Define each of the following terms (found in the back of your textbook).
Natural Numbers : \qquad

Whole Numbers: \qquad
\qquad
Integers : \qquad
\qquad
Rational Numbers : \qquad

Irrational Numbers : \qquad
\qquad
Real Numbers : \qquad
\qquad

Prime Numbers : \qquad
\qquad
Composite Numbers : \qquad

MPM 1D0

Complete the chart:

Use the information given to complete the chart :

Set of Numbers	Short Form	Mathematical Description	English Description
NATURAL			
		$\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$	
IRRATIONAL			

\qquad
Complete the chart by placing a check mark, (), in the space to indicate that the number belongs to that set:

	N	W	I	Q	$\overline{\mathrm{Q}}$	R
7	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark
$\sqrt{3}$						
$\frac{3}{4}$						
$\sqrt{144}$						
$3 \frac{1}{2}$						\%
-6.5						
0						
0.313113111...						
$-\sqrt{8}$						
$5 . \overline{365}$						
3.876						
7.654826343...						
$\frac{\sqrt{5}}{2}$						
-6						
3.2						
-0.33						

General Conclusions:

1. All positive perfect square roots such as \qquad will belong to the following number sets:
2. All negative perfect square roots such as \qquad will belong to the following number sets:
3. The square root of all non-perfect squares such as \qquad will belong to the following number sets:
4. All repeating decimals such as \qquad will belong to the following number sets:
5. All terminating decimumbers such as \qquad will belong to the following number sets:
6. All undefined numbers such as \qquad will belong to:
7. Will any negative number belong to the set of integers? Explain.

Number Sets
Name: \qquad

