. Now the result follows from Lemma 5.12. ✷

Proposition 5.14 Let B > 0 be a natural number. Then there exists a CFM A with
L(A) = MSCB.

Proof. By the previous proposition, for any x0 ∈ Σ and τ ∈ ♯(Σ ♯)∗, the set of MSCs
satisfying condition (1) in Lemma 5.12 can be accepted by some CFM. Since MSCB

is the intersection of finitely many such sets (Prop. 5.6), the result follows. ✷

Theorem 5.15 Let M be a set of MSCs with LinB(M) a regular set of representa-
tives of M. Then there exists a CFM A with L(A) = M.

Proof. Follows from Propositions 5.14 and 5.3. ✷

6 Further results

6.1 Some more model checking

In Section 3, we explained how to do model checking in the realm of CMSC-graphs.
Since Theorem 4.1 is effective, we get the following results:

Corollary 6.1 The following problems are decidable

(1) input: safe CMSC-graph G and an MSO(≤,msg)-sentence ϕ
question: Does L(G) ⊆ L(ϕ) hold?

(2) input: CFM A, B ∈ N and an MSO(≤,msg)-sentence ϕ
question: Does L(A) ∩ MSCB ⊆ L(ϕ) hold?

(3) input: safe CMSC-graph G and CFM A
question: Does L(G) ∩ L(A) = ∅ hold?

(4) input: safe CMSC-graph G and CFM A
question: Does L(G) ⊆ L(A) hold?

35

Proof. (1) Since G is safe, the set L(G) is, by Lemma 3.2, ∃-B-bounded with
B = |G|. By Prop. 5.14, one can construct a CFM AB with L(AB) = MSCB . The-
orem 4.1(1)⇒(3) yields a sentence ϕB from MSO(≤,msg) with L(ϕB) = L(AB) =
MSCB. Let ψ = ϕ ∧ ϕB. Since L(ψ) is ∃-B-bounded, there exists a gc-CMSC-
graph G′ with L(G′) = L(ψ) by Theorem 4.1(3)⇒(4). Note that L(G) ⊆ L(ϕ) iff
L(G) ⊆ L(ϕ) ∩ MSCB = L(G′). But the inclusion L(G) ⊆ L(G′) is decidable by
Prop. 3.7.

(2) Prop. 5.14 gives a CFM AB with L(AB) = MSCB. Now a direct-product
construction allows to build a CFM A′ with L(A′) = L(A)∩L(AB) = L(A)∩MSCB .
This allows to apply Theorem 4.1(1)⇒(4) which yields a gc-CMSC-graph G with
L(G) = L(A) ∩ MSCB. Note that G is in particular safe. As in (1), we obtain
another gc-CMSC-graph G′ with L(G′) = L(ϕ)∩MSCB. Since L(A)∩MSCB ⊆ L(ϕ)
iff L(A) ∩ MSCB ⊆ L(ϕ) ∩ MSCB (i.e., iff L(G) ⊆ L(G′)), the decidability follows
from Prop. 3.7.

(3) Let B = |G|. By Lemma 3.2, the set KG is regular set of B-bounded repre-
sentatives of L(G). It is easily seen that it can be accepted by a finite automaton
BG. Recall that, in Sect. 2.2, we presented an infinite transition system whose ac-
cepting paths are labeled by Lin(L(A)) by Prop. 2.4. If, in that transition system,
we restrict to states ((sp)p∈P , (wp,q)p,q∈P) with |wp,q| ≤ B for all p, q ∈ P (i.e., we
restrict the channels to capacity B), we end up with a finite automaton B accepting
Lin(L(A) ∩ MSCB). Thus, we get L(G) ∩ L(A) = ∅ iff L(BG) ∩ L(B) = ∅ which is
decidable.

(4) The same reasoning yields L(G) ⊆ L(A) iff L(BG) ⊆ L(B) which is decidable.
✷

Among the model checking instances covered by the proposition above, the only
case that was already known is (1) [23]. This problem has non-elementary complexity
and the same holds for (2) [20]. We determine the complexity of the model checking
procedures for (3) and (4): The finite automaton BG has at most |G| many states
while the number of states of B is

∏
p∈P |Sp| ·

∏
p,q∈P C

B (where Sp is the set of
p-local states and C the set of message contents of A), hence it is exponential in P
and B = |G|. Thus, the problems (3) and (4) are in PSPACE and EXPSPACE, resp.

6.2 Monadic second order logic

It is rather obvious that any formula ϕ from (E)MSO((<p)p∈P ,msg) can be rewritten
into a formula ψ from (E)MSO(≤,msg) with L(ϕ) = L(ψ) since x <p y is equivalent
to x ≤ y∧x 6= y∧

∨
p∈P

∨
a,b∈Σp

(va(x)∧vb(y)). Conversely, x ≤ y iff there are mutually

distinct processes p1, p2, . . . , pn and ui, vi ∈ Epi
with x = v1, msg(vi) = ui+1 <p vi+1

for 1 ≤ i < n and un = y. Since n ≤ |P|, this can be expressed as a first-order formula
over ((<p)p∈P ,msg), i.e., the logics (E)MSO((<p)p∈P ,msg) and (E)MSO(≤,msg) are
equally expressive.

From [7, Cor. 5.7], we know that the logics MSO(≤) and EMSO(≤,msg) are
incomparable.

Now let B ∈ N and ϕ be some sentence from MSO(≤,msg) such that any MSC
from L(ϕ) is universally-B-bounded. Then, by [7] and [15], there exists a sentence ψ

36

in MSO(≤) with L(ψ) = L(ϕ); the converse is immediate.
The same holds for existentially bounded sets of MSCs:

Proposition 6.2 Let ϕ be an (E)MSO((≤p)p∈P ,msg) formula and B ∈ N with
L(ϕ) ⊆ MSCB. Then there exists an (E)MSO(≤) formula ψ with L(ϕ) = L(ψ).

Proof. LetX0, . . . , XB−1 be set variables that are not used in ϕ. Then we write down
a formula ϕ0 expressing that Xn contains precisely those events e with λI(e) = (a, n)
for some a ∈ Σ (see Section 3.2). From now on, we assume that ϕ0 holds. Then it
makes sense to write va,n(x) for va(x) ∧ x ∈ Xn since this formula holds of an event
e iff λI(e) = (a, n).

We also use the abbreviation x <m y for
∨

p6=q,n<B vp!q,n(x) ∧ vq?p,n(y) ∧ x ≤
y ∧ ∀z((x ≤ z ∧ vq?p,n(z)) → y ≤ z). Then x <m y expresses that there are processes
p, q ∈ P and a number 0 ≤ n < B such that λI(x) = (p!q, n) and y is the first event
above x with λI(y) = (q?p, n). Note that for any send-event e there is a receive event
f with e <m f since the number of sends equals that of receives and since receives
have to follow sends. Thus, <m is a function from the set of send events S into the
set of receive events R.

Since x1 <m y1, x2 <m y2, λ̃(x1) = λ̃(x2) and x1 ≤ x2 imply y1 ≤ y2, the function
<m is even order-preserving. Thus, for ∃-B-bounded MSCs, the functions <m and
msg coincide.

Let ϕ1 be obtained from ϕ by replacing all occurrences of (x, y) ∈ msg by x <m y.
Then an ∃-B-bounded MSC M satisfies ∃X0, . . . , XB−1(ϕ0 ∧ ϕ1) iff M satisfies ϕ.
However, if M is not ∃-B-bounded this equivalence might not hold.

We use a second formula ϕ2 which is ∀x, x′, y, (x <m y ∧ x′ <m y → x = x′)
stating that the function <m is injective. Since in an MSC, the number of sends p!q
equals that of receives q?p for any p, q ∈ P, the formula ϕ2 states that <m is actually
an order-preserving bijection from S onto R. Hence, <m corresponds to the message
relation (on ∃-B-bounded MSCs).

It remains to express that the MSC is ∃-B-bounded. For this we can apply The-
orem 4.1 to the CFM constructed in Proposition 5.14, thus obtaining an equivalent
EMSO((⋖p)p∈P ,msg) formula. Replacing in this formula the message relation msg
by <m yields a formula ϕ3. Now let M be an MSC and let X0, . . . , XB−1 be sets of
events satisfying ϕ0. Then M satisfies ϕ2 ∧ ϕ3 iff M is ∃-B-bounded and msg =<m.
Hence, with ψ = ∃X0, . . . , XB−1(ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ϕ3), we obtain L(ϕ) = L(ψ). ✷

7 Conclusion

We showed the equivalence of several formalisms for the specification of existentially
bounded sets of MSCs, namely communicating finite machines, monadic second order
logic, globally-cooperative compositional message sequence graphs, and regular sets
of representatives. Corresponding results were known for universally bounded sets
of MSCs. The new results were obtained by an adaptation of Kuske’s technique
that allows to transfer results on Mazurkiewicz traces to the realm of MSCs. Our
construction of a CFM that accepts all existentially B-bounded MSCs is based on

37

a new characterization of this class of MSCs. Since the different formalisms can be
transformed effectively into each other, we obtain the decidability of several model
checking problems involving CFMs, message sequence graphs, and monadic second
order logic.

The main questions left open in this paper concern the implementation of MSC
specifications. In practice, there are two important issues for CFMs: deadlock-
freeness and determinism. There are two sources of non-determinism in the CFMs
we constructed:

1. The simulation of an asynchronous automaton by a CFM requires guessing of
information which is not yet available due to the lack of the rev-edges that the
asynchronous automaton can access.

2. The CFM that accepts all existentially B-bounded MSCs guesses the markers
for detecting cycles.

In the setting of universally bounded sets of MSCs, these issues did not come up.
The first could be circumvented since the rev-edges were not necessary to obtain a
trace from a universally B-bounded MSC. To check whether a MSC is universally
B-bounded, a deterministic CFM suffices that locally counts the number of messages
in transit.

It seems unlikely that our expressivity results hold for deterministic CFMs. A re-
lated question is that of freedom of deadlock. There are clearly CFMs with universally
B-bounded behavior that cannot be transformed into an equivalent deadlock-free
CFM. So the problem arises to characterize the existentially B-bounded behaviors
of deadlock-free CFMs.

References

[1] P. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Infor-
mation and Computation, 127(2):91–101, 1996.

[2] R. Alur and M. Yannakakis. Model checking of message sequence charts. In
CONCUR’99, LNCS 1664, pp. 114-129, 1999.

[3] J. Berstel. Transductions and context-free languages. Teubner Studienbücher,
Stuttgart, 1979.

[4] A. Bouajjani and P. Habermehl. Symbolic Reachability Analysis of FIFO-
Channel Systems with Nonregular Sets of Configurations. Theoretical Computer
Science, 221(1-2):211–250, 1999.

[5] B. Boigelot, P. Godefroid, B. Willems and P. Wolper. The Power of QDDs. In
SAS’97, LNCS 1302, pp. 172-186, 1997.

[6] B. Boigelot and P. Godefroid. Symbolic Verification of Communication Protocols
with Infinite State Spaces using QDDs. Formal Methods in System Design,
14(3):237-255 (1999).

[7] B. Bollig and M. Leucker. Message-Passing Automata are expressively equivalent
to EMSO Logic. Theoretical Computer Science, to appear, 2005. (An extended

38

abstract appeared under the same title in CONCUR’04, LNCS 3170, pp. 146-
160, 2004.)

[8] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal
of the ACM, 30(2):323-342, 1983.

[9] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

[10] W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoretical
Computer Science, 154:67–84, 1996. (An extended abstract appeared under the
same title in ICALP’93, LNCS 700, pp. 335–346, 1993.)

[11] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1,2):63–92, 2001.

[12] B. Genest, M. Minea, A. Muscholl, and D. Peled. Specifying and verifying
partial order properties using template MSCs. In FoSSaCS’04, LNCS 2987,
pp. 195-210, 2004.

[13] E. Gunter, A. Muscholl, and D. Peled. Compositional Message Sequence Charts.
International Journal on Software Tools for Technology Transfer (STTT) 5(1):
78-89 (2003). (An extended abstract appeared in TACAS’01, LNCS 2031,
pp. 496–511, 2001.)

[14] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state High-level
MSCs: Model checking and realizability. In ICALP’02, LNCS 2380, pp.657-668,
2002. Journal version in Journal of Computer and System Sciences, in press,
December 2005.

[15] J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P. Thiagara-
jan. A Theory of Regular MSC Languages. Information and Computation,
202(1):1–38, 2005.

[16] ITU-TS recommendation Z.120, Message Sequence Charts, Geneva, 1999.

[17] D. Kuske. Regular sets of infinite message sequence charts. Information and
Computation, 187:80–109, 2003.

[18] M. Lohrey and A. Muscholl. Bounded MSC communication. Information and
Computation, 189:135–263, 2004.

[19] S. Leue, R. Mayr, and W. Wei. A scalable incomplete test for the boundedness
of UML RT models. In TACAS’04, LNCS 2988, pp. 327–341, 2004.

[20] A.R. Meyer. Weak monadic second order theory of one successor is not elemen-
tary recursive. In: Proc. Logic Colloquium, Lecture Notes in Mathematics vol.
453, Springer 1975, pp. 132-154.

[21] R. Morin. Recognizable Sets of Message Sequence Charts. In STACS’02, LNCS
2285, pp. 523-534, 2002.

[22] P. Madhusudan. Reasoning about Sequential and Branching Behaviours of Mes-
sage Sequence Graphs. In ICALP’01, LNCS 2076, pp. 809-820, 2001.

[23] P. Madhusudan and B. Meenakshi. Beyond Message Sequence Graphs In
FSTTCS’01, LNCS 2245, pp. 256-267, 2001.

39

[24] A. Mazurkiewicz. Concurrent program schemes and their interpretation. Tech-
nical report, DAIMI Report PB-78, Aarhus University, 1977.

[25] A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In MFCS’99, LNCS 1672, pp. 81-91, 1999.

[26] E. Ochmański. Regular behaviour of concurrent systems In Bulletin of the
EATCS 27, pp.56-67, 1985.

[27] D. Peled. Specification and Verification of Message Sequence Charts. In
FORTE/PSTV’00, pp. 139-154, 2000.

[28] Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive
complexity. Information Processing Letter, 83(5):251–261, 2002.

[29] USB 1.1 specification, available at http://www.usb.org/developers/docs/usbspec.zip

[30] W. Thomas. On logical definability of trace languages. In V. Diekert, edi-
tor, Proceedings of a workshop of the ESPRIT BRA No 3166: Algebraic and
Syntactic Methods in Computer Science (ASMICS) 1989, Report TUM-I9002,
Technical University of Munich, pages 172–182, 1990.

[31] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. – Informatique
Théorique et Applications, 21:99-135, 1987.

40

