Assessment

Chapter Test A

Chapter: Chemical Bonding

In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

- _____ **1.** The charge on an ion is
 - **a.** always positive.
 - **b.** always negative.
 - **c.** either positive or negative.
 - **d.** zero.
 - **2.** According to the octet rule, a calcium atom has a tendency to
 - **a.** lose one electron.
 - **b.** lose two electrons.
 - c. gain one electron.
 - d. gain two electrons.
 - **3.** If a compound forms by ionic bonding, which is *not* true?
 - **a.** A positively charged atom or group of atoms attracts a negatively charged atom or group of atoms.
 - **b.** The net charge of the compound is zero.
 - **c.** The compound contains just two atoms, each of opposite charge.
 - **d.** Several ions group together in a tightly packed structure.
 - ____ **4.** The only property listed that is *not* characteristic of ionic compounds is
 - **a.** high melting point.
 - **b.** hardness.
 - **c.** lack of crystal structure.
 - **d.** brittleness.
- **5.** Which formula listed below represents a polyatomic ion?
 - **a.** HCO_3^-
 - **b.** H₂SO₄
 - c. Cl^-
 - **d.** Na⁺
 - **6.** The crystal structure of an ionic compound depends on the
 - **a.** sizes of the cations and anions.
 - **b.** ratio of cations to anions.
 - **c.** masses of the cation and anion.
 - **d.** Both (a) and (b)

- 7. The melting points of ionic compounds are higher than the melting points of molecular compounds because
 - **a.** ionic substances tend to vaporize at room temperature.
 - **b.** ionic substances are brittle.
 - c. attractive forces between ions are greater than the attractive forces between molecules.
 - **d.** the numbers of positive and negative charges are equal in an ionic compound.

8. A covalent bond is formed when two atoms

- **a.** share an electron with each other.
- **b.** share one or more pairs of electrons with each other.
- **c.** gain electrons.
- **d.** gain and lose electrons.

- 9. The molecule described by the figure above has an average bond length of
 - **a.** -70 kJ/mol.
 - **b.** -347 kJ/mol.
 - **c.** 154 pm.
 - **d.** 290 pm.
- **10.** The bond energy for the molecule described by the figure above is
 - a. 70 kJ/mol.
 - **b.** 347 kJ/mol.
 - **c.** 154 pm.
 - **d.** 290 pm.

Name	Class	Date

- **____11.** Two atoms will likely form a polar covalent bond if the electronegativity difference is
 - **a.** 0.1.
 - **b.** 1.0.
 - **c.** 2.5.
 - **d.** 4.0.
 - **12.** In which of these compounds is the bond between the atoms *not* a nonpolar covalent bond?
 - **a.** Cl₂
 - **b.** H₂
 - c. HCl
 - **d.** O_2
 - **13.** Bonding in molecules or ions that cannot be represented adequately by a single Lewis structure is represented by
 - **a.** resonance structures.
 - **b.** covalent bonding.
 - **c.** overlapping orbitals.
 - **d.** double bonding.
- **____14.** As the electronegativity difference between bonded atoms decreases, the bond becomes more
 - **a.** covalent.
 - **b.** ionic.
 - **c.** metallic.
 - **d.** Both (b) and (c)
- **15.** The boiling point of water, H₂O, is higher than the boiling point of hydrogen sulfide, H₂S, because water molecules are
 - **a.** less polar and form hydrogen bonds.
 - **b.** more covalent and form hydrogen bonds.
 - c. ionic and form hydrogen bonds.
 - $\boldsymbol{\mathsf{d}}.$ more polar and form hydrogen bonds.
 - **_16.** Even though the following molecules contain polar bonds, the only polar molecule is
 - **a.** CCl_4 .
 - **b.** CO_2 .
 - **c.** NH₃.
 - **d.** CH₄.

Name

17. As atoms bond with each other, they

- **a.** increase their potential energy, thus creating less stable arrangements of matter.
- **b.** decrease their potential energy, thus creating less stable arrangements of matter.
- **c.** increase their potential energy, thus creating more stable arrangements of matter.
- **d.** decrease their potential energy, thus creating more stable arrangements of matter.
- **18.** In which of the following compounds has the central atom *not* formed sp^3 hybrid orbitals?
 - a. CCl_4
 - **b.** CO₂
 - c. PCl₃
 - d. NH₃
- **19.** When a carbon atom's 2s and 2p orbitals hybridize, which orbitals do they form?
 - **a.** four sp^3
 - **b.** two sp^3
 - **c.** four *sp*
 - **d.** two *sp*

20. Which is the correct Lewis structure for SiF_4 ?

21. Which is the correct Lewis structure for C_2H_4 ?

Copyright © by Holt, Rinehart and Winston. All rights reserved.

- **22.** Which type of hybrid orbitals do oxygen atoms form in water molecules?
 - **a.** sp^4
 - **b**. sp^3
 - c. sp^2
 - **d.** *sp*
 - **__23.** Which type of bonding is characterized by overlapping orbitals that allow outer electrons of atoms to move about freely throughout the entire lattice?
 - **a.** ionic
 - **b.** covalent
 - **c.** metallic
 - **d.** multiple
 - **__24.** According to VSEPR theory, what is the shape of a molecule of CS_2 ?
 - **a.** linear
 - **b.** bent
 - **c.** trigonal-planar
 - **d.** tetrahedral
- **25.** According to VSEPR theory, what is the shape of a molecule of NBr_3 ?
 - a. bent
 - **b.** trigonal-planar
 - **c.** tetrahedral
 - **d.** trigonal-pyramidal