
Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Data Structure Reverse Engineering
Digging for Data Structures

Polymorphic Software with DSLR

Scott Hand

October 28th, 2011

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

The Current Situation

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

The Current Situation

What’s Happening?

Effectiveness of AV solutions not what it used to be

Some are calling for dissolution of AV industry (Source)

Lots of botnets

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

The Current Situation

What’s Happening?

Effectiveness of AV solutions not what it used to be

Some are calling for dissolution of AV industry (Source)

Lots of botnets

Why?

Signature checking just greps for patterns

Weak against obfuscation

Packing

Code polymorphism

Junk bytes

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

The Current Situation

Example of AV Weakness

Whitepaper published by SANS institute examined efficacy

of AV apps in detecting Metasploit payloads.

Obfuscation on payload that was detected by 14 out of 32

AV engines led to its detection by only 4 out of 32 engines.

This was only on the Windows platform. Linux AV tools

failed 100% of the time.

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Motivation for New Approach

Why Data Structures?

Previous weaknesses focused on problems with code

matching approaches

Such obfuscation attempts change code but maintain

abstractions

Maybe we can find a way to look for patterns in those

abstract structures...

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Description of Data Structure Approach

Some Properties

All programs use data structures

These data structures are abstractions of implementation

details

The data structures used tend to be very similar between

programmers

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Description of Data Structure Approach

Some Properties

All programs use data structures

These data structures are abstractions of implementation

details

The data structures used tend to be very similar between

programmers

Approach:

We can try to look for general compound data structures.

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Laika Overview

Key Challenges

Identify position and size of objects

Use potential pointers in image to estimate object positions

and sizes

Determine which objects are similar

Convert objects from sequences of raw bytes into

sequences of semantically valued blocks

"Probably pointer blocks", "probably string blocks", etc

Cluster objects with similar sequences of blocks using

Bayesian unsupervised learning

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Laika Overview

Empirical Approach

1 Built a virus checker on top of Laika

2 Check against conventional scanners
3 Results

Laika has 99% accuracy

ClamAV has 85% accuracy

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Classification

Input is a set of unknown objects

Identifies distinguishing features (feature selection

problem)

Train a classifier

Make inferences about the class of each object

Output is set of objects with tagged classes

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Types of Classification - Data Tagging

Supervised Learning

Inference engine is trained on labeled data with a set of

given classes. Easier, more effective, simpler to validate.

Labeled data not always possible.

Unsupervised Learning

Inference engine is given data set and asked to generate a

set of classes. Engine finds number of distinct classes and

tags items accordingly

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Types of Classification - Underlying Learning Method

Generative - Learning machine attempts to learn an

underlying probability distribution. This is helpful because

probabilistic methods such as expectation maximization (or

its Bayesian counterpart maximum a posteriori) become

available to use.

Discriminative - Learning machine attempts to learn the

best way to determine class boundaries. This is often more

specialized and data efficient at the cost of flexibility.

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Feature Selection

Nature of the Problem

Feature selection is the most important part of designing

any classifier

Often independent of classification method

Especially hard for this problem, as objects from same

class will still often have completely different byte values

Block Types

Convert each machine word into a block type

Basic types:

Address

Zero

Char

Data

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Feature Selection

Atom Types

Classes are represented as vector of atoms

Atoms are a collection of blocks, so we need to identify

atoms from block streams

Basic atom types:

Pointer

Zero

String

Integer

Looks like there’s some relation between atom and block

types...

A block type is an atomic type with some error. This can be

observed by examining P(blocktype|atomictype)

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Finding Data Structures

Basic Process

1 Scan through memory and identify pointers

2 Tentatively estimate the start position of objects using

locations from pointers

3 Find the end position using estimation done during

clustering

4 The rest of the block past the end of the object is classified

as random noise

5 Introduce a random atomic type to handle this noise

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Heuristics

Exploiting Malloc

Example: Using the Lea allocator in GNU libc leaks chunk

size information.

More general: Most malloc algorithms keep similar objects

in the same area of memory.

Extremely effective, but does not improve Laika’s accuracy.

Why?

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Heuristics

Exploiting Malloc

Example: Using the Lea allocator in GNU libc leaks chunk

size information.

More general: Most malloc algorithms keep similar objects

in the same area of memory.

Extremely effective, but does not improve Laika’s accuracy.

Why?

Laika’s similar size estimations leads to it already knowing

that nearby objects are similar

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Bayesian Model

The l th machine word of memory image M is notated Ml .

The k th atomic type of class j is ωjk .

X is the input list, with Xi indicating the position i th object

in X .

We want to maximize the most likely objects and classes
given a memory image. An equation for this can be
obtained with the following steps:

1 Bayesian approach means MAP. We can get this from

Bayes’ rule as P(Θ|X) = P(X |Θ)P(Θ)
P(X) .

2 Plugging in the values specific to this problem we get

P(ω,X |M) = P(M|ω,X)P(ω,X)
P(M) .

3 Applying the chain rule to the class and object joint

distribution, we obtain P(ω,X |M) = P(M|ω,X)P(X |ω)P(ω)
P(M) .

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Bayesian Model

Our normalizing constant P(M) can be dropped as we only

care about the likelihood, not the probability

We assume independence both between and within

classes

This lets us calculate the prior distribution easily as

P(ω) =
∏

j

∏
k P(ωjk).

P(X |ω) represents the probability of locations and sizes of

the list of objects based on our class model. The term is 0

for illegal solutions and 1 otherwise. P(M|ω,X) represents

the model’s fitness for the data. This can be calculated as

P(M|ω,X) =
∏

l P(Ml |ω,X)

The previous method of calculating the likelihood equation

makes a Naive Bayes assumption; it assumes data is

conditionally independent to other data.

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Bayesian Model - Putting It All Together

As stated, the probability being sought is

P(ω,X |M) ∝ P(M|ω,X)P(X |ω)P(ω)

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Bayesian Model - Putting It All Together

As stated, the probability being sought is

P(ω,X |M) ∝ P(M|ω,X)P(X |ω)P(ω)

Substituting the prior distribution yields

P(M|ω,X)P(X |ω)
∏

j

∏
k P(ωjk)

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Bayesian Model - Putting It All Together

As stated, the probability being sought is

P(ω,X |M) ∝ P(M|ω,X)P(X |ω)P(ω)

Substituting the prior distribution yields

P(M|ω,X)P(X |ω)
∏

j

∏
k P(ωjk)

Taking the function δ : X × ω → {0, 1} returning 0 for illegal

solutions and 1 otherwise, adding in the list suitability

factor yields δ(X , ω)P(M|ω,X)
∏

j

∏
k P(ωjk)

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Bayesian Model - Putting It All Together

As stated, the probability being sought is

P(ω,X |M) ∝ P(M|ω,X)P(X |ω)P(ω)

Substituting the prior distribution yields

P(M|ω,X)P(X |ω)
∏

j

∏
k P(ωjk)

Taking the function δ : X × ω → {0, 1} returning 0 for illegal

solutions and 1 otherwise, adding in the list suitability

factor yields δ(X , ω)P(M|ω,X)
∏

j

∏
k P(ωjk)

Finally, adding in the model fitness factor yields

P(ω,X |M) ∝ δ(X , ω)
∏

l P(Ml |ω,X)
∏

j

∏
k P(ωjk)

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Bayesian Model - Final Equation

Maximize:

P(ω,X |M) ∝ δ(X , ω)
∏

l P(Ml |ω,X)
∏

j

∏
k P(ωjk)

Intuition

First term does sanity checking

Second term penalizes Laika for putting an object into an

unlikely class and makes sure the solution reflects the

particular memory image

Third term encourages simple solutions by penalizing

approaches with many classes

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

More Optimizations

Typed Pointers

Simple pointer/integer classifications produce reasonable

results, but we can further optimize by introducing typed

pointers

If all instances of class have a pointer at the same offset,

it’s likely that the targets of those pointers share a class

Good for small classes and objects with no pointers

Increases computational complexity. Breaks our previous

independence assumptions

Will cause small errors to propagate

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

One More Consideration...

Dynamically-Sized Arrays

Not all classes have feature vectors of the same size. We will

allow objects to wrap around modulo the size of a class. This

means an object can be classified as a contiguous set of

instantiations of a given class - an array.

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Implementation

Code Details

Done in Lisp

Unsupervised learning is difficult

Use approximation scheme based on computing

P(ω,X |M) incrementally

Uses typed pointers as a guiding heuristic

Empirical Method

Used Gentoo Linux to build applications and libraries with

minimal optimizations, debugging symbols

Wrote a wrapper for malloc to track allocations and

evaluate Laika’s ability to identify them

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Results

Data Structure Detection

Mostly correct

Some difficulties

Heap is extremely noisy

Only 30% of objects contained a pointer, remaining 70%

classified by objects pointing to them

Poor software practices such as tail accumulator array in X

Window data structure. Solution? Send X Window

developers a dirty sock.

Percentage of success was around 65% without malloc

info, around 0.78 with malloc info.

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Results

Program Classification

Agobot - 99.4% (83% ClamAV)

Kraken - 99.8% (85% ClamAV)

Storm - 99.9% (100% ClamAV)

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Analysis of Laika

Good

At worst, it is defense in depth by posting malware authors

different challenges

At best, it can synergize with code analysis

Bad

Won’t work with large class of simple malware

Much more resource intensive

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

How Can We Beat Laika?

Polymorphic Data Structures

Randomize data structure layout

Done during compilation

Can evade Laika-style detection

Can also help foil rootkit attacks

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

More about Data Structures

They are ubiquitous

Network protocol reverse engineering (guided fuzzing)

Buffer overflow attacks

Kernel rootkits require knowledge of OS data structures

Attack signatures (Laika)

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

A Few Things about Randomization...

Examples where it doesn’t work

1 Not as helpful in network communication because other

parties are involved

2 Public definitions cannot be randomized

3 Tail accumulator arrays rely on the zero-length array to be

at the end of the data structure

4 Programmers may use direct data offsets to access some

fields

5 When data structure order is used during value initialization

How to address this?

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

A Few Things about Randomization...

Similar issues

Monoculture leads to large-scale reproductive attacks

We should aim to embrace randomization

Similar solutions:

Address space randomization

Instruction set randomization

Data randomization

In a similar spirit, let’s examine data structure layout

randomization (DSLR)

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Randomizable Data Structures

Mitigation steps

Data structures are randomizable if and only if it is not

exposed to external programs or does not violate gcc

syntax or programmer intention

We ask the programmer to indicate when a data structure

is randomizable

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

A Simple Approach

Reorder Data Structure Layout

Pretty straightforward

Given n structures each with m fields, this gives (m!)n

program combinations.

Is it actually that simple?

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

A Simple Approach

Reorder Data Structure Layout

Pretty straightforward

Given n structures each with m fields, this gives (m!)n

program combinations.

Is it actually that simple?

Identical Layouts

This occurs when reordering the data structure produces

an isomorphic data structure

Example: a data structure containing int followed by int

is not changed by reordering

Solution? Insert junk data into the data structure

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Implementation with gcc

Possible places to do randomization

1 Abstract Syntax Tree (AST)

2 GIMPLE (representation with at most three operands)

3 Static single assignment (SSA) tree representation

4 Register-transfer language (RTL) tree

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Implementation with gcc

Possible places to do randomization

1 Abstract Syntax Tree (AST)

2 GIMPLE (representation with at most three operands)

3 Static single assignment (SSA) tree representation

4 Register-transfer language (RTL) tree

Reasons for choosing AST

AST retains a lot of program source code information

AST is easier to understand and more convenient to modify

AST occurs before gcc has determined layout of data

structures, so we can reorder data structure members

without computing specific memory addresses.

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Which Data Structures to Randomize

Our choices

struct

class

Function stack variables

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Example

struct test

 {

 int a;

 char b;

 int *c;

 };

test

a c

b

Original

test

b

G

c

a

Randomized

(a) (b) (c)

G

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

DSLR Implementation in GCC

Four Key Components

1 Keyword Recognizer

2 Re-orderer

3 Padder

4 Randomization Driver

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Keyword Recognizer

A few new keywords are introduced:

1 __obfuscate__ - This lets gcc know that a data structure

may be randomized. It is followed by some specific options.

2 __reorder__ - This tells gcc to reorder the elements in a

structure.

3 __garbage__ - This tells gcc to insert garbage into the

data structure.

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Implementation Details

Reorder

When generating AST for a program, gcc chains members

of a data structure to a list.

When finished, the reorder keyword is encountered and it

uses a seed from the randomization driver to reorders the

chain.

Padder

Carried out in the process as reordering

Size of garbage items is determined by randomization

driver

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Implementation Details

Randomization Driver

We need to be able to ensure randomization consistency

across a single project build

Stores a random value (either from project build file or from

the glibc function random then stored) and a count of

the number of randomized fields.

Reordering is done with a recursive Knuth shuffle

Padding selects fields from sizes in the set 1, 2, 4, 8.

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Empirical Analyses

Effectiveness

Apply to goodware and malware

Goodware includes programs such as openssh

Malware includes programs from offensive computing and

VX Heavens

Achieves a code difference between 3 and 17%.

Rootkit Defense

Used DSLR to randomize the task_struct data

structure in the version 2.6.8 Linux kernel

Prevented 4 out of 6 rootkits tested

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Empirical Analyses

Evaluation against Laika

One small problem: Laika’s released version only works on

Windows binaries, DSLR uses gcc

Had to manually execute the randomization methods

Tried 3 Windows programs: agobot, 7-zip, and notepad.

Laika could not process notepad, so proceeded with only

the other two

Worked well with agobot (used previously to demonstrate

Laika)

7-zip was not quite as effective. Possible reasons include

that 7-zip has lots of unrandomizable structures and that

high library code usage. However, data structure analysis

might not be a great idea when library usage is so high

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Empirical Analyses

Performance Overhead

Caused mainly by random value lookup, field count, and

field reordering

On average, only around 2% performance overhead to gcc

Some applications were actually faster, possibly due to

data locality improvements

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Limitations and Future Work

Does not support other languages such as Java, as it uses

gcc at a language specific AST level.

Randomizability of a data structure cannot be determined

automatically

Could use some other techniques such as struct and class

splitting

Outline

1 Digging for Data Structures

Motivations

Introduction

Laika Details

Conclusion

2 Polymorphic Software with DSLR

Introduction

Technical Challenges

Evaluation

3 Concluding Remarks

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

Concluding Remarks

Any questions?

Digging for Data Structures Polymorphic Software with DSLR Concluding Remarks

References

Cozzie, Anthony and Stratton, Frank and Xue, Hui and

King, Samuel T.

Digging for data structures.

Proceedings of the 8th USENIX conference on Operating

systems design and implementation

Lin, Zhiqiang and Riley, Ryan D. and Xu, Dongyan

Polymorphing Software by Randomizing Data Structure

Layout.

Proceedings of the 6th International Conference on

Detection of Intrusions and Malware, and Vulnerability

Assessment.

