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Abstract:__________________________________________________________ 

 In this lab, a voltage source, capacitor, inductor, and resistor were connected in series to 

form an RLC second-order circuit. By measuring the capacitor voltage (Vo), values were 

obtained for the frequency of oscillation (ωd), the time constant of the decay envelope (α), the 

damping ratio (ζ), and the resonant frequency (ωo) for various resistances. An op amp circuit was 

also created to achieve an output similar to the 1000Ω RLC circuit, without using inductors, 

which are the least ideal element in the RCL circuit. With the exceptions of α and ζ for the 100Ω 

RLC circuit, the experimental results closely followed the theory, with the op amp circuit having 

less error than its equivalent 1000Ω RLC circuit. 

 

Introduction:_______________________________________________________ 

 Capacitors and inductors are two of the three passive elements used in circuit design. 

These two passive elements are not able to dissipate or generate energy, but can return stored 

energy into a circuit. In the previous lab, it was seen that if one of these passive elements were in 

a circuit it would form a first order circuit because a first order differential equation would be 

required to solve for a voltage or current. If we have a capacitor, inductor, and resistor placed in 

series or parallel with either a voltage or current source we will form a RLC or second-order 

circuit. It is called a second-order circuit because of the second-order differential required to 

solve for the voltage or current. One of the most common uses for a second order circuit is 

tuning a radio frequency, such as an AM/FM radio. Ideal capacitors do not have inductance or 

resistance, and cannot dissipate energy, and ideal inductors do not have capacitance or resistance, 

and cannot dissipate energy, even though in reality this is rarely the case.  

 

Theory:___________________________________________________________ 

 

In circuit 1, shown right, we can solve for the 

output voltage (Vo) using a loop to get formula 1 

 

Vo(t) = Vi(t) – RI(t) -L(di(t)/dt) [formula 1] 

 

Figure 1: Circuit 1 
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We can also solve for the current through the circuit using formula 2 below, which was derived 

in lab 4.  

I(t) = C (dVo(t)/dt) [formula 2] 

 

If we plug formula 2 into formula 1 we get: 

 

LC (d
2
tVo(t)/dt

2
) + RC (dtVo(t)/dt) + Vo(t) = Vi(t) [formula 3] 

 

With formula 3, we can now solve for the homogeneous and particular solutions. To solve for the 

homogeneous solution, we first set Vi(t) equal to zero and Vo equal to Voh, getting formula 4.  

Then we substitute formula 5 into formula 4 to get formula 6, which simplifies to formula 7 as 

shown below. 

 

LC (d
2
tVoh(t)/dt

2
) + RC (dtVoh(t)/dt) + Voh(t) = 0 [formula 4] 

Voh(t) = Ae
st
 [formula 5] 

LCS
2
Ae

st
 + RCSAe

st
 + Ae

st
 = 0 [formula 6] 

S
2
 + (R/L)S + (1/LC) = 0 [formula 7] 

 

We can rewrite formula 7 substituting in the damping ratio, ζ, which equals (R/2L) * (LC)
(1/2) 

and the resonant frequency, ωo, which equals (1/LC)
(1/2) 

to get formula 8 below. 

 

S^2 + 2ζ,ωo s + ωo
2
 = 0 [formula 8] 

 

We can solve this equation using the quadratic formula of to get formula 9. 

 

S = -ζ,ωo ± ωo(ζ,
2
-1)

(1/2) 
[formula 9] 

 

We can see from formula 7 that the sign of the root, or more specifically ζ, determines 

the oscillation form of the circuit’s output voltage. If ζ is larger than 1, then there will be two 

real values of S. This is called the overdamped solution. If ζ is less than 1, then the two values of 

S will both have imaginary and real components. This is called the underdamped solution. If ζ is 

equal to 1, then S will only have one unique value. This is called the critically damped solution. 

However, because there is not a distinct difference in the voltage vs. time graph when S is 

approximately equal to 1, we shall overlook this case. Table 1 below summarizes the output 

voltage response if the input voltage is equal to one for both the under and overdamped cases. 
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Table 1: Summary of Solutions for Overdamped and Underdamped RLC circuits 

 

From Table 1, we note that, to find the complete output voltage response, we must add 

the homogeneous and particular solutions and apply initial conditions (usually Vo and dVo/dt at 

time equals 0+) of the circuit to find the unknown constants. We also note that the underdamped 

and overdamped case have different forms to their solution, i.e., ζ determines the form of the 

solution. To further examine ζ, we graph the complete responses above with respect to time in 

Figure 2 keeping ωo constant. This shows how ζ effects oscillation.  

 

Figure 2: Demonstration of ζ Effect on Oscillation 
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From Figure 2, we 

see that as ζ increases the 

damping effect also 

increases. The damping 

effect occurs when the 

amplitude decreases over 

time. If there is a large 

damping effect then the 

amplitude decreases faster 

over time, and if there is 

no damping effect then the 

amplitude remains 

constant over time. Now 

we graph the complete responses again in Figure 3 with respect to the time, keeping ζ constant, 

to see how ωo effects the oscillation. We note that, in Figure 3, the damping effect remains 

constant, but the speed increases as ωo increases.  

 

 For the op-amp circuit in Figure 4 we can 

find Vi(t) in relation to Vo(t) using Kierchoff’s 

current law or KCL about node o and node a, 

resulting in formulas 10 and 11.  

 

 

∑ I = -C2 * (dVo/dt) - (Vo-Va)/R2 = 0  [formula 10] (at node o) 

∑I = C1 ((dVo/dt) - (dVa/dt)) - (Va-Vi)/R1 + (Vo - Va)/R2 = 0 [formula 11] (at node a) 

 

Here we have two equations and two unknowns. Solving for Vi(t), we get formula 12. 

 

 [formula 12] 

 

The following page contains a more extensive derivation for this op-amp circuit. 

 

Figure 4: Circuit 2 

Figure 3: Demonstration of ωo Effect on Oscillation 
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Space for added formulas
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Procedure:_________________________________________________________ 

1. We connected a Wavetek signal generator to the oscilloscope and had the signal 

generator create a square voltage oscillation that went from 0 to 1 Volts.  

2. We created “Circuit 1” as seen in the introduction with R equaling 100 Ohms, C equaling 

0.01µF and L equaling 112 mH. We had Vi come from the signal generator and Vout 

going to the oscilloscope. We also set the frequency to be 100 Hz.  

3. We set the triggering to the rising edge and centered it at the origin of our axis on the 

oscilloscope.  

a. We measure and recorded the input and output of our circuit. We also 

downloaded the output voltage and a screenshot of our voltage from the 

oscilloscope.  

4. By finding the period and decay of Vout’s oscillation, we recorded estimated α and ωd. 

5. We predicted what would happened if R increased. 

6. We observed what happened when we increased R and then decreased it back to its 

original value.  

7. We also observed what happened when we increased the charged of C and then 

discharged it back to its original. 

8. We set R to 300 Ohms, 1000 Ohms, 3000 Ohms, and 10,000 Ohms.  

a. We measure and recorded the input and output of our circuit. We also 

downloaded the output voltage and a screenshot of our voltage from the 

oscilloscope.  

b. By finding the period and decay of Vout’s oscillation when R equaled 1000 

Ohms, we recorded estimated α and ωd and then returned R to its original value. 

9. We found what happened when the input frequency was set to 4.6 kHz and found the 

frequency where the maximum output amplitude would occur.  

10. We created “circuit 1” in Multisim where R equals 100 Ohms and 1000 Ohms, C equals 

0.01µF and L equals 112 mH.  

11. We created the circuit below using a breadbox where R1 equals 1.2 kOhm, R2 equals 9.1 

kOhms, C1 equals 0.1 µF, and C2 equals 0.001 µF. We also set the op-amp to a voltage 

high enough where so it would not become saturated.  

12. We repeated steps 3 and 4.  

13. We also recreated this circuit in Multisim. 
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Results:___________________________________________________________  

 

  100Ω RLC 

Circuit 

300Ω RLC 

Circuit 

1000Ω RLC 

Circuit 

Op Amp 

Circuit 

a theoretical 446.4 ---- 4464 4714 

a experimental 868 1760 4810 4590 

a % error -94.44 ---- -7.75 2.63 

          

wd theoretical 29876.7 ---- 29544.7 29891 

wd experimental 29500 29300 29100 29700 

wd % error 1.26 ---- 1.51 0.64 

          

ζ theoretical 0.01494 ---- 0.1494 0.1558 

ζ experimental 0.0294 0.0599 0.1628 0.1545 

ζ %error -96.79 ---- -8.97 0.83 

          

ωo theoretical 29880 ---- 29880 30261 

ωo experimental 29500 29300 29400 29800 

ωo %error 1.27 ---- 1.61 1.52 

          

τ theoretical 0.00224 ---- 0.000224 0.000212 

τ experimental 0.0011521 0.0005682 0.0002079 0.0002179 

τ %error 48.57 ---- 7.19 -2.76 

          

T theoretical 0.00021 ---- 0.000213 0.00021 

T experimental 0.0002130 0.0002144 0.0002159 0.0002116 

T %error -1.42 ---- -1.37 -0.74 

 

Table 2: Experimental and Theoretical Results 

*Percent Error: ((|theo-exp|/theo)*100%))* 
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Figure 5: Screenshot of Circuit 1 with the 100Ω Resistor 

 

 

 Timebase Scale (horizontal) = 500 µs/Div: Channel  A Scale (vertical) = 2 V/Div 

 

Figure 6: Multisim Simulation of Circuit 1 with the 100Ω Resistor 

Input - dark line 
Output -light line 

Multisim Simulation of Circuit 1 (100Ω Resistor) 

Screenshot of Circuit 1 Response:  

[R=100Ω, C = 0.01µF, L = 112 mH, and input frequency = 100 Hz] 
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Figure 7: Curve Fit for the Output of Circuit 1 with the 100Ω Resistor 

 

 

 

 

 
Figure 8: Screenshot of Circuit 1 with the 300Ω Resistor 

Time(s) 

V
o
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ag
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Curve Fit for Circuit 1 (100Ω) 

Input - dark line 
Output -light line 

Screenshot of Circuit 1 Response:  

[R=300Ω, C = 0.01µF, L = 112 mH, and input frequency = 100 Hz] 

General model: 

       f(x) = a+b*exp(c*x)*cos(d*x) 

Coefficients (with 95% confidence bounds): 

       a =      0.9166  (0.9161, 0.917) 

       b =     -0.9182  (-0.9201, -0.9164) 

       c =      -867.9  (-870.9, -865) 

       d =  2.946e+004  (2.946e+004, 

2.947e+004) 

Goodness of fit: 

  SSE: 1.32; R-square: 0.9978 

  Adjusted R-square: 0.9978; RMSE: 0.01629 
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Figure 9: Curve Fit for the Output of Circuit 1 with the 300Ω Resistor 

 

 

 

 

 
Figure 10: Screenshot of Circuit 1 with the 1000Ω Resistor 
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Time(s) 

General model: 

       f(x) = a*exp(b*x)*cos(c*x)+d 

Coefficients (with 95% confidence bounds): 

       a =     -0.9123  (-0.9143, -0.9103) 

       b =       -1758  (-1765, -1752) 

       c =  2.932e+004  (2.932e+004, 

2.933e+004) 

       d =      0.9058  (0.9053, 0.9063) 

Goodness of fit: 

  SSE: 1.61; R-square: 0.9972 

  Adjusted R-square: 0.9972; RMSE: 0.01799 

 

Curve Fit for Circuit 1 (300Ω) 

Screenshot of Circuit 1 Response:  

[R=1000Ω, C = 0.01µF, L = 112 mH, and input frequency = 100 Hz] 

Input - dark line 
Output -light line 
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Figure 12: Curve Fit for the Output of Circuit 1 with the 1000Ω Resistor 

 

 

 

Timebase Scale (horizontal)  = 100 µs/Div: Channel  A Scale (vertical) = 2 V/Div 

 

Figure 11: Multisim Simulation of Circuit 1 with the 1000Ω Resistor 
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Multisim Simulation of Circuit 1 (1000Ω Resistor) 

General model: 

       f(x) = a+b*exp(c*x)*cos(d*x+e) 

Coefficients (with 95% confidence bounds): 

       a =      0.9104  (0.9099, 0.9108) 

       b =     -0.9184  (-0.9201, -0.9166) 

       c =       -4806  (-4820, -4792) 

       d =  2.911e+004  (2.909e+004, 

2.913e+004) 

       e =     -0.1563  (-0.1588, -0.1539) 

Goodness of fit: 

  SSE: 1.07; R-square: 0.9977 

  Adjusted R-square: 0.9977; RMSE: 0.01467 

  RMSE: 0.01799 

Curve Fit for Circuit 1 (1000Ω) 
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Figure 13: Screenshot of Circuit 1 with the 3000Ω Resistor 

 

 

 

 

 

Figure 14: Screenshot of Circuit 1 with the 10000Ω Resistor 
 

 

 

 

 

Input - dark line 
Output -light line 

Input - dark line 
Output -light line 

Screenshot of Circuit 1 Response:  

[R=3000Ω, C = 0.01µF, L = 112 mH, and input frequency = 100 Hz] 

Screenshot of Circuit 1 Response:  

[R=10000Ω, C = 0.01µF, L = 112 mH, and input frequency = 100 Hz] 
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Figure 15: Screenshot of Circuit 1 with the 100Ω Resistor, 4.6 kHz Input Frequency 

 

 

 

 

 

 
Figure 16: Screenshot of Op Amp Circuit 

Screenshot of Circuit 1 Response:  

[R=100Ω, C = 0.01µF, L = 112 mH, and input frequency = 4.6 kHz] 

Input - dark line 
Output -light line 

Input - dark line 
Output -light line 

Screenshot of Op Amp Circuit Response: 

[R1 = 1.2 kΩ, R2 = 9.1 kΩ, C1 = 0.1 µF, C2 = 0.001 µF] 
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Figure 18: Curve Fit for the Output of the Op Amp Circuit 

Timebase Scale (horizontal) = 100 µs/Div: Channel  A Scale (vertical) = 2 V/Div 

 

Figure 17: Multisim Simulation of Op Amp Circuit 

Multisim Simulation of Op Amp Circuit 

Time(s) 

V
o
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General model: 

       f(x) = a*exp(b*x)*cos(c*x+offset)+d 

Coefficients (with 95% confidence bounds): 

       a =     -0.9259  (-0.9282, -0.9236) 

       b =       -4585  (-4602, -4569) 

       c =  2.967e+004  (2.965e+004, 2.969e+004) 

       d =      0.9098  (0.9094, 0.9102) 

       offset =     -0.1239  (-0.1269, -0.121) 

Goodness of fit: 

  SSE: 0.9925; R-square: 0.996 

  Adjusted R-square: 0.996; RMSE: 0.01412 

  Adjusted R-square: 0.9977; RMSE: 0.01467 

  RMSE: 0.01799 

Curve Fit for Op Amp Circuit 
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Discussion:_________________________________________________________ 
 

 Taking a qualitative look at the RLC circuit, we note that if the resistance of the circuit is 

increased, the natural response decays at a faster rate. This is logical because of the following 

relation: α = R / 2L. As R increases, α also increases, causing faster decay. Also, as capacitance 

is increased, the frequency of oscillation decreases. This is again logical, as the frequency of 

oscillation equals the following: 
LCL

R 1

2

2

!"
#

$
%
&

'
=( .  Here, when C is increased, ω clearly 

decreases.  

 Quantitatively, the 100Ω RLC circuit had the largest errors of all the evaluated circuits 

with a 94.44% error for α, a 96.79% error for ζ, and a 48.57% error for τ. Note that τ = α
-1 

and, 

thus, will have the same sources of error. Recalling again that α = R / 2L, one major source of 

error becomes clear: the resistance used to calculate the theoretical value of α was 100Ω. In 

reality, the function generator should be modeled as an ideal source in series with a 50Ω resistor. 

Taking this resistance into account, cuts the error by about half to 22.85%. The remainder of this 

error is likely due to non-ideal circuit elements, especially the inductor, which we know is the 

least ideal element. Non-ideal elements like the inductor and resistance built into the oscilloscope 

add resistance to the circuit, which increases α, as seen in the experimental result. Because the 

resistor is only 100Ω, relatively small resistances like resistance in the wire, for instance, will 

have a noticeable effect on the overall circuit resistance, where as these small resistances will not 

play nearly so large a role in the 1000Ω resistor RLC circuit. 

 Similar to α, 
22

2 !"
#

$
=

oL

R
is largely affected by the error in resistance to the 

circuit. It should be noted that the major error comes from the numerator. The denominator will 

provide a small error, which causes ζ to have slightly more error than α as seen. This error is 

minimal because ζ is governed by ωd, which is not affected by resistance and has a very small 

error. ωd governs the denominator because 
22 !"" +=

o
. While α has some error associated 

with it, ω or ωd is much larger than α, which causes ω0 to have a small error. This was confirmed 

in our experimental results. ω0 is also much larger than α, and L can be assumed to have little 

error, so the denominator retains minimal error. 
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 For the 1000Ω RLC circuit, our error was very small as expected for the ω values 

(~1.5%) and a reasonable error for α (7.75%) and ζ (8.97%). This error is due to the same 

sources as the error for the 100Ω circuit; only here the overall effect of the added resistances is 

less significant because of the large resistor value. As expected, ζ has slightly more error than α 

just as in the 100Ω circuit. By comparing the errors from the 1000Ω circuit with that of the op 

amp circuit, it becomes apparent that the inductor has a significant resistance as the error for the 

op amp circuit is much smaller than that of the 1000Ω RLC circuit, which has similar theoretical 

values. Recall here that the op amp circuit was created to achieve a similar output to the 1000Ω 

RLC circuit, while eliminating the inductor, the least ideal element. 

 

Conclusions and Future Work:________________________________________ 

 In conclusion, with the exception of an error due to resistance in the function generator, 

inductor, capacitor, oscilloscope, and wires, which is magnified for RLC circuits with small 

resistors, the RLC circuit created closely follows theoretical results. Some of this error, 

specifically resistance due to the inductor, was successfully eliminated by creating an op amp 

circuit with similar theoretical results as the 1000Ω RLC circuit. As a result, this op amp circuit 

followed most closely to the theory. 
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