Environmental Effects of MHK Research Survey Form

Name:Andrew GillDate Submitted: 31st May 2012

<u>**Title of Research:**</u> Field based experimental studies of marine organism response to Electromagnetic field (EMF) associated with marine renewable energy devices: understanding the environmental impacts.

Researcher(s): Andrew Gill

Contact Information:

<u>Address:</u> School Of Applied Sciences Building 56b, Cranfield University, Cranfield, Bedfordshire MK43 0AL, U.K.

Phone: +44 (0)1234750111 x2711

Email: a.b.gill@cranfield.ac.uk

Institution: Cranfield University

Partner Institutions: Cefas, Lowestoft, UK; Centre for Marine and Coastal Resources Ltd (CMACS ltd); University of Liverpool; Viking Fish Farms Ltd, Ardtoe Marine Laboratory

Funding Source: COWRIE – offshore wind environmental fund; NERC – UK Research Council; Fisheries Society of the British Isles.

Location of Research: Cranfield University and Ardtoe, Ardnamurchan, West Scotland.

Date of Research: Field studies 2007, analysis and publication ongoing

General Description (Please keep brief, several sentences or less)	
Purpose	To determine whether EMF can be detected and responded to by EM-sensitive species, using benthic elasmobranchs as the indicators owing to their high sensitivity to EMF.
Technology	Wave Tidal Ocean Current x Technology Neutral Description: The studies were focused on subsea cables which is linked to all technologies in the marine environment (i.e. not shore based).
Stressor	 Physical Presence of device (static) Physical Presence of device (dynamic) Noise x EMF Energy Removal Water Quality Foodweb Other Description: EMF of 50Hz AC (3 phase cable) at one emission level within the range of potential attraction to electrosensitive fish
Receptor	 Marine Mammals x_Fish Birds Bats Reptiles Invertebrates Other Description: The most EM-sensitive taxa are elasmobranchs (sharks, skates and rays). This study focused on the benthic species thornback rays (Raja clavata) and small spotted catsharks (Scyliorhinus canicula)

Key Findings	 S.canicula were found to non-randomly associate nearer to the cables when energized. R. clavata individuals are able to response to the EMF from an energized cable; the response is variable and was not predictable Acoustic telemetry techniques can provide a coarse level understanding of individual fish response to specific stressors The use of large scale experimentation through mesocosms (40m x 5m), replicate studies and the inclusion of a control are a feasible way of understanding environmental effects at a scale appropriate to the marine renewable energy sector.
Publications	 Peer reviewed report: Gill, A.B., Huang, Y., Gloyne-Philips, I., Metcalfe, J., Quayle, V., Spencer, J. & Wearmouth, V. (2009). COWRIE 2.0 Electromagnetic Fields (EMF) Phase 2: EMF-sensitive fish response to EM emissions from sub-sea electricity cables of the type used by the offshore renewable energy industry. Commissioned by COWRIE Ltd (project reference COWRIE-EMF-1- 06). Paper to be submitted in 2012 with new analysis of data looking at properties emerging from individual behaviour