
115

Analysis Model

Sequence Diagram State DiagramClass DiagramUse Case ModelActivity Diagram

Functional RequirementUse Case SpecificationUser Requirement

Nonfunctional Requirement

Storyboard

Software Requirement Specification

Interface Requirements Specification

CHAPTER

Use Case Realization
by Means of

Sequence Diagrams

116 CHAPTER 13 ◗ SEQUENCE DIAGRAMS

We use sequence diagrams to realize use cases in the analysis model. Before

we demonstrate the realization, we need to have a good understanding of

sequence diagrams. Sequence diagrams are a type of interaction diagram.

Collaboration diagrams are another type of interaction diagram. Although

each of these types of interaction diagrams provides the same information,

the focus of attention is different. Collaboration diagrams focus on the

objects that work together to accomplish a given task or series of tasks.

Sequence diagrams focus on the interaction of a given task or series of tasks

as observed over time. In fact, some modeling tools automatically convert

one diagram to the other. In this chapter we focus on sequence diagrams

since use cases model the services the system provides over time.

We discuss the elements that make up the sequence diagram. We then dis-

cuss how we map use cases onto a class diagram with sequence diagrams.

Finally, we map a use case from our Change Management System onto the

class diagram or analysis model of the Change Management System.

Introduction to Sequence Diagrams _______________

A sequence diagram is a collection of objects interacting to accomplish a

given task or series of tasks over time. Objects appear across the top of the

diagram. A dashed line extends from the object to the bottom of the

sequence diagram. Time is represented on the vertical axis. Methods that

appear higher on the diagram occur earlier than methods that appear lower

on the diagram. Figure 13.1 illustrates a sequence diagram.

Figure 13.1 shows a simple sequence diagram. In the example, an object

of type USER triggers the occurrence of some event by calling the method

METHODA in the object OBJECTA of type CLASSA. METHODA then calls the

method METHODB in OBJECTB of type CLASSB. METHODB then calls method

PRIVATEMETHODB within the object that contains METHODB.

The arrowhead points to the method that was called. Information can

flow both ways. If the method is fully specified, as is the case for METHODB

of OBJECTB, the information about the call is included in the method call. The

return value is not shown in the sequence diagram.

The thick bar in the sequence diagram indicates the focus of control. Focus

of control implies that one method called another; control will return to the

first method. This focus can continue through any number of method calls.

Focus of control does not always return to the calling method. Sometimes the

new method starts a new thread of execution that takes the focus of control.

Introduction to Sequence Diagrams 117

Recall from Chapter 11, that for a method from one object to call a method

from another object, that object must have a public access specifier. Private

methods can only be called by methods within the same object. Protected

methods in a base class can be called by other methods declared in the same

class or by methods that are declared in a derived class. If a method in a base

class is defined as private, only methods declared in the base class can call

that method. In Figure 13.2 we look at another example.

The example in Figure 13.2 shows an inheritance tree for an employee

record. In the example, all objects of type EMPLOYEE include a method

PRINTRECORD. The EMPLOYEE class also includes method CALCULATEPAY to

allow polymorphism. Each of the derived objects—HOURLYEMPLOYEE and

 : User

Object A :

Class A

Object B :

Class B

methodA()
methodB(String)

privateMethodB()

FIGURE 13.1

Sequence diagram

Employee

printRecord()

calculatePay()

HourlyEmployee

calculatePay()

CommissionEmployee

calculatePay()

FIGURE 13.2

Employee inheritance tree

118 CHAPTER 13 ◗ SEQUENCE DIAGRAMS

COMMISSIONEMPLOYEE—has its own version of the method CALCULATEPAY.

We use objects from this set of classes in our next sequence diagram, Figure

13.3.

Figure 13.3 illustrates a sequence diagram that uses our Employee inher-

itance tree. We have instantiated an instance of a USER class and named the

instance JIM. JIM initiates the method PRINTRECORD on the object BOB. The

object BOB is of type HOURLYEMPLOYEE. HOURLYEMPLOYEE knows about the

method PRINTRECORD because it inherited the method from EMPLOYEE. Next,

JIM initiates the method CALCULATEPAY on our object, BOB. We can be

assured that the correct CALCULATEPAY method will be called without regard

to the derived type. This correct behavior appears natural in this example,

but imagine if we had an array of objects of type EMPLOYEE with random

objects in the array being of type HOURLYEMPLOYEE and the remainder being

COMMISSIONEMPLOYEE. In that situation, we would depend entirely on poly-

morphism to determine the correct CALCULATEPAY to execute.

Realizing Use Cases in Sequence Diagrams_________

Realizing use cases by means of sequence diagrams is an important part of

our analysis. It ensures that we have an accurate and complete class diagram.

The sequence diagrams increase the completeness and understandability of

Jim : User

Bob :

HourlyEmployee

printRecord()

calculatePay()

FIGURE 13.3

Employee sequence diagram

Realizing Use Cases in Sequence Diagrams 119

our analysis model. Often, analysts use the sequence diagram to assign

responsibilities to classes. The behavior is associated with the class the first

time it is required, and then the behavior is reused for every other use case

that requires the behavior.

When assigning behaviors or responsibilities to a class while mapping a

use case to the analysis model, you must take special care to assign the respon-

sibility to the correct class. The responsibility or behavior belongs to the class

if it is something you would do to the thing the class represents. For example,

if our class represented a table and our application must keep track of the

physical location of the table, we would expect to find the method MOVE in the

class. We also expect the object to maintain all the information associated with

an object of a given type. Therefore, the TABLE class should include the method

WHERELOCATED. This simple rule of thumb states that a class will include any

methods needed to provide information about an object of the given class, will

provide necessary methods to manipulate the objects of the given class, and

will be responsible for creating and deleting instances of the class.

Another guideline helpful in building an analysis model is to examine the

model from the whole-part perspective. The start of the sequence diagram is

normally the most difficult aspect. It is important to have access to the object

on which you will call a method to start the sequence. It is often the case that

you will have to return to the whole to navigate through the whole-part rela-

tionship to arrive at the class you will be working with.

A simple example illustrates the whole-part relationship navigation.

Suppose you were asked to read the first paragraph of three chapters of a

book. First, you would need to know where to go to get the book. We might

state that all books we are referring to are available at the Fourth St. library.

You might then know to first go to the library, but the library has thousands

of books. You might next have to consult the card catalog to determine

where the book is located and then retrieve the book. Next, you might look

at the book’s table of contents to determine which pages concern you and

then turn to those pages. We could consider the library as the whole and the

books as the part of the whole-part relationship. The relationship between

the book and the pages could also be viewed as a whole-part relationship.

When we determined where to look and then proceeded to find that point,

we were navigating the whole-part relationship.

Every time you find yourself navigating the whole-part relationship to

find the appropriate class, you will need to assign responsibilities to the

classes you are navigating to ensure that you can, in fact, find the appropriate

class. Said another way, the navigating behavior must be a method on the

120 CHAPTER 13 ◗ SEQUENCE DIAGRAMS

class representing the whole. It is not unusual that this requires returning to

the class that represents the system itself. Figures 13.4 and 13.5 illustrate this

point.

The class diagram in Figure 13.4 shows three classes. Objects of type

POINTOFSALE have zero to many objects of type CUSTOMER. Objects of type

CUSTOMER have zero to many objects of type ORDER. Suppose the system

Order

delete()

Customer

deleteOrder()

1

0..n

PointOfSale

deleteOrderForCustomer()

1

0..n0..n

0..n

1

1

FIGURE 13.4

Whole-part class diagram

 : Actor : PointOfSale : Customer : Order

deleteOrderForCustomer() deleteOrder()
delete()

FIGURE 13.5

Whole-part sequence diagram

Example Sequence Diagram for the Change Management System 121

receives a message from an actor requesting that you delete a given order

belonging to a given customer. The sequence diagram might look like the

example in Figure 13.5.

The sequence diagram requires the system to navigate the whole-part

relationships to delete the order specified by the object of type ACTOR. The

sequence of events begins when the object of type ACTOR requests that a spe-

cific order be deleted for a specific customer. There is no way for the object

of type ACTOR to call the delete method on the object of the type ORDER

because the object of type ACTOR does not have a reference to the specific

order. It is appropriate for the object of type ACTOR to have a reference to the

object of type POINTOFSALE. This follows because there is only one object of

type POINTOFSALE and it can, therefore, be referenced by name. The logical

starting point for all interaction with the actor is the object of type POINTOF-

SALE. The object of type ACTOR can then traverse the whole-part relation-

ships to arrive at the specific object of type ORDER for which the action is

intended. The responsibilities for navigating the whole-part relationship

result in assigning behaviors to the object of type POINTOFSALE and the

object of type CUSTOMER.

Example Sequence Diagram
for the Change Management System _____________

The Change Management System includes a method to create new versions

for a given system. Figure 13.6 illustrates this activity by viewing the collabo-

ration of objects required to accomplish this task with respect to time.

Figure 13.6 shows a sequence diagram from our Change Management

System. In this sequence diagram, we assume the user has already logged

in to the system. The example shows an instance of the ACTOR class, JIM. JIM

begins the use case by requesting to work with versions, effected by click-

ing the Version Button. This action causes the VERSIONSCREEN object to be

displayed.

Next, JIM indicates the intent to add a new version for the selected system by

pressing the Add button. This action calls the CLICKADD method on the object

of type VERSIONSCREEN. This method then triggers the screen’s CLEARFIELDS

method, which prepares the screen for the addition of the version.

The user then provides the appropriate information for the new version.

Once JIM has provided all the information for the new version and clicks the

Save button, the method CLICKSAVE is executed. The CLICKSAVE method calls

122 CHAPTER 13 ◗ SEQUENCE DIAGRAMS

the method SAVEVERSION on the object of type VERSION. Once the new version

is saved, the CLICKSAVE method of the object of type VERSIONSCREEN calls the

DISPLAY method on the object of type MAINSCREEN.

This interaction ensures that our analysis model supports the use case

Create Version. Once we have completed this mapping for all use cases in

our Change Management System, we are sure that our analysis model fully

supports our User Requirements. We are now ready to begin specifying the

software requirements.

Jim :

ProjectManager

 : MainScreen :

VersionScreen

 : C4

Version/Release

clickVersion()
display()

enterInformation()

clickSave()

clickAdd()

clearFields()

saveVersion()

display()

FIGURE 13.6

Create version sequence diagram

