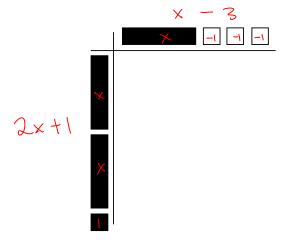
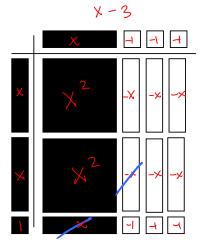
Math 10 - Unit 5 – Lesson 3 – N	MULTIPLYING USING A	ALGEBRA TILES OR ARE	EA MODEL
POLYNOMIALS UNIT	Name	EBlock:_	Date:
Warm up! Multiply then simplify the	following expressions) カラ	Date: grave the middle ign of the middle a set. 2nd the second
1. $(3x^2 - 1)(4x^2 - 2x + 1)$ = $12x^4 - 6x^3 + 3x^2 - 1$		2. $-2(b-5)^2$	a savare the seco
$= 2x^4 - 6x^3 + 3x^2 - $ $= 2x^4 - 6x^3 - x^2 + 2$	420-1200-1	$=-2(b^2-1)$ $=-2b^2+20$	ob t25)
Algebra Tiles:			
positive x^2 -tile negative x^2 -tile	positive x-tile	negative <i>x</i> -tile	positive 1-tile negative 1-tile
Before we start multiplying, let's do a		-	present polynomials!
1. X 2 X X X X X X X X X X X X X X X X X	2.	3.	X ² X ²
$= \chi^2 - 2 \chi + 3$ Zero pairs Example: Add the following using alg cancel at: 1. $(2x^2 + 3x - 4) + (3x^2 - 4x)$	$= -2 \times^2$ gebra tiles and write yo		$- \times $
			$(-2x^2 + 2x - 2) = x - 2x - 5$
Example: Subtract the following using	g algebra tiles and writ	re your answer symbolic	cally. (Don't forget
you can add zero pairs if you need to $1. (3x^2 + 5x - 4) - (2x^2 + 4x^2)$ $= \chi^2 + \chi - 2$	(-2) ne. add	2. $(2x^2 - 3x - 1) - \frac{1}{2}$	$(-2x^2 + 2x + 3) = 4x^2 - 5x - 4$
take) away 2 * ve x2 's Page 1	to	o pairs +	
take away -> It to x's	Ø < take Ø away 2 - Ve 1		dd in 27000 paics to find a

" need to add in 2 zero pairs to find-2x2

MATH 10 - UNIT 5 - LESSON 3 - MULTIPLYING USING ALGEBRA TILES OR AREA MODEL

POLYNOMIALS UNIT


Name: Block: ____ Date: ____


Multiply Binomials using Algebra Tiles

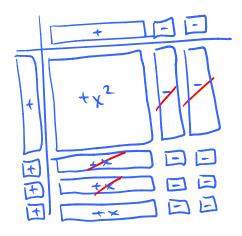
Example: Multiply (x-3)(2x+1) using algebra tiles.

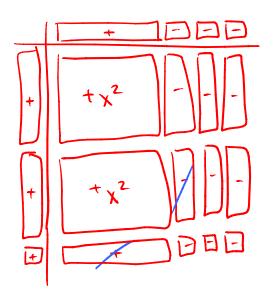
Step #1: Use algebra tiles to show the dimensions given in the question (x-3) and (2x+1)

Step #2: Complete a rectangle that has these dimensions.

Step #3: Write your answer symbolically!

$$(x-3)(2x+1)=2x^2-5x-3$$


2x+1


1.
$$(x-2)(x+3) = x^2 + x - 6$$

Try it! Multiply using algebra tiles and sketch your work. Write your answer symbolically.

1.
$$(x-2)(x+3) = x^2 + x - 6$$

2. $(x-3)(2x+1) = 2x^2 - 5x - 3$

MATH 10 - UNIT 5 - LESSON 3 - MULTIPLYING USING ALGEBRA TILES OR AREA MODEL

POLYNOMIALS UNIT

Name: Block: ____ Date: ____

Multiply Binomials using an Area Model

Example: Expand (3x + 4)(4x + 2) using an area model. Write your answer symbolically.

Step #1:

Draw a rectangle with sides 3x + 4 and 4x + 23x

Step #3:

Calculate the area of each smaller rectangle

Step #2:

Divide the rectangle into 2 smaller rectangles

	3x	4	4	
4 <i>x</i>				
2				

Step #4:

State your answer symbolically.

$$(3x+4)(4x+2)=12x^2+16x+6x+8$$

=12x2+22x+8

Try it! Expand the following expressions using an area model and write your answer symbolically.

1.
$$(x+3)(2x+1) = 2x^2 + 7x + 3$$

1.
$$(x+3)(2x+1) = 2x^2 + 7x + 3$$

2. $(3x+5)(4x+4) = |2x^2 + 32x + 20$

$$3x 5$$
 $4x | 12x^2 | 20x$
 $4 | 12x | 20$