\qquad
\qquad

7-2 Study Guide and Intervention (continued)

The Pythagorean Theorem and Its Converse

Converse of the Pythagorean Theorem If the sum of the squares of the measures of the two shorter sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.

If the three whole numbers a, b, and c satisfy the equation $a^{2}+b^{2}=c^{2}$, then the numbers a, b, and c form a

If $a^{2}+b^{2}=c^{2}$, then Pythagorean triple.
$\triangle A B C$ is a right triangle.

Example Determine whether $\triangle P Q R$ is a right triangle.

$$
a^{2}+b^{2} \stackrel{?}{\underline{=}} c^{2} \quad \text { Pythagorean Theorem }
$$

$$
\begin{aligned}
10^{2}+(10 \sqrt{3})^{2} & \stackrel{?}{=} 20^{2} & & a=10, b=10 \sqrt{3}, c=20 \\
100+300 & \stackrel{?}{=} 400 & & \text { Simplify. } \\
400 & =400 \checkmark & & \text { Add. }
\end{aligned}
$$

The sum of the squares of the two shorter sides equals the square of the longest side, so the triangle is a right triangle.

Exercises

Determine whether each set of measures can be the measures of the sides of a right triangle. Then state whether they form a Pythagorean triple.

1. $30,40,50$
2. $20,30,40$
3. $18,24,30$
4. $6,8,9$
5. $\frac{3}{7}, \frac{4}{7}, \frac{5}{7}$
6. $10,15,20$
7. $\sqrt{5}, \sqrt{12}, \sqrt{13}$
8. $2, \sqrt{8}, \sqrt{12}$
9. $9,40,41$

A family of Pythagorean triples consists of multiples of known triples. For each Pythagorean triple, find two triples in the same family.
10. $3,4,5$
11. $5,12,13$
12. $7,24,25$

