Section 14.1 Work and Power

(pages 412-416)

This section defines work and power, describes how they are related, and explains how to calculate their values.

Reading Strategy (page 412)

Relating Text and Visuals As you read, look carefully at Figures 1 and 2 and read their captions. Complete the table by describing the work shown in each figure. For more information on this Reading Strategy, see the **Reading and Study Skills** in the **Skills and Reference Handbook** at the end of your textbook.

Figure	Direction of Force	Direction of Motion	Is Work Done?
1			
2A			
2B			
2C			

What Is Work? (pages 412-413)

- **1.** In science, work is done when a(n) _____ acts on an object in the direction the object moves.
- 2. Why isn't work being done on a barbell when a weight lifter is holding the barbell over his head?
- 3. Describe what conditions of force and motion result in maximum work done on an object. ______
- **4.** Is the following sentence true or false? A vertical force does work on an object that is moving in a horizontal direction.

Calculating Work (pages 413-414)

- **5.** In science, work that is done on an object can be described as the force acting on the object multiplied by the _____ the object moves.
- **6.** Circle the letter of the correct form of the work equation to use when determining the distance an object moves as a result of a force applied to it.
 - a. Distance = Force \times Work
- b. Distance = $\frac{\text{Force}}{\text{Work}}$
- c. Distance = $(Force)^2$
- d. Distance = $\frac{\text{Work}}{\text{Force}}$

Name	Class	Date		
Chapter 14 Work, Pow	er, and Machines			
7. The SI unit of work	is the			
8. Circle the letter of the force moves an obje	ne amount of work done when ct 1 meter.	a 1 newton		
a. 1 newton per sec	ond b. 1 joule			
c. 1 watt	d. 1 newton per meter	r		
What Is Power?	pages 414)			
9. Is the following senwork.	ence true or false? Power is the	e rate of doing		
10. In order to do work	faster, more	is required.		
11. Circle the letter of each	ach sentence that is true about	power.		
a. Power and work	are always equal.			
b. You can increase shorter period of	power by doing a given amou time.	nt of work in a		
c. When you decre increases.	ase the force acting on an objec	t, the power		
d. When you do les decreases.	s work in a given time period,	the power		
Calculating Powe	r (pages 415)			
_	on describing how to calculate	power.		
13. The SI unit of powe	r is the			
14. Circle the letter of the expression that is equivalent to one watt.				
a. one newton per meter				
b. one joule per me				
c. one newton per second				
d. one joule per sec	ond			
15. How much work do 30 seconds?	es a 100-watt light bulb do wh	en it is lit for		
James Watt and	Horsepower (page 416)			
16. Circle the letter of the one horsepower.	ne quantity that is approximate	ly equal to		
a. 746 J	b. 746 W			
c. 7460 N/m	d. 7460 J			

17. Why did James Watt use the power output of a horse to compare the power outputs of steam engines he designed?