Solubility

pH, Acids and Bases

What is Dissolving?

When an ionic compound (eg salt) dissolves in water, the compound disalssociaies. (breaks apart into cations and anions)
$\mathrm{Ex}: \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \xrightarrow{H, o(n)} \mathrm{Ca}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)$
When a covalent compound (eg sugar) dissolves in water, it does not disassociate. Molecules of the covalent compounds simply disperse due to attraction with polar water molecules.

Dissolved Ionic Compounds are really ions in solution.
NaCl
(aq)
really rrealrisi...

$$
\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Strong electrolytes

$>$ all solute particles break
apart into ions
conducts electricity very efficiently

- includes:
- strong acids
- strong bases
- soluble salts
(ionic compounds)

Weak electrolytes

$>$ only a few

 solute particles create jons> conducts electricity only slightly
> includes:

- weak acids
- weak bases

Nonelectrolytes

$>$ no solute particles create ions
$>$ do not conduct electricity
$>$ still must dissolve
> includes: soluble but nonionic compounds (ex. sugar, ethanol)
- it falls apart into ions:
$\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}^{+} \quad+\quad \mathrm{OH}^{-}$
More accurately, it looks like this:
$2 \mathrm{H}_{2} \mathrm{O} \Rightarrow$
This is called the self ionization of water.
it only occurs to a small degree in pure water...

What does this have to do with pH ?

```
2 H2O }=>\quad\mp@subsup{\textrm{H}}{3}{}\mp@subsup{\textrm{O}}{}{+
            Hydronium ion
        Acids
    increase the
    concentration
    of Hydronium
        lons
lons
```


ACIDS	BASES
> Proton Donors	> Proton Acceptors
> Formulae start with H	> Formulae end with OH
> Increase $\mathrm{H}_{3} \mathrm{O}^{+}$conc.	> Increase OH- conc.
> Taste Sour or Tart	> Taste Bitter
Ex:	Ex:
Citric Acid	Ammonia
Lactic Acid	Baking Soda
Vinegar (acetic acid)	Dran-o
HCl	NaOH
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Ca}(\mathrm{OH})_{2}$
HNO_{3}	KOH

Naming Acids

> Acids always have hydrogen at the front of the formula
$>$ Ex: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$
$>$ To Name Binary Acids ($\mathrm{H}+$ element)

- Hydro \qquad ic Acid
> To Name Ternary Acids ($\mathrm{H}+$ polyatomic ion)
- Name the polyatomic ion:

If the polyatomic ion ends in -ate, the acid will end in -ic acid If the polyatomic ion ends in -ite, the acid will end in-ous acid
If the polyatomic ion ends in -ide, the acid will be named hydro ___ ic acid, (it is probably a binary acid, above)

Naming Acids, Con't

> To Name Ternary Acids (H + polyatomic ion)

- Name the polyatomic ion:

If the polyatomic ion ends in -ate,
the acid will end in -ic acid
If the polyatomic ion ends in -ite,
the acid will end in -ous acid
If the polyatomic ion ends in -ide,
the acid is named hydro \qquad ic acid

Examples

$>\mathrm{HCl}$-- hydrochloric acid
$>\mathrm{HBr}$-- hydrobromic acid
$>$ HF -- hydrofluoric acid
$>\mathrm{HNO}_{3}$-- nitric acid (nitrate --> nitric)
$>\mathrm{HNO}_{2}$-- nitrous acid (nitrite -->nitrous)
$>\mathrm{HCN}$ - hydrocyanic acid

Acid-Base Reactions

Neutralization Reactions and Salts

- Neutralization occurs when a solution of an acid and a base are mixed:

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaCl}(a q)
$$

- Notice we form a salt (NaCl) and water.

[^0]
Writing Formulas for Acids

$>$ Hydrogen always has a +1 charge
$>$ Just like always, use subscripts to make a neutral compound.
> Ex: Sulfuric Acid is H^{+1} and $\left(\mathrm{SO}_{4}\right)^{-2}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$

Complete the neutralization
reactions:
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{KOH} \rightarrow$
$\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow$
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow$

Complete the neutralization reactions:
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$
$\Rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$
$\Rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$\Rightarrow 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{Li}_{3} \mathrm{PO}_{4}$

[^0]: Neutralization Reactions between acid and base
 produce water and a salt.

