Quantitative Finance Using R An Overview

Peter Carl Brian Peterson

1 June, 2012 University of Washington

Introduction

Describe the context within which development is taking place

- How and where R adds value in investing
- Our motivation for writing packages

Show three specific applications using R packages:

- Performance analysis relative to a peer group
- Strategic allocation of a portfolio
- Backtesting of a trading strategy

Discuss further work

- Google Summer of Code
- Areas of continuing development

Research Process and Capabilities

Capabilities View

Strategy Development	Performance Measurement	Performance Attribution	Performance Risk Attribution Measurement		Portfolio Construction	
What should work?	What has the strategy achieved?	How has the strategy achieved it?	What risks are being taken?	What can we do about risk?	What is the best use of our capital?	
What do we think about the environment?	Is performance on track with our expectations?	How does the strategy generate returns?	What risks does the strategy take?	What risks does our portfolio contain?	What are our objectives for return and risk?	
What scenarios or themes will affect performance and risk? Can we effectively tilt our portfolio to capture our views on performance? What is our "neutral" view?	How does performance look in context of risk? How did the strategy compare to its peers? What is a suitable benchmark for performance? How confident are we in our assessment?	Are we skilled or lucky? Are we deviating from what we've done in the past? How confident are we in our assessments?	What is its sensitivity to the risks? What risks does the aggregate portfolio contain? What is our exposure to extreme risks? What happens to the strategy/portfolio if?	 What is an appropriate level for each risk? What should we do about them? What should we hedge? What should we use / how much to hedge? How much should we be willing to pay for insurance? 	How do we deploy our capital to best meet those objectives? Can we design a portfolio for a particular objective? Is the level of diversification appropriate?	

Research Process

Objectives

Make high quality decisions efficiently, effectively.

Tools View

Functional Groupings

Applications/Reporting	Statementing	menting Attribution Risk		Screening		
		Reporting				
	Та	ibles Graph	nics			
Portfolio	Profit & Loss Account Hierarchy					
		Positions				
	Position		Transactio	on OMS Co	nnections	
Optimization/Sizing		Sizing/Allocatio	n			
	Risk Budgeting	Weighting	Optimizati	ion		
Modeling/Analytics	Return Forecas	st	Risk Forec	ast Backtesting	Shock	
	Valuation	Signal General	ion Risk Me	asurement	Simulation	
	Price	g				
Instrument						
	Contract Specif	fications	Corporate A	Actions		
		Instrument Sp	pecifications			
Time series	Calendars	Period Ag	gregation	Date Alignme	nt	
	Timezo	nes	Extended date/	time indexing		
Data	Real-Time	Histor	ical	Database Conne	ections	

Some R packages for Quantitative Research

Application/Reporting	plot.xts, PerformanceAnalytics, quantmod, Rmetrics
Portfolio	fPortfolio, portfolio, backtest, PortfolioAnalytics
Optimization/Sizing	PortfolioAnalytics, fPortfolio, portfolio, BLCOP, ROI, DEoptim,pso, soma, quantstrat
Modeling/Analytics	TTR, PerformanceAnalytics, quantstrat, etc. (most R packages fit here)
Instrument	FinancialInstrument
Time series	xts, zoo, timeSeries, its, irts
Data	RBloomberg, RTAQ, Reuters, InteractiveBrokers, tseries (Rmetrics), quantmod

- Focused on returns-based analysis of performance and risk.
- Analysis of return streams, whether distributed normally or not.
- In development since early 2006, packaged and first released to CRAN in 2007
- Collaboration, patches and suggestions from users in industry and academia worldwide
- Contains over 200 functions, including over 30 chart functions and 15 table functions

Over 20,000 lines of code, over 250 pages of documentation and vignettes ...and growing

PortfolioAnalytics

- Provides numerical solutions to portfolios with complex constraints and objectives
- Unifies the interface into different numerical optimizers
- Implements a front end to two analytical solvers: Differential Evolution and Random Portfolios
- Preserves the flexibility to define any kind of objective and constraint
- Work-in-progress, available on R-Forge in the *ReturnAnalytics* project

quantstrat

- Designed and used for 'real' quantitative strategies at all frequencies
- Many strategies may be constructed from all open source components
- Proprietary strategies add custom:
 - Indicators
 - Signal Functions
 - Order Sizing Logic
- R packages blotter and FinancialInstrument provide multiinstrument, multi-currency portfolio P&L support

Values represented as:						
Returns	Prices					
PerformanceAnalytics FactorAnalytics	quantmod TTR					
Positions rep	presented as:					
Weights	Transactions					
PortfolioAnalytics	quantstrat blotter					

Utility

Time Series: xts *Reference Data*: FinancialInstrument

Case Study: Peer Group Analysis

- Accrue evidence to help ask better questions
- Measurement, not prediction
- Consider return and risk together
- Small, biased samples of expensive data
- Comparisons can be tenuous
- Only one of a set of tasks taken to understand a current or potential investment

Performance Summary

Benchmarking and Regression

Fund Performance

Rolling 36-Month Regression versus EDHEC Conv Arb

Excess Return of Benchmarks

Excess Return of Benchmarks

Distributions

Value at Risk (VaR)

Scatter Plots

Rolling Performance

Performance During Trailing 36-Months

Statistics

	Semi Deviation	Gain Deviation	Loss Deviation	Downside Deviation (MAR=10%)	Downside Deviation (r1=4%)	Downside Deviation (0%)	Maximum Drawdown	VaR (99%)	Beyond VaR	Modified VaR (99%)
Japan CB VR20 TR	2.3	1.5	1.4	2.6	2.4	2.2	-24.0	5.2	5.2	5.2
Peer 10	2.4	0.6	2.3	2.3	2.5	2.9	-16.3	3.5	3.5	5.7
Peer 13	2.0	1.1	1.5	2.1	2.1	2.1	-14.7	3.9	3.9	6.1
Peer 11	2.6	0.6	2.5	2.5	2.6	3.0	-14.0	3.9	3.9	6.2
Fund	2.5	1.8	1.7	2.6	2.4	2.4	-21.8	5.2	5.2	6.6
Peer 14	2.0	0.8	2.1	1.9	2.2	2.7	-11.6	3.1	3.1	6.8
Peer 12	2.5	0.8	2.3	2.6	2.7	2.8	-17.6	4.1	4.1	7.3
Peer 9	2.8	1.0	2.3	2.7	2.8	3.0	-20.1	4.7	4.7	7.6
EDHEC Conv Arb	2.9	0.7	2.7	2.6	2.9	3.1	-27.8	3.9	3.9	8.5
Peer 8	2.8	0.7	2.8	2.5	2.9	3.2	-26.6	3.9	3.9	9.1
Peer-4	4.2	0.6	3.7	3.3	3.7	4.3	-32.7	5.9	5.9	9.1
Peer 1	2.7	0.9	2.7	2.5	2,7	3.2	-26.1	4.2	4.2	10.1
Peer 6	4.6	0.6	4.1	4.1	4.5	4.7	-28.6	7.2	7.2	10.9
Peer 7	3.4	1.6	3.8	3.5	3.8	4.3	-29.1	5.5	5.5	12.5
Asia.Pac CB VR40 TR	3.8	2.2	3.1	3.9	3.8	3.9	-43.4	7.9	7.9	13.1
Peer 3	6.4	0.9	5.6	5.5	6.0	6.2	-40.6	9.4	9.4	14.1
Peer 5	5.0	1.7	6.0	5.3	6.5	6.7	-36.5	7.6	7.7	16.0
Peer 2	17.4	0.9	11.9	10.1	11.4	12.2	-53.9	19.3	19.1	16.3

- Discuss the challenges of constructing hedge fund portfolios
- . Offer a framework for considering strategic allocation using hedge fund indexes
- Show the relative performance of multiple objectives

Portfolio Issues

Markowitz (1952) described an investor's objectives as:

- maximizing some measure of gain while
- minimizing some measure of risk.

Many approaches follow Markowitz and use mean return and standard deviation of returns for "risk".

Most investors would prefer:

- to be approximately correct rather than precisely wrong
- to define risk as potential loss rather than volatility
- the flexibility to define any kind of objective and combine constraints
- a framework for considering different sets of portfolio constraints for comparison through time
- to build intuition about optimization through visualization

Portfolio Issues

Real portfolios more often have complex objectives...

Construct a portfolio that:

- maximizes return,
- with per-asset conditional constraints,
- with a specific univariate risk limit,
- while minimizing component risk concentration,
- and limiting drawdowns to a threshold value.

Not a quadratic (or linear, or conical) problem any more.

Burns (R/Finance 2009) describes Random Portfolios

- From a portfolio seed, generate random permutations of weights that meet your constraints on each asset.
- More from Pat at http://www.portfolioprobe.com/blog/

Sampling can help provide insight into the goals and constraints of the optimization

- Covers the 'edge case'(min/max) constraints well
- Covers the 'interior' portfolios
- Useful for finding the search space for an optimizer
- Allows arbitrary number of samples
- Allows massively parallel execution

A very powerful, elegant, population based stochastic function minimizer

- doesn't require a smooth or differentiable function
- Continuous, evolutionary optimization
- Uses real-number parameters
- has shown converging power with difficult, non-convex portfolio problems

DEoptim package implements the algorithms described in:

- Differential Evolution A Practical Approach to Global Optimization by Price, K.V., Storn, R.M., Lampinen J.A, Springer-Verlag, 2005.
- Adaptive Differential Evolution by Zhang, J. and Sanderson, A.C. Springer-Verlag, 2009.
- Thanks to R co-authors David Ardia, Katharine Mullen, and Josh Ulrich

...broadly described as periodically reallocating the portfolio to achieve a long-term goal

- Understand the nature and sources of investment risk within the portfolio
- Manage the resulting balance of risk and return of the portfolio
- Applied within the context of the current economic and market situation
- Think systematically about preferences and constraints

EDHEC Index Trailing 36-Month Performance

From January 1997 to February 2012

From January 1997 to February 2012

Correlation of Indexes

uses corrplot package

Forecasting: Improving Our Estimates

Returns

- ARMA(1,1) to try to capture some of the time varying return structure
- Preserves the observed autocorrelation of the series
- Approaches the long-run means of the series near the end, losing time-varying structure
- Merely illustrative of what is possible with a more sophisticated model
- Model specification close to defaults in *rugarch*

Volatility

- Standard GARCH(1,1) framework
- Uses Dynamic Conditional Correlation to capture interdependencies among the series
- Modeled an asymmetric generalized hyperbolic distribution to allow for coskewness and cokurtosis of the return series
- Used *rmgarch*, little tuning of the specification for this example

4,000 Random Portfolios

as of 2008-06-30

Predicted StdDev

Turnover From Equal Weight

as of 2008-06-30

Degree of Turnover from Equal Weight Portfolio

Different Objectives' Portfolio Weights

Eq Wgt Mean SD Mean mETL Min SD Min mETL Eq SD Eq mETL Long/Short Equity Global Macro CTA Global Event Driven Fixed Income Arbitrage Equity Market Neutral Convertible Arbitrage T 1 0.00 0.10 0.20

as of 2008-06-30

Ex Ante Results

as of 2008-06-30

Sample StdDev

Sample Mean

Ex Ante vs. Ex Post Results

2008-06-30 to 2008-09-30

Out of Sample Results

Date

- . Generalize and discuss the architectural elements of a trading system
- Describe and implement a simple trend following system
- . Discuss the role of the packages used

Trade Simulation Tool Chain

Example R Packages

quantmod
indexing
RTAQ
xts

TTR signalextraction realized quantstrat quantmod Rgarch RQuantLib lspm Portfolio-Analytics blotter Financial-Instrument Performance-Analytics

Strategy Specification

- Complete specification of the business logic of the strategy
- Sufficient to
 - Model,
 - Test,
 - and Code
- Describes all required components of the strategy
- Should also define data requirements (e.g. tick, BBO, OHLC bars, etc.)
- Typically defined independently of instruments the strategy may be applied to

About the Faber Example

- A very simple trend following strategy:
 - Faber, Mebane T., "A Quantitative Approach to Tactical Asset Allocation." Journal of Risk Management (Spring 2007).
- Buy when monthly price > 10-month SMA.
- Sell and move to cash when monthly price < 10-month SMA.
- 10 years of monthly data, S&P Sector ETFs.
- No shorting, 'sell' goes to cash
- Positions are fixed.

Faber in R Code

```
currency('USD')
 symbols = c("XLF", "XLP", "XLE", "XLY", "XLV", "XLI", "XLB", "XLK",
                                                                              Code
 "XLU")
                                                                              Color Key:
for(symbol in symbols) { stock(symbol, currency="USD",multiplier=1) }
- getSymbols (symbols, src='yahoo', index.class=c("POSIXt","POSIXct"),
 from='1998-01-01')
                                                                                Financial-
 for(symbol in symbols) {
                                                                                Instrument
     x<-get(symbol)</pre>
     x<-to.monthly(x,indexAt='lastof',drop.time=TRUE)</pre>
                                                                                quantmod
     colnames(x) <-gsub("x", symbol, colnames(x))</pre>
     assign(symbol, x)
                                                                                blotter
 initPortf('faber', symbols=symbols, initDate='1997-12-31')
                                                                                quantstrat
 initAcct('faber', portfolios='faber', initDate='1997-12-31')
initOrders (portfolio='faber', initDate='1997-12-31')
                                                                                TTR
 strategy("faber", store=TRUE)
 add.indicator(strategy = 'faber', name = "SMA", arguments = list(x =
                                                                                xts
 quote(Cl(mktdata)), n=10), label="SMA10")
 add.signal(strategy='faber', name="sigCrossover", arguments = list
 (data=guote(mktdata), columns=c("Close", "SMA"), relationship="gt"),
 label="Cl.gt.SMA")
 add.signal(strategy='faber',name="sigCrossover", arguments = list
                                                                              No custom
 (data=quote(mktdata), columns=c("Close", "SMA"), relationship="lt"),
                                                                              code
 label="Cl.lt.SMA")
 add.rule(strategy='faber', name='ruleSignal', arguments = list
 (data=quote(mktdata), sigcol="Cl.qt.SMA", sigval=TRUE, orderqty=100,
                                                                              run
 ordertype='market', orderside=NULL, threshold=NULL), type='enter')
 add.rule(strategy='faber', name='ruleSignal', arguments = list
                                                                              demo('faber')
 (data=quote(mktdata), sigcol="Cl.lt.SMA", sigval=TRUE, orderqty='all',
 ordertype='market', orderside=NULL, threshold=NULL), type='exit')
 out <- applyStrategy(strategy='faber', portfolios='faber')</pre>
                                                                              from inside R
updatePortf (Portfolio='faber')
```

Γ

Faber Results

For individual positions...

...and the resulting portfolio

charts.PerformanceSummary()

FURTHER DEVELOPMENT

Google Summer of Code 2012

- Additional Metrics from Bacon (2008) for PerformanceAnalytics
- Portfolio attribution from Cristopherson, Carino, and Ferson (2009)
- Functionality from Attilio Meucci's Factors on Demand and other papers
- Additional closed form optimizer backends for PortfolioAnalytics
- Improvements to xts visualization and subsetting
- Extensions to RTAQ for high frequency time series analysis

Future Development

• FactorAnalytics

• Lead by Prof. Eric Zivot, recently added to R-Forge

• Possibilities for next summer?

- Data Envelopment Analysis (DEA) for relative performance measurement
- Parameter optimization for quantstrat
- Continued refinement of reporting frameworks

• CRAN releases for

- PerformanceAnalytics 1.1
- blotter, FinancialInstrument, quantstrat
- PortfolioAnalytics

• Future research