
1

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 1 -

Markus Völter
voelter@acm.org
www.voelter.de

Software Architecture
Documentation

- 1 -

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 2 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

2

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 3 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 4 -

Architecture/System Categories – Focus

• Small, ad-hoc systems typically developed by small
teams or single people

• Large systems, that are developed by larger teams,
typically long-lived, strategic

• Product Lines & Platforms, i.e. base architectures on
top of which a family of systems is built often by several
teams, strategic

• We will primarily focus on large systems & product
lines – since for small ad-hoc systems architecture
documentation is often not essential

3

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 5 -

Aspects of Software Architecture

• This diagram outlines a number of terms and concepts
we will use in the rest of this presentation.

Conceptual Architecture

Technology Mapping

Language(s)
Implementation

Technologies

Programming Model

Application

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 6 -

Application vs. Conceptual Architecture

• Any non-trivial, well-architected system typically consists
of many instances of a limited set of concepts.

• Components & Connectors, Pipes & Filters, Layers, etc.

• Architectural Patterns & Styles are good starting points

• We call these limited set of concepts and their
relationships the conceptual architecture

• The concrete instantiation of these concepts used to build
a specific application is called the application
architecture

• A well-defined conceptual architecture is essential for
large systems and product lines – to make sure the
system(s) is/are

• internally consistent

• understandable

• evolvable

4

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 7 -

Application vs. Conceptual Architecture II: Examples

• Application Architecture:

We want to build an enterprise system that contains
various subsystems such as customer management,
billing and catalogs. In addition to managing the data
using a database, forms and the like, we also have to
manage the associated long-running business
processes.

• Conceptual Architecture:

Core building blocks are components, interfaces, data
types, business processes and communication
channels. Communication is synchronous and local.
Communication to/from processes is asynchronous and
remote. Components are deployed/hosted in some kind
of container that takes care of the technical concerns.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 8 -

Conceptual Architecture vs. Technology Decisions

• A conceptual architecture should be as independent of
specific technology decisions as possible (POJOs)

• Technologies include OS, DOC or Messaging Middleware,
drivers, UI frameworks

• We do not aim to abstract away languages or paradigms

• The mapping to a specific technology (or several
technologies) should be specified in a separate step

• The mapping should be guided by non-functional and
operational requirements that are specified as part of
the conceptual architecture

• This approach is essential to make sure the technological
aspects are well isolated:

• to be able to exchange some of the technologies

• to simplify application development by isolating it as
far as possible from the details of the technologies

5

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 9 -

Conceptual Architecture vs. Technology Decisions: Ex.

• Components are implemented as stateless session
beans with local interfaces only.

• Processes are implemented as message driven beans;
messaging is implemented via a JMS implementation.

• Data structures and process state are persisted into a
relational database using JPA-based persistence.

• We use JBoss as the J2EE container to host the
application components.

• Oracle is used as the database.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 10 -

Conceptual Architecture vs. Programming Model

• The conceptual architecture and its concrete technological
realization can be quite complex – in order to satisfy all
the (non-functional) requirements

• Application developers have to be given a well-defined
programming model that makes application
development based on the architecture as straight forward
as possible

• “Make typical cases simple, and exceptional cases
possible”

• The programming model should hide as much of the
technology as possible – and make the conceptual
architecture accessible

• It can be seen as the “architecture API”

6

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 11 -

Conceptual Architecture vs. Programming Model: Example

• How do I write a component?

• How do I specify a process?

• How do I instantiate a data object?

• How do I use channels for communication?

• How do I send events to a process?

• How do I pass data along?

• What are the services the container will provide for me?

• Which features of the Java programming language can I
not use?

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 12 -

Conceptual Architecture vs. Programming Model: Example II

• A component:

• A process comp’t:

public @component class AddressManager

implements IAddressStore {// provides AddressStore

private IPersonDAO personDAO;

public @resource void setPersonDAO(IPersonDAO d) {

this.personDAO = d; // setter for dao

} // interface

public void addOrUpdateContact(Person p) {

... // from IAddressStore

}

public void addAddress(Person p, Address a) {

... // from IAddressStore

}

public Address[] getAddresses(Person p) {

... // from IAddressStore

}

}

public @process class PaymentProcess

implements IPaymentProcessTrigger {

private ICustomerManager custMgt;

public @resource void setCustomerManager(

ICustomerManager mgr) {

this.custMgr = mgr;

}

public @trigger void paymentMade(int procID) {

PaymentProcessInstance i = loadProcess(procID);

if (amountCorrect()) {

// advance to another state…
}

}

public @trigger void paymentTimeout(int procID) {

PaymentProcessInstance i = loadProcess(procID);

... send reminder using the custMgr ...

}

}

7

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 13 -

Architectural Process

• An architecture (conceptual and application) evolves
over time as we build a system (or over several systems)

• There may be a more or less appropriate initial idea…
• … maybe based on architectural styles & patterns …
• … but it will always evolve over time

• However, at any given time there is the one-and-only
correct architecture

• The notion of what this one-and-only correct architecture
is changes over time, but at any given time it is well-
defined

• So, it is essential that applications are (in the process of
becoming) consistent with that architecture at any
point in time to keep the system consistent

• Ideally you want to “enforce” the architecture via tools…

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 14 -

What needs to be documented?

• Conceptual level:

• The conceptual architecture

• Stakeholders and their needs

• Rationales why the conceptual architecture is as it is

• The programming model

• The technology mapping

• Application Level:

• The application architecture

• Stakeholders and their needs

• Rationales why the application architecture is as it is

• We will focus mainly on the conceptual level

8

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 15 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 16 -

Documentation Fundamentals for all Artifacts

• For each artifact, define and state the target audience –
and make sure the content is relevant to that audience

• Use a suitable medium/channel (see below)

• Document only as little as possible

• Avoid duplication! Document every aspect in one place
only – and use links (not just references!) to connect
related topics

• Just as with code, put documentation into the Version
Control System (and not on some strange Web
Collaboration Platform)

• That’s true for the development of the docs
• There might be a different publishing channel

9

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 17 -

Documentation Fundamentals for all Artifacts II

• Always document top down

• provide progressively more details only for those
readers who want to actually know them

• Make sure concepts and the big picture is
understandable without rummaging through all the
details!

• Try to structure an architecture (or at least its
documentation) into layers, or levels, or rings

• First cover only the basic layer

• Then add more and more layers to the picture

• This makes things easier to comprehend

• For important things, use several descriptions,
representations, formulations, channels, renderings…

• Visualize! … see later.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 18 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

10

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 19 -

Glossaries

• A glossary lists the relevant architectural concepts
and their meaning and relationships

• It is useful to introduce the basic ideas and familiarize
readers with the terms used in the architecture

• To make the glossary less abstract, make sure an
example is provided for each of the introduced terms

• It can be used for the conceptual architecture and the
application architecture – but it is more important for
the conceptual architecture

• Target Audience: Everybody technical

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 20 -

Glossary Example

11

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 21 -

Structured Glossaries

• Represents the core concepts as a diagram, highlighting
the relationships between the concepts

• UML Class Diagrams are very well suited for this kind of
description

• They are an addition to normal glossaries, not a
replacement, since they don’t explain concepts – they
just show their relationships

• For modelers: these are not the same as meta models,
since they are less formal, less detailed, and generally not
“implementable”

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 22 -

Structured Glossaries Example

Data Type

Simple Type

Complex Type

Entity

referencesDTO

InterfaceOperationParameter

is of type

has many has many

Component

provides

any number

of

uses

any number

of

Process
triggers

invokes

12

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 23 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 24 -

Referencing Patterns

• If you’re describing a certain software structure, and that
structure has already been documented as a pattern, then
it makes sense to reference that pattern – your readers
might know it!

• There’s a huge body of patterns in the literature, on
topics such as

• Distributed (Object) Systems [POSA2, POSA4]

• Remoting Infrastructures [Remoting Patterns]

• Resource Management [POSA3]

• Patterns of Enterprise Application Architecture [PoEAA]

• Enterprise Integration Patterns [EIP], Integration Patterns
[IP]

13

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 25 -

Architectural Patterns

• Architectural patterns can be used to describe well-
working architectural styles and blueprints.

• Many have been described in the POSA series books, for
example, specifically in [POSA1].

• Examples include

• Blackboard

• Pipes and Filters

• Microkernel

• Components & Connectors

• Many of the same architectures have also been
documented as architectural styles by the SEI. These
can be references, too, of course.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 26 -

Architectural Patterns and Styles; Overview

14

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 27 -

The Pipes and Filters Pattern

• Thumbnail:

• The Pipes and Filters pattern provides a structure for systems that
process a stream of data.

• Each processing step is encapsulated in a filter component.

• Data is passed through pipes between adjacent filters.

• Recombining filters allows you to build families of related systems.

• Known Uses:

• Compilers (different stages)

• UNIX shells

• CMS Pipelines

• Image Processing (ALMA)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 28 -

Architectural Patterns / The Pipes and Filters Pattern II

• Consequences:

+No intermediate files necessary, but possible

+Flexibility by filter exchange or recombination

+Reuse of filter components

+Rapid prototyping of pipelines

+Possibility of improved efficiency by parallel processing

– Shared state may be expensive and complicated

– Possible data transformation overhead

– Error Handling

15

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 29 -

Writing your own Patterns

• If you come up with certain recurring best practices in
your domain (technical or functional) you may want to
write these down as patterns.

• The pattern forms (there are various forms) all have in
common that they require the author to structure the
content very strictly.

• This forces the author to think hard about stuff such as
applicability, forces or consequences

• For readers, well-structured content becomes easier to
comprehend

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 30 -

Using the Pattern Form

• Even if something is not recurring and hence is not a
pattern…

• Writing things up in pattern form improves the
effectiveness of communication, provides a means to
break down complex structures and generally improves
writing style (and author proficiency).

• Once you’re accustomed to the patterns form, you will
use it implicitly when writing any kind of technical
documentation, i.e.

• Start by setting the context,

• Explain when and for who the following stuff is interesting

• Describe problem and solution in increasing levels of detail

• And then elaborate on the consequences.

• Finally, you’ll point to related material

16

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 31 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 32 -

The challenge of documenting complex architectures

• It is not enough to simply collect descriptive data
about an architecture

• e.g. a big UML model or a collection of diagrams or APIs

• rather, communicating an architecture requires a well-
defined, didactic approach, where

• You start with a motivation of what the general problem
is (what is it that the architecture should achieve)

• Then you provide an overview over the solution strategy

• … and progressively provide more and more details …
• Until you’ve covered all cases incl. border cases

17

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 33 -

Inner Structures of complex Systems

• Pattern Languages are collections/sequences of patterns
that describe a “whole”,
• The overall structure of the system is too complicated to

be described in one step – thus the language.

• Sometimes there are alternative sequences through
the pattern language describing various alternatives of the
“whole”

• Group patterns into chapters to implement the
layers/levels/rings mentioned before

• A pattern language thus describes how to build a
complex system of a certain type

• There are various examples of such pattern languages,

• Many cover middleware technology [Server Component
Patterns, Remoting Patterns] , and

• They are published in various forms

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 34 -

From Patterns to Pattern Languages

• The pattern is the undividable entity of
knowledge/documentation

• Pattern Languages are built by having subsequent
patterns solve problems that arise from using a
previous pattern.

Context

Forces

Problem

Solution

Consequences

Resulting Context

...

...

C
tx

R
e

s
 C

tx

Pattern

 Pattern 1
 Pattern 2

 Pattern 3 Pattern 4 ...

18

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 35 -

Example: Remoting

• Describes the internal architecture of
remoting middleware such as CORBA,
WebServices or .NET Remoting

• It can be seen as a pattern language that
describes the internal details of Broker
architectures in industrial practice.

Process A

Client

Requestor

M
a
c
h
in

e
 B

o
u
n
d
a
ry

Process B

Invoker

Remote

Object

Marshaller

1) submit request

2) marshal request 3) forward

Marshaller

4) unmarshal

5) invoker operation

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 36 -

Example: Remoting II

• A structured glossary (per chapter!) shows the
conceptual relationship between the patterns

INVOKER

d
is

p
a
tc

h
e
s

in
vo

ca
tio

n
 t
o

CLIENT PROXY
MARSHALLER

us
es

 fo
r

m
ars

ha
llin

g

re
qu

es
ts

uses for

de-m
arshalling

requests

INTERFACE DESCRIPTION

d
is

p
a
tc

h
e
s

re
q
u
e
st

s
to

de
sc

rib
es

in
te

rfa
ce

 o
f describes

interface of

CLIENT REQUEST

HANDLER

u
s
e
s
 to

s
e
n
d

re
q
u
e
s
t

SERVER REQUEST

HANDLER
communicates

with

REQUESTOR

u
s
e
s
 to

 b
u
ild

u
p
 re

q
u
e
s
t

REMOTING

ERROR

raises

raisesraises

ra
is
es

Remote Object

19

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 37 -

Example: Remoting III: Server Request Handler

• Context: You are providing remote objects in a server
application, and invokers are used for message dispatching

• Problem:

• The request message has to be received from the network;

• Managing communication channels efficiently and effectively is
essential

• Network communication needs to be coordinated and optimized

• Solution: Server request handler deals with all communication
issues of a server application:

• Receives messages from the network

• Combines the message fragments to complete messages

• Dispatches the messages to the correct invoker

• Manages all the required resources (connections, threads, …)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 38 -

Example: Remoting IV: Server Request Handler 2

Client Process Server Process

InvokerInvokerInvoker

Server Request

Handler

M
a
c
h
in

e
 B

o
u
n
d
a
ry

OS APIs
connection

pool

thread pool

Client

Proxy
Client

ProxyRequestor

Client Request

Handler

• Each pattern in the language is illustrated with a diagram that
shows the relationships and interactions with other building
blocks of the overall system.

20

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 39 -

Example: Remoting V

• Here is another view showing the interactions, grouped
into layers

ServerClient

Client

Requestor

Client Request

Handler

Server Request

Handler

Invoker

Remote

Object

invocation messages

result messages

invocation data

result data

invocation

result

Marshaller Marshaller

Client

Proxy

invoke

operation

invoke

operation

forward

message

forward

message

A
p

p
li
c
a
ti

o
n

L
a
y
e
r

In
v
o

c
a
ti

o
n

L
a
y
e
r

M
e
s
s
a
g

in
g

/

R
e
q

u
e
s
t

L
a
y
e
r

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 40 -

Example: Remoting VI

• Interesting interactions are illustrated with sequence
diagrams (typically a couple of diagrams per chapter)

<<create>>

Server

Request

Handler

<<receive>>

m:Message

<<create>>

Invoker

invoke(m)

Marshaller
i:Invocation

Data

Remote

Object

invokeMethod(i)

someMethod(x)

i := unmarshal(m)

21

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 41 -

Example: Remoting – Technology Projection; .NET Example

REMOTE

OBJECT

Client Server

Client

Real Proxy

.NET Runtime .NET Runtime

invocation msg

Formatter

Sink

Transparent

Proxy

A
p

p
.

L
a
y
e
r

In
v
o

c
a
ti

o
n

L
a
y
e
r

M
e
s
s
a
g

in
g

/

R
e
q

u
e
s
t

L
a
y
e
r

Channel Sink

Sink

Channel Sink

Formatter

Sink

Sink

Dispatcher

Sink

Remote

Object

result msg

INTERFACE

DESCRIPTION

Server

App

DISCOVERY

INVOKER

LIFECYCLE

MANAGER

CLIENT PROXY

REQUESTER

INVOCATION

INTERCEPTOR

INVOCATION

CONTEXT

MARSHALLER

PROTOCOL

PLUGINS

CLIENT

REQUEST

HANDLER

SERVER

REQUEST

HANDLER

• This view maps the patterns (general concepts) to a
specific example (in this case, .NET Remoting)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 42 -

Example: Remoting - Identification

Remote Object

ABSOLUTE OBJECT

REFERENCE

m
aps properties to

OBJECT ID

id
e
n
tifie

s

is part of

uniquely i
dentifi

es

REQUESTOR

us
es

LOOKUP

Client

lo
o
k
s
 u

p
o
b
je

c
ts

 in

SERVER

APPLICATION

re
g
is

te
rs

o
b
je

ct
s
 in

INVOKER

c
o
n
st

ru
c
ts

 assigns uses

• This additional layer/level/ring explains how remote
objects are identified – note how we refer to the
patterns from the lower layers.

22

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 43 -

Example: Remoting - Lifecycle

STATIC INSTANCE PER-REQUEST INSTANCE
CLIENT-DEPENDENT

INSTANCE

LAZY ACQUISITION

o
p

ti
m

iz
e
s

im
plie

s

POOLING

o
p

ti
m

iz
e
s

LEASING

re
q
u
ire

s

op
tim

iz
es

Client

in
s
ta

n
tia

te
s

in
s
ta

n
tia

te
s

SERVER APPLICATION

in
s
ta

n
tia

te
s

LIFECYCLE MANAGER

PASSIVATION
may usemay use

• This layer explains the different lifecycle patterns and
the associated (de-)activation strategies

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 44 -

Example: Extension Layers

INVOCATION

INTERCEPTOR

transports

c
re

a
te

s
/

u
s
e
s

tr
an

sp
or

ts

communicates w ith

INVOCATION CONTEXT

Client

SERVER REQUEST

HANDLER

CLIENT REQUEST

HANDLER

INVOKERREQUESTOR

pluged into

provides
hooks for

PROTOCOL

PLUG-IN

pluged into

u
s
e
s

u
s
e
s

u
s
e
s

u
s
e
s

provid
es

hooks f
or

CLIENT

PROXY

uses

u
s
e
s

Remote Object

• Extending the communication
framework with out-of-band
data or cross-cutting
functionality

Remote Object

gr
ou

ps
 a

nd

or
ga

ni
ze

s
se

ts
 o

f

LIFECYCLE MANAGER

m
a
n
a
g
e
s

lif
e
c
y
c
le

 f
o
r

monito
rs

CONFIGURATION

GROUP

LOCAL OBJECT

QOS OBSERVER

o
p
ti
m

iz
e
s

re
so

u
rc

e

c
o
n
su

m
p
tio

n

m
o
n
it
o
rs

REQUEST HANDLER

INVOKER

m
on

ito
rs

a
p
p
e
a
rs

 like
im

p
le

m
e
n
te

d
 a
s

SERVER APPLICATION

LOCATION

FORWARDER

provid
es locatio

n

tra
nsparency fo

r

ABSOLUTE OBJECT

REFERENCE

u
p
d
a

te
s

c
lie

n
t's

• Extending the internal
infrastructure

23

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 45 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 46 -

Tutorials & FAQs

• When documenting the programming model, the
respective documentation

• Needs to be problem/solution-based

• Needs to explain common things first, and exceptional
things later

• Needs to provide a step-by-step approach

• Here’s what has proven to be useful:
• Tutorials (Walkthroughs) for typical cases of increasing

complexity (e.g. 5, 20 and 60 minute tutorial)

• FAQs to illustrate exceptional cases in a problem
solution fashion

• Note that tutorials and FAQs should not contain too
much rationale for what they explain – rather, refer to
other documentation for that. Make it practical!

24

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 47 -

Examples of what you need to address

• How do I set up the environment (IDE, Repository, Build)?

• How do I acquire and release resources, who manages
the lifecycle of certain artifacts?

• What other protocols do I need to follow (e.g. locking)

• In which chunks, and where, do I put my application logic?

• What are the constraints wrt. to concurrency

• How do I interact with the platform and environment?

• Which aspects of the underlying programming languages or
frameworks are disallowed?

• Important conventions and idioms, including certain
important naming conventions

• Where and how do I write my unit tests?

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 48 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

25

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 49 -

Models

• Definition I: (www.answers.com/topic/model)

A schematic description of a system, theory, or
phenomenon that accounts for its known or inferred
properties and may be used for further study of its
characteristics

• Definition II: (www.ichnet.org/glossary.htm)

A representation of a set of components of a process,
system, or subject area, generally developed for
understanding, analysis, improvement, and/or
replacement of the process

• Definition III: (ecosurvey.gmu.edu/glossary.htm)

an abstraction or simplification of reality

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 50 -

Diagrams

• Definition I: (en.wikipedia.org/wiki/Diagram)

A diagram is a simplified and structured visual
representation of concepts, ideas, constructions, relations,
statistical data, anatomy etc used in all aspects of human
activities to visualize and clarify the topic.

• Definition II: (careers.ngfl.gov.uk/help/definitions/14_2_image.html)

Diagram means a graphical or symbolic representation of
something, usually showing the relationship between
several items.

• Definition III: (www.evgschool.org/Columbus%20vocabulary.htm)

A diagram is a drawing, sketch, plan, or chart that helps
to make something easier to understand

26

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 51 -

Models vs. Diagrams

• Diagrams are mainly used to “intuitively communicate”
something to humans

• Models are mainly used to “formally specify” something
to tools

• Hence, models need to be correct and complete wrt. to
the aspect, viewpoint or concern they describe.

• They need to be based on a well-defined language

• Diagrams can be used to represent models.

• Models, however, can also be represented in other, non-
diagram ways (e.g. with textual notations)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 52 -

Examples of Architectural Diagrams

• This diagram shows the layers in a
typical distributed system
architecture

• The visual layers are meant
to actually illustrate a strict
layers architecture

• Transformation architecture of a
cascaded MDSD application

• It is built by recursively applying
the atomic building block shown
in the top right corner

Domain

Platform

Technical

Platform/

Middleware

Operating System

Programming Language

- Persistence

- Transactions

- Distribution

- Scheduling

- Hardware Access

- ...

- Core Domain

 Classes (Entities,

 Value Types, ...)

- Business Rules

- Business Services

- ...

Generated Applications

MDSD

Infrastructure

Input Models

Output Models

Basic Technical

MDSD Infrastructure

Code for Target Platform

Input Models

Functional Domain 1

MDSD Infrastructure

Domain 1 Model

Functional Domain 2

MDSD Infrastructure

Domain 2 Model

...

...

...

...

...

...

27

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 53 -

Examples of Architectural Diagrams II

• Model Transformation
architecture in the tool
openArchitectureWare

• The boxes are hierarchical
structures of the tool

• The arrows represent data
flow

• Layers of a product-line architecture

• If you visually draw layers, make
sure this is actually what you want
to communicate (i.e. there really
is a layering in the system you
describe)

openArchitectureWareModel

(UML)

Model

(XMI)

Parser

Model

(Object Graph)

Model

Trans-

former

Modified Model

(Object Graph)

export

Generated

Code
Code

Generator

(may be repeated)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 54 -

Examples of Architectural Diagrams VII

• This one shows several aspects: components, layers,
client/server, dependencies, invocations, exchanged data

ServerClient

Client

Requestor

Client Request

Handler

Server Request

Handler

Invoker

Remote

Object

invocation messages

result messages

invocation data

result data

invocation

result

Marshaller Marshaller

Client

Proxy

invoke

operation

invoke

operation

forward

message

forward

message

A
p

p
li
c
a
ti

o
n

L
a
y
e
r

In
v
o

c
a
ti

o
n

L
a
y
e
r

M
e
s
s
a
g

in
g

/

R
e
q

u
e
s
t

L
a
y
e
r

28

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 55 -

Examples of Architectural Diagrams III

• A three-tier enterprise system. Useful diagram?

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 56 -

Examples of Architectural Diagrams IV

• The AUTOSAR Architecture. Are the layers really there?

29

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 57 -

Examples of Architectural Diagrams V

• Some other Architecture. Useful diagram?
(it is certainly very nice)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 58 -

Examples of Architectural Diagrams VI

• One more… Useful? (It is certainly ugly!)

30

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 59 -

Examples of Architectural Diagrams VII

• And you don’t need a fancy tool, you can use a flipchart
(assuming your handwriting is readable!)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 60 -

Why modeling (as opposed to diagramming)?

• If I actually formally specify my architecture, I want to
benefit from that additional “overhead”

• Hence, you want to generate as much of the architecture-
related code, for example

• Implementation skeletons to fill in business logic

• Build Files (e.g. ant based)

• Adapters to all kinds of technical infrastructure
(remember: the programming model shall be free of such
stuff)

• Infrastructure configuration files

• Deployment skripts

• This leads us to model-driven software development,
which is another topic…

31

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 61 -

The role of UML

• UML is not specifically tailored for software architecture

modeling, but rather for software modeling in general

• You can use UML for diagramming, as well as for
modeling – you typically need a profile for the latter.

• The question is, though, which UML diagrams are suitable
for architecture descriptions

• We use green for modeling, red for diagramming

• Class Diagrams

• Useful for architecture meta models

• And for structured glossaries

• … and using a profile for every other structural
aspect, in principle… but the graphical symbols
are very limited. Hence custom diagrams or
things like FMC are used.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 62 -

The role of UML II

• Composite Structure Diagrams

• Extremely useful for modeling hierarchical
structures of components, instances, as
well as component connections

• My favourite kind of diagram in UML

• Use Case Diagrams

• (More or less) useful for describing
usage scenarios and requirements towards
the architecture

• Sequence Diagram

• Very useful for illustrating the interactions
among architectural components

• Note the sequence diagrams are good
for scenarios, not for closed, complete
behavioral specification

32

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 63 -

The role of UML III

• State Diagrams

• Very useful illustrating state changes of
components, if their behavior is state-based

• Very useful for defining protocols between
components, and for formally specifying
state-based behavior

• Activity Diagrams

• Useful for describing activities, their
allocation to components and data flow

• They can be used to formally specify
behaviour, but I don’t do this very often

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 64 -

The role of UML IV

• Implementation Diagrams
(Component & Deployment)

• Moderately useful for modeling the
packaging of components into
deployment artifacts and runtime
processes and executables, and

• Moderately useful for describing system
(hardware) infrastructure and the
allocation of processes and components
to them

33

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 65 -

The role of UML V: Summary

• The UML can do everything … in principle.

• Tool support is of varying quality, but it is getting better.

• This is especially true for profile support and tool
customization!

• Here is how I like to use (or not use) UML in the context of
architecture

• I use it for architecture meta models

• I define domain specific architecture DSLs and work with
these languages for formal modeling

• I really like composite structure diagrams

• I use sequence diagrams to illustrate interactions

• I use informal (Visio-based) notations for illustrations

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 66 -

Architecture Description Languages (ADLs)

• ADLs are predefined and formal modeling languages
specifically designed to describe architectures (as
opposed to software in general as in UML).

• Typically, an ADL is defined by either a university, a
research department or an industry consortium for a
specific domain

• Their practical use is limited

• http://www.sei.cmu.edu/architecture/adl.html

• ADLs are mostly used in the following domains:

• Embedded systems

• Realtime systems

• Safety critical systems

• Since ADL models are formal, various aspects of a system
can be simulated or proven using them.

34

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 67 -

Architecture Description Languages (ADLs) II

• Considering the MDSD and DSL stuff we discussed before,
an ADL can be seen as a DSL for describing (certain
aspects of) (certain kinds of) architectures.

• Since architecture is a wide field, there’s no (useful)
general purpose ADL – all usable ones are restricted to a
specific technical domain (embedded realtime systems,
automotive systems, …)

• Often, ADLs describe components, connectors, data
types, threads as well as characteristics of the protocols
between those artifacts to enable analyses.

• These days many ADLs provide a UML profile so it can be
integrated with the UML.

• In most environments they don’t play an important
role (although they maybe should…)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 68 -

Example ADL: AADL

• AADL stands for Architecture Analysis & Design Language
(historically: Avionics Architecture Description Language)

• Domain-specific to Embedded Realtime Systems

• It consists of component types and component
implementations. The following component types exist:

• Memory

• Device

• Processor

• Bus

• Data

• Subprogram

• Thread

• thread group

• Process

• System

• Components have different ports:
data ports, event ports

• Connectors connect ports from
different components

• Notations:

• Textual

• Graphical

• UML Profile

35

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 69 -

Example ADL: AADL II, Examples

• Communicating threads • Data Types

• Autopilot System

AADL Examples taken
from http://aadl.enst.fr/

with permission from
Irfan Hamid. Thanks!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 70 -

Do-it-yourself vs. Standard

Comparison Criterion DIY
(DSL)

Standard
(UML,ADL)

Tool Support 0 +

Task-Specificness (Modeling Efficiency) + -

Adaptability (your architecture changes – what
do you do?)

+ 0

Suitable for Generation (meta model
complexity and comprehensibility)

+ 0

Learn-your-domain (defining a meta model
helps you understand your own domain)

+ -

Learning overhead (learn the language in
order to use it)

- 0

Communicate with outsiders (… who might
not want to learn your language)

- +

36

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 71 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 72 -

Printable Material

• To be read in one piece to teach concepts

• Readability and Formatting is important

• These days mainly implemented as PDFs

• Suitable for

• Conceptual Architecture (Patterns, Pattern Languages,
Glossaries, Meta models, DSLs)

• Programming Model Tutorials

37

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 73 -

Online References

• Used for looking up details

• Readability and Formatting is not so important,
searchability and indexing more important

• These days mainly implemented as HTML or Wikis

• Suitable for

• Programming Model APIs and FAQs

• Glossaries

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 74 -

Blogs

• It is useful if the architecture/platform team sets up an
architecture blog to keep application developers up-to-
date with recent developments.

• This is useful for

• Updates wrt. to the evolution of the platform

• Tips & Tricks on how to use the architecture

• Success stories and other news

38

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 75 -

Flash Demo/Video/Animation

• Here you typically screen-capture some activity related
to your architecture and record it for replay.

• Explaining Text is either recorded (audio) or added later
in keys/bubbles.

• This is useful for

• Programming Model Tutorials

• … especially if a lot of pointing and clicking, or other “tool
use” is required

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 76 -

Podcasts & Video

• Podcasts are audio files published via an RSS feed in
regular episodes (“audio-blog”)

• This is useful for

• General discussions about concepts

• News and stories in general

• Complex technical concepts can be explained in
audio only

• See se-radio.net, the podcast for developers

• Make sure it’s always at least two people
talking otherwise it will be boring quickly

• Make sure things are repeated or clarifying questions
are asked

• Video is useful for

• General discussions about concepts – since you can film
two guys on the flipcharts

39

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 77 -

The Back Channel!

• Be sure to encourage feedback of the users of your
architecture. Accept feedback and criticism, and improve
your documentation accordingly!

• Create tutorials, FAQs and glossaries as Wikis, so that
users can contribute, enhance and comment
(I am not sure this is useful for the more conceptual stuff)

• If you use podcasts or videos, invite users to “appear on
the show”

• Exchange architects and developers, to make sure
architects eat their own dog food, and developers
understand how complex it is to integrate all the(ir)
requirements into the architecture

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 78 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

40

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 79 -

What about Code?

• It is useful to document important APIs in the code and
use tools such as JavaDoc or DoxyGen to generate online
API documentation.

• However, code (documentation) cannot replace
tutorials, glossaries, rationales, FAQs, or any of the other
kinds introduced before – code does not tell a story!

• Of course, tutorials and FAQs contain code to show how to
use the programming model

• It is useful to refer to code from any of the other
artifacts if people want more details.

• Do not document things elsewhere that are obvious and
understandable from the code.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 80 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

41

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 81 -

Product Lines & Platforms

• In addition to the best practices already introduced, you
must document the variation points in the product line.

• A variation point is a location in the product line where
product specifics can be “plugged in”.

• A variation point can support customization (build) or
configuration (selecting):

Framworks

Routine

Configuration

Creative

Construction

Wizards

Property Files

Feature-Model

Based

Configuration

Graph-Like

Languages

Tabular

Configurations

Manual

Programming

Guidance,

Efficiency

Complexity,

Flexibility

Configuration

Parameters

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 82 -

Customization vs. Configuration

• Customization
Example Metamodel

• Configuration
Example Feature Models

Dynamic Size, ElementType: int,
Counter, Threadsafe

Static Size (20),
ElementType: String

Dynamic Size, Speed-Optimized,
Bounds Check

Data

Base

name: String

Attribute

type: String

Entity DependentObject

id: long

0..n

0..n

<<entity>>

Customer

name: String

a) b)

<<entity>>

Party

name: String

<<dependentOb>>

Address

city: String

zip: String

street: String

0..n

• Based on this sample
metamodel,
you can build a wide
variety of models:

Stack

ElementType

[open]

int Stringfloat

Optimization

Speed
Memory

Usage

Additional

Features

Thread

Safety

Bounds

Check

Counter

Type

Check

Size

Fixed Dynamic

value

42

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 83 -

Documenting Variability using Feature Modeling

• You have to document which variation points exist and how
they relate/constrain each other

• A feature model describes the variability of a product line
without considering the implementation of the variation point
(or feature)

• Subfeatures can have different relationships, including

Mandatory Optional Alternative N of M

• A feature can represent some kind of component or an
aspect.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 84 -

Product Lines & Platforms: What to document

• For each variation point, you need to document

• Does the variation point support configuration or
customization (frameworks)

• What is the mechanism for selecting/building a variant,
incl. the binding time (compile-time, runtime, …)

• A rationale for the variation points – tracing back to
the requirements

• An example of customizing/configuring the variation
point (basically a kind of mini-tutorial or FAQ)

• Feature models (together with explaining text) are a
good way of providing an overview over the variability in a
product line.

43

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 85 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography – See Printed Version

• Diagramming Guidelines – See Printed Version

• Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 86 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines – See Printed Version

• Summary

44

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 87 -

C O N T E N T S

• What is Software Architecture

• Documenting Software Architectures

• (Structured) Glossaries

• Patterns and the Pattern Form

• Pattern Languages

• Tutorials and FAQs

• Diagramming and Modeling

• Channels

• What about Code?

• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

• Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völ te r

Documenting Software Architectures

- 88 -

Summary

• Software Architecture Documentation is important if you
want to build a long-standing architecture.

• There are more aspects to this than just a UML model
(which can play a role, but is not sufficient)

• You should use other channels, if applicable.

• Make sure that whatever channel you use, it is executed
well, so that your audience likes to read/listen to/view it.

• In many ways, documenting software architectures can
even be fun!

THANKS!

