Solubility

pH, Acids and Bases

What is Dissolving ?

When an ionic compound (eg *salt*) dissolves in water, the compound **disassociates**. (breaks apart into cations and anions)

Ex: $Ca(NO_3)_2(s) \xrightarrow{H_2O(1)} Ca^{2+}(aq) + 2NO_3^{-}(aq)$

When a covalent compound (eg sugar) dissolves in water, it does *not disassociate*. Molecules of the covalent compounds simply disperse due to attraction with polar water molecules.

Weak electrolytes

- only a few
 solute particles
 create ions
- conducts electricity only slightly
- includes:
 - weak acids
 - weak bases

Nonelectrolytes

- > no solute particles create ions
- > do not conduct electricity
- > still must dissolve
- includes: soluble but nonionic compounds (ex. sugar, ethanol)

What doe	es this have	to do	with pH?
2 H ₂ O →	H₃O⁺	+	OH⁻
H	ydronium ion	hydro	xide ion
Acids	Acids		
increase	increase the		
concentra	concentration		
of Hydron	of Hydronium		
lons	lons $ \begin{array}{l} \text{They do this by}\\ \text{donating H}^+\\ \text{ions (protons),}\\ \text{which neutralize}\\ \text{the OH}^-:\\ \text{H}^+ + \text{OH}^- \Rightarrow \text{H}_2\text{O} \end{array} $		

ACIDS	BASES	
> Proton Donors	> Proton Acceptors	
Formulae start with H	Formulae end with OH	
> Increase H ₃ O ⁺ conc.	> Increase OH conc.	
> Taste Sour or Tart	≻ Taste Bitter	
Ex:	Ex:	
Citric Acid	Ammonia	
Lactic Acid	Baking Soda	
Vinegar (acetic acid)	Dran-o	
HCI	NaOH	
H ₂ SO ₄	Ca(OH) ₂	
HNO ₃	КОН	

Naming Acids

- Acids always have hydrogen at the front of the formula
- > Ex: HCI, HBr, HCIO₄, H₂SO₄
- To Name Binary Acids (H + element)
 Hydro _____ ic Acid
- > To Name Ternary Acids (H + polyatomic ion)
 - Name the polyatomic ion: If the polyatomic ion ends in -ate, the acid will end in -ic acid If the polyatomic ion ends in -ite, the acid will end in -ous acid If the polyatomic ion ends in -ide, the acid will be named hydro ic acid. (It is probably a binary acid, above)

Naming Acids, Con't

To Name Ternary Acids (H + polyatomic ion)
 Name the polyatomic ion:

- If the polyatomic ion ends in -ate, the acid will end in -ic acid
- If the polyatomic ion ends in -ite,

the acid will end in -ous acid

If the polyatomic ion ends in -ide,

the acid is named hydro _____ic acid

Examples

- > HCI -- hydrochloric acid
- HBr -- hydrobromic acid
- ► HF -- hydro<u>fluor</u>ic acid
- > HNO₃ -- nitric acid (nitrate --> nitric)
- > HNO₂ -- nitrous acid (nitrite -->nitrous)
- ► HCN hydrocyanic acid

Writing Formulas for Acids

- > Hydrogen always has a +1 charge
- Just like always, use subscripts to make a neutral compound.
- > Ex: Sulfuric Acid is H^{+1} and $(SO_4)^{-2}$

 H_2SO_4

Acid-Base Reactions

Neutralization Reactions and Salts

• Neutralization occurs when a solution of an acid and a base are mixed:

 $\operatorname{HCl}(aq) + \operatorname{NaOH}(aq) \rightarrow \operatorname{H_2O}(l) + \operatorname{NaCl}(aq)$

• Notice we form a salt (NaCl) and water.

Neutralization Reactions between acid and base produce water and a salt.

Assignment Complete the following reactions

- > HCI + NaOH → HOH + NaCI > H_3PO_4 + 3NaOH → 3HOH + Na₃PO₄
- > HNO3 + KOH 🌖
- <u>> HNO₃ + NH₄OH</u> →

Complete the neutralization reactions:
HC₂H₃O₂ + KOH →
HNO₃ + NaOH →
$H_2SO_4 + NH_4OH \rightarrow$
$H_3PO_4 + Mg(OH)_2 \rightarrow$
$(\mathbf{a}) \in (\mathbf{a})$

Complete the neutralization reactions: HCI + NaOH \rightarrow H₂O + NaCl \rightarrow 2H₂O + K₂SO₄ \rightarrow 2H₂O + Ca(NO₃)₂ \rightarrow 3H₂O + Li₃PO₄