
XAPP681 (v1.0) December 12, 2003 www.xilinx.com 1

1-800-255-7778

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary The High-Definition Serial Digital Interface (HD-SDI) standard describes how to transport high-

definition (HD) digital video serially over video coax cable. HD-SDI is used to connect HD video

equipment in broadcast studios and video production centers. It is an evolution of the popular

SDI standard that is widely used to transport standard-definition (SD) digital video in the

broadcast industry.

The flexibility of the RocketIO™ multi-gigabit transceivers available in the Virtex-II Pro™ family

devices combined with the programmable logic of the Virtex-II Pro FPGAs makes it possible to

implement HD-SDI interfaces. Because every Virtex-II Pro FPGA has multiple RocketIO

transceivers, multiple HD-SDI interfaces can be integrated into one Virtex-II Pro device along

with other video processing functions.

This application note describes how to implement HD-SDI receivers. An HD-SDI receiver built

in a Virtex-II Pro FPGA is presented as a reference design.

Introduction Use of HD-SDI, defined by the SMPTE 292M standard, is increasing rapidly in broadcast

studios and video production centers as the broadcast industry ramps up support for HDTV

broadcasting [Ref 1].

HD-SDI builds upon the widely used SDI standard for transporting SD digital video. The older

SDI standard is referred to as SD-SDI to differentiate it from HD-SDI. The SD-SDI and HD-SDI

standards share the same electrical characteristics and encoding scheme. However, HD-SDI

uses a higher bit rate to accommodate the higher bandwidth requirements of uncompressed

HD digital video signals. Because SD-SDI and HD-SDI share common electrical

characteristics, it is possible to build video equipment that can support both standards through

a single connection.

This application note discusses the HD-SDI receiver. A companion application note, XAPP680,

describes how to implement the HD-SDI transmitter [Ref 2]. Other existing Xilinx application

notes cover the SD-SDI standard [Ref 3]. Forthcoming Xilinx application notes will describe

how to use the RocketIO transceivers to implement multi-rate capable interfaces supporting

both HD-SDI and SD-SDI [Refs 4, 5]. Another related application note describes the

implementation of an HD digital video pattern generator [Ref 6].

The HD-SDI standard supports both coax cable and optical fiber interfaces. Coax cable has

been the more popular of the two due to lower cost and commonality with SD-SDI. This

application note only discusses the implementation details for the coaxial cable interface.

However, since the data formats and encoding schemes for the optical interface option are

identical to the coaxial interface option, the reference design presented in this application note

is directly applicable to implementing an HD-SDI receiver with an optical fiber interface.

As of this writing, there is a proposal for a new standard, SMPTE 372M, defining a dual-link HD-

SDI interface. This proposal uses two HD-SDI interfaces to provide twice the bandwidth,

allowing higher bandwidth video formats to be supported. This proposed new standard is not

Application Note: Virtex-II Pro Family

XAPP681 (v1.0) December 12, 2003

HD-SDI Receiver Using Virtex-II Pro
RocketIO Multi-Gigabit Transceivers
Author: John F. Snow

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

HD-SDI Receiver Functions
R

specifically addressed in this application note, but the HD-SDI reference design described here

can be used as a building block for implementing a dual-link HD-SDI interface.

HD-SDI
Receiver
Functions

This section describes the basic functions implemented by an HD-SDI receiver. Figure 1 is a

block diagram of a typical HD-SDI receiver. Refer to the HD-SDI Data Format section of

XAPP680 for a description of the video formats supported by HD-SDI and the details of the

format of the HD-SDI bitstream.

Cable Equalization

HD-SDI uses two bit rates: 1.485 Gbps and 1.485 / 1.001 Gbps (approximately 1.4835 Gbps).

The HD-SDI bitstreams are sent serially using an unbalanced (single-ended) driver over 75-

ohm coaxial cable up to 100 meters in length.

The coax cable causes frequency-dependent attenuation of the signal, where the higher

frequency components of the signal are attenuated more than the lower frequency

components. The coax cable also causes frequency-dependent phase distortion, where the

higher frequency components are phase shifted more than lower frequency components. After

passing through 100 meters of coax cable, the HD-SDI signal will be severely distorted and

attenuated. The receiver must compensate for this attenuation and distortion before attempting

to recover the signal.

Cable length equalization is used to compensate for the attenuation and distortion introduced

by the coax cable. The SMPTE 292M HD-SDI standard states that receivers typically work with

an attenuation of 20 dB at one-half the clock rate. Because this is not a requirement, the

standard permits HD-SDI receivers that cannot recover a signal with 20 dB of attenuation.

Typically, an adaptive cable length equalizer is used in HD-SDI receivers. Such an equalizer

actively monitors the amount of attenuation and distortion present on the incoming signal and

applies the correct amount of equalization to the signal. The cable length is allowed to change

without requiring a change to the equalizer, as would be the case if fixed length equalization

were used.

Clock and Data Recovery

After cable equalization, the HD-SDI receiver recovers the clock and data from the HD-SDI

bitstream. This recovery typically is done with a PLL-based clock and data recovery (CDR) unit.

A recovered clock usually is required for an HD-SDI receiver because the HD-SDI protocol has

no provisions for clock correction to allow the incoming bitstream to be easily resynchronized to

Figure 1: HD-SDI Receiver Block Diagram

Cable
Equalizer

Clock & Data
Recovery Serial-to-

Parallel

CLK

DATA

20

/20

1.485 GHz or
1.4835 GHz

74.25 MHz or
74.1758 MHz

Decoder
20

Framer

10

10

Y

C

CRC
Checker

Clock

Y

C

CRC error

x681_01_120503

http://www.xilinx.com

HD-SDI Receiver Functions

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 3

1-800-255-7778

R

a local reference clock. Instead, the recovered clock from the CDR unit generally is used to

clock all HD-SDI receiver logic downstream from the CDR unit.

When building an HD-SDI receiver using Virtex-II Pro devices, the RocketIO transceiver

implements the CDR function and also deserializes the bitstream. The RocketIO transceiver

provides a recovered clock that runs at the HD-SDI word rate (1/20th the bit rate). For HD-SDI,

the recovered clock from the RocketIO transceiver runs at either 74.25 MHz or

74.25 / 1.001 MHz, depending on which bit rate is currently being received.

Decoding

As described in XAPP680, HD-SDI uses a two-stage encoding algorithm, where the first stage

performs pseudorandom scrambling and the second stage performs non-return-to-zero (NRZ)

to non-return-to-zero-inverted (NRZI) conversion. After recovering the data, the HD-SDI

receiver must decode it by reversing the two encoding steps: first it converts the NRZI data to

NRZ, and then it undoes the pseudorandom scrambling. Figure 2 shows conceptually how the

HD-SDI bitstream is decoded in a serial manner.

The RocketIO transceivers have built-in 8B/10B decoders. However, they do not have HD-SDI

decoders. So, the recovered data from the RocketIO transceiver bypasses the decoding logic

built into the RocketIO transceiver and is provided directly to the RXDATA port still encoded.

The HD-SDI reference design described in this application note implements the HD-SDI

decoder in the fabric of the Virtex-II Pro FPGA. The data is decoded in a parallel manner, 20

bits per clock cycle.

Framing

The recovered data words from the CDR unit and from the HD-SDI decoder are not word

aligned. The CDR unit has no concept of where the video sample boundaries are in the

continuous stream of incoming bits. The decoder does not care where the sample boundaries

are since it can decode the data without this information. However, after decoding, it is

necessary to identify the sample boundaries and realign the data so that each 20-bit sample is

properly aligned and contains a 10-bit Y word and a 10-bit C word. This process of realigning

the data is called framing.

The framer in the HD-SDI receiver monitors the incoming data and looks for the bit sequences

that mark the beginning of the timing references. There are two timing references per video

line: the end-of-active video (EAV) and the start-of-active video (SAV). Both the EAV and SAV

have the same format and are four 10-bit words long. The first three words are always fixed

values. The first word of the timing reference is a word of all ones and has a hex value of 3FFH.

The second and third words of the timing reference are made up of all zeros (000H). The fourth

word of the timing reference is called the XYZ word. Figure 3 shows the format of the XYZ word

of the timing reference. The sequence of 10 ‘1’ bits followed by 20 ‘0’ bits that marks the

beginning of each timing reference is unique in the HD-SDI video stream and can occur only at

the beginning of the timing reference.

Figure 2: HD-SDI Decoding Algorithm

Encoded
Video In

G2(x) = x + 1 G1(x) = x9 + x4 + 1

Decoded
Video Out

+

+

+

x681_02_120503

http://www.xilinx.com

4 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

HD-SDI Receiver Functions
R

HD-SDI divides the video stream into separate channels called the luma (Y) channel and the

chroma (C) channel. Each channel has its own set of timing references. The channels are

considered to be synchronous so that the first word of the EAV, for example, would appear on

both the Y channel and the C channel at the same time.

Before transmission by the HD-SDI transmitter, the Y and C channels are interleaved so that a

C word is transmitted first followed immediately by the corresponding Y word. Figure 4 shows

the details of this interleaving.

The framer in the HD-SDI receiver must look for the unique 3FFH, 000H, 000H sequence that

marks the beginning of a timing reference. Only this unique pattern in the HD-SDI bitstream can

be used as a reference point for realigning the data. Due to the interleaving of the Y and C

channels, the framer sees the following sequence for each timing reference: 3FFH, 3FFH, 000H,

000H, 000H, 000H.

The framer looks for this unique pattern beginning at any possible bit position in the recovered

data coming from the HD-SDI decoder. Once this pattern is identified, the framer knows the bit

offset of the least significant bit of each sample in the data words coming from the decoder. A

barrel shifter is used to realign each 20-bit sample.

Figure 5 shows how a framer correctly aligns the data from the decoder. The data going into the

framer is unaligned and contains an EAV beginning at bit 12. The 20 ‘1’ bits and 40 ‘0’ bits that

make up the first three words of the interleaved EAVs are shown in red. The 20 bits of the two

XYZ words are shown in blue. After the framer, the data is realigned so that the first bit of the

EAV is positioned as the least significant bit of the C channel.

In the HD-SDI receiver reference design, the framer function is implemented in the fabric of the

Virtex-II Pro FPGA.

Figure 3: XYZ Word Format

1 F V H P3 P2 P1 P0 0 0

b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

P0 = F V H

P1 = F V

P2 = F H

P3 = V H

H = 1 in EAV, 0 in SAV

V = 1 during vertical blanking interval, 0 otherwise

F = 0 during field one, 1 during field two
x680_02_111803

Figure 4: Interleaved Data Stream

EAV Line Number CRC Horizontal Blanking SAV Active Video

3
F

F
H
 (

C
)

3
F

F
H
 (

Y
)

0
0

0
H
 (

C
)

0
0

0
H
 (

Y
)

0
0

0
H
 (

C
)

0
0

0
H
 (

Y
)

X
Y

Z
 (

C
)

X
Y

Z
 (

Y
)

L
N

 w
o

rd
 0

 (
C

)

L
N

 w
o

rd
 0

 (
Y

)

L
N

 w
o

rd
 1

 (
C

)

L
N

 w
o

rd
 1

 (
Y

)

C
R

C
 w

o
rd

 0
 (

C
)

C
R

C
 w

o
rd

 0
 (

Y
)

C
R

C
 w

o
rd

 1
 (

C
)

C
R

C
 w

o
rd

 1
 (

Y
)

C
b

 w
o

rd

Y
 w

o
rd

C
r

w
o

rd

Y
 w

o
rd

3
F

F
H
 (

C
)

3
F

F
H
 (

Y
)

0
0

0
H
 (

C
)

0
0

0
H
 (

Y
)

0
0

0
H
 (

C
)

0
0

0
H
 (

Y
)

X
Y

Z
 (

C
)

X
Y

Z
 (

Y
)

C
b

 w
o

rd

Y
 w

o
rd

C
r

w
o

rd

Y
 w

o
rd

x680_06_111903

http://www.xilinx.com

HD-SDI Receiver Functions

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 5

1-800-255-7778

R

CRC Checking

After the HD-SDI video stream has been aligned by the framer, the receiver does cyclic-

redundancy-code (CRC) checking to determine if any errors have occurred in the transmission

of the data. Each video line contains an 18-bit CRC. The CRC is formatted into two 10-bit words

located after the EAV of each line. The two words immediately after the XYZ word of the EAV

contain the line number of the video line. The two words containing the CRC are located

immediately after the line number words.

The Y and C channels each have their own CRCs. The receiver computes CRC values

separately for both the Y and C channels as it receives a line of video. When the CRCs

embedded in the video stream arrive, the receiver compares them to the CRCs that it has

calculated. If the CRCs differ, an error has been detected.

XAPP680 has more details on how the CRCs are computed and formatted.

Additional HD-SDI Receiver Functions

After CRC checking, the basic functions of the HD-SDI receiver are complete. Depending on

the application, the HD-SDI receiver also may perform some additional functions. Some of

these additional functions are described here.

The HD-SDI receiver may examine the video stream to determine its video format. The HD-SDI

standard supports many different video formats. There are two ways to determine the video

format:

• by the characteristics of the video itself (word/line counting) or

• by the finding a special ancillary data (ANC) packet that identifies the video format.

The SMPTE 352M standard specifies an ANC packet that can be used to uniquely identify the

format of the video payload. However, if the video stream does not contain an SMPTE 352M

payload ID packet, the video format can be identified by counting the number of words per line

Figure 5: Framer Example

1111111100 0111001011

0000000011 1111111111

0000000000 0000000000

1101100000 0000000000

0000000010 1101100010

Framer

1111111111 1111111111

0000000000 0000000000

0000000000 0000000000

1011011000 1011011000

0001000000 1000000000

C

channel

Y

channel

EAV first word

EAV second word

EAV third word

EAV XYZ word

video

first received word

second received word

third received word

fourth received word

fifth received word

x681_05_120503

http://www.xilinx.com

6 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

HD-SDI Receiver Requirements
R

and lines per frame in the video. An example of such a video format detector is included in the

reference design.

It is useful to derive some video timing information from the received video stream. A video

decoder can generate various video timing signals, such as horizontal and vertical blanking,

from the timing reference signals. A more sophisticated video decoder might implement a

flywheel which keeps track of where the timing reference signals are expected, repairs

defective timing references, and inserts timing references when they are missing. A simple

video timing decoder is included in the reference design.

The SMPTE 352M video payload ID is one type of ancillary data that can be included in the

horizontal and vertical blanking intervals of the HD-SDI data stream. Another common use of

ancillary data packets is to carry embedded digital audio. Some HD-SDI receivers might need

to detect certain types of ancillary data packets and separate that ancillary data from the main

video stream. The general format of ancillary data packets is given in the SMPTE 291M

standard. Ancillary data packets are easy to detect in the video stream because they begin with

a unique three-word sequence, similar to the first three words of the timing reference. The first

three words of an ancillary data packet are 000H, 3FFH, 3FFH.

HD-SDI
Receiver
Requirements

The SMPTE 292M document places a few requirements on the HD-SDI receiver. Basically, the

receiver must be compatible with the single-ended, AC coupled electrical signal generated by

the HD-SDI transmitter. The receiver must provide a 75-ohm impedance to the cable interface

with a return loss of at least 15 dB from 5 MHz to 1.485 GHz.

The SMPTE 292M standard states that it is typical for HD-SDI receivers to receive signals

attenuated by up to 20 dB. Because this is not a requirement of the standard, receivers that

cannot recover the data when the input signal has been attenuated by 20 dB are permitted.

The SMPTE 292M standard contains a jitter template describing the maximum amount of jitter

that can be produced by the HD-SDI transmitter. HD-SDI receivers should have input jitter

tolerance exceeding the maximum allowed transmitter jitter as described by the jitter template,

although not specifically required by the standard. The amount by which the receiver exceeds

the jitter template is the jitter margin of the receiver.

Figure 6 shows the SMPTE 292M jitter template. The horizontal axis is jitter frequency, and the

vertical axis is jitter amplitude given in UI(1). The output jitter of an HD-SDI transmitter must be

below the template for every jitter frequency within the specification. An HD-SDI receiver should

be able to tolerate more jitter than the transmitter is allowed to produce at each jitter frequency.

When the input jitter tolerance of an HD-SDI receiver is plotted onto Figure 6 (blue line), all

points of the plot should be above the jitter template line. For any particular jitter frequency, the

vertical distance between the receiver’s input jitter tolerance and the jitter template is the

receiver’s jitter margin at that frequency.

1. UI stands for Unit Interval. One UI is equal to the duration of one bit in the bitstream. For HD-SDI, one UI is about

673 ps.

http://www.xilinx.com

Implementing the HD-SDI Receiver

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 7

1-800-255-7778

R

SMPTE recommended practice RP 198 describes two worst-case pathological waveforms that

can be produced by the HD-SDI encoder. One pathological waveform is poorly DC balanced

and can cause problems with cable equalizers not designed to tolerate this waveform. Any

cable equalizer designed specifically for HD-SDI use should be tolerant of this waveform. The

second pathological waveform is essentially a low-frequency square wave consisting of 20 Low

bits followed by 20 High bits. This square wave can repeat across the entire active portion of a

video line. This low-frequency waveform can cause problems for the PLL inside of the CDR

unit. The RocketIO CDR unit has been tested extensively with this waveform and is fully tolerant

of it.

Implementing
the HD-SDI
Receiver

This section details how to implement an HD-SDI receiver using the RocketIO transceivers in

Virtex-II Pro FPGAs. The reference design described here is implemented and tested on the

Xilinx SDV Demo Board [Ref 7].

Cable Equalizer

As previously described, an HD-SDI receiver usually has an adaptive cable length equalizer to

compensate for attenuation and distortion of the signal caused by long runs of coax cable. The

RocketIO transceivers in the Virtex-II Pro FPGA do not include adaptive cable length

equalizers. So, an external cable equalizer must be used to interface the HD-SDI cable to the

RocketIO receiver. As a side benefit, the cable equalizer also converts the single-ended HD-

SDI signal into a differential signal. The CML inputs of the RocketIO receiver require a

differential input signal. Most HD-SDI cable equalizers currently available have 3.3V LVPECL

outputs that are not directly compatible with the 2.5V CML inputs of the RocketIO transceiver.

AC coupling is used to interface the LVPECL outputs of the cable equalizer to the CML inputs

of the RocketIO transceiver. Figure 7 shows a typical AC coupled interface between a Gennum

GS1524 cable equalizer and a RocketIO receiver.

Figure 6: SMPTE 292M Jitter Template

Jitter Frequency

Jitter
Amplitude

0.2 UI

1.0 UI

10 Hz 20 kHz 100 kHz 148.5 MHz

SMPTE 292M

Jitter Template

Measured Receiver
Input Jitter Tolerance

Receiver
Jitter
Margin

x681_06_120503

http://www.xilinx.com

8 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Implementing the HD-SDI Receiver
R

There are several important details in Figure 7:

• The recommendations given in the GS1524 data sheet [Ref 8] must be followed for the

interface network between the BNC cable connector and the GS1524’s input.

• The GS1524 is a multi-rate cable equalizer capable of supporting both HD-SDI and SD-

SDI. HD-SDI only cable equalizers are also available.

• The coupling capacitors between the GS1524 and the RocketIO receiver must be in the

1 µF to 10 µF range to pass the HD-SDI pathological waveforms without too much voltage

droop. Typically, 4.7 µF capacitors are used.

• The input impedance of the RocketIO receiver must be set to 50 ohms, and the circuit

board traces between the equalizer and the RocketIO receiver must have an impedance of

50 ohms.

• As described in the RocketIO Transceiver User Guide [Ref 9], when using AC coupling,

the RocketIO receiver termination voltage (VTRX) must be between 1.6V to 1.8V. As

shown in the figure, the required termination voltage can be generated from 2.5V using a

voltage divider network. The resistor values shown are sized to supply the termination

voltage to a single RocketIO receiver, so this resistor network must be duplicated for each

RocketIO receiver used as an HD-SDI receiver.

In rare cases, it might not be necessary to use a cable equalizer. For example, if the HD-SDI

bitstream is always sent over a very short length of cable or a backplane within a chassis, the

transmission path length may be short enough that cable equalization is not required. In such

cases, the incoming single-ended HD-SDI signal must be converted to a differential signal

compatible with the CML inputs of the RocketIO receiver, unless the HD-SDI transmitter can be

designed to provide a differential signal. While a differential HD-SDI signal is not within the HD-

SDI specification, it would provide a superior solution inside of a proprietary chassis, especially

when a cable equalizer is not used.

Figure 7: Interfacing a Cable Equalizer to the RocketIO Receiver

75Ω 37.5

4.7µF

4.7µF

SDI

SDI

BNC

1µF
AGC+

AGC-

SCO

SCO
75Ω

6.4nH

1.5kΩ

BYPASS

GS1524

VCC

VEE

3.3V

4.7µF

4.7µF
Virtex-II Pro

RocketIO Transceiver

RXP

RXN

VTRX

402Ω

VTTX

2.5V
Regulator

Power
Filtering

1kΩ

0.22µF 0.22µF

AVCCAUXTX

0.22µF

AVCCAUXRX

0.22µF

Set RocketIO Rx input termination to 50 ohms

2.5V

1.78V

b
e

a
d

b
e

a
d

b
e

a
d

b
e

a
d

x681_07_120503

http://www.xilinx.com

Implementing the HD-SDI Receiver

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 9

1-800-255-7778

R

RocketIO Transceiver Clocks

The RocketIO transceiver requires two types of clocks: reference clocks and user clocks. The

reference clocks are used by the RocketIO receiver as a reference for the CDR PLL. The user

clocks are used to clock data out of the RocketIO receiver into the fabric of the FPGA. In

addition, the RocketIO receiver also produces a recovered clock, called RXRECCLK.

The following sections describe the clocking requirements of the RocketIO transceivers

oriented towards implementing HD-SDI interfaces. More details about the clocking

requirements of the RocketIO transceivers can be found in the RocketIO Transceiver User

Guide.

Reference Clocks

The RocketIO transceiver uses reference clocks for two different purposes:

1. In the transmitter, the reference clock provides a low-jitter frequency reference that the

transmitter multiplies by 20 to obtain the bit-rate clock for the transmitter’s serializer.

2. On the receiver side, the reference clock is used to spin up the CDR circuit so that it can

quickly lock to the bit rate of the incoming bitstream. The receiver’s PLL does not operate

properly without a reference clock or if the reference clock frequency is not close enough to

the frequency of the HD-SDI bitstream.

The reference clocks are required to be 1/20th the frequency of the bitstream ±100 ppm.

Because HD-SDI has two different bit rates (1.485 Gbps and 1.485 / 1.001 Gbps), the

RocketIO receiver must have both 74.25 MHz and 74.25 / 1.001 MHz reference clocks

available if it is to support both HD-SDI bit rates.

As described in detail in the RocketIO Transceiver User Guide and in XAPP680, each RocketIO

transceiver has four reference clock inputs. A set of MUXes selects one of the four reference

clock inputs as the active input. The method by which these MUXes are controlled limits

dynamic switching to between two of the four inputs. Switching to the other set of two inputs

requires reconfiguring the RocketIO transceiver. When implementing a RocketIO receiver, two

reference clocks (either REFCLK and REFCLK2 or BREFCLK and BREFCLK2) typically are

used, where one reference clock provides the 74.25 MHz reference frequency and the other

provides 74.25 / 1.001 MHz.

Note that the selected reference clock is used by both the transmitter and the receiver in a

RocketIO transceiver. It is not possible to select one reference clock for the transmitter and

another reference clock for the receiver in a single RocketIO transceiver. However, different

RocketIO transceivers can have different reference clocks. This sharing of the reference clock

by the transmitter and receiver has significant implications when trying to implement an HD-SDI

transmitter and receiver in the same RocketIO transceiver. This topic is discussed in detail in

“Appendix B: Implementing an HD-SDI Receiver and Transmitter with one RocketIO

Transceiver.”

The reference clocks have fairly stringent jitter requirements. At HD-SDI bit rates, the reference

clock inputs should have no more than 100 ps of peak-peak jitter. Xilinx recommends the use

of low-jitter oscillators with differential outputs to provide the reference clocks for the RocketIO

transceivers. The transmitter section of the RocketIO transceiver actually imposes the most

stringent requirements for low jitter on the reference clocks because jitter on the reference clock

becomes jitter on the transmitter’s output. The RocketIO receiver is less sensitive to reference

clock jitter. HD-SDI receivers have been successfully tested on the SDV board using singled-

ended clock sources for the reference clocks. See “Appendix C: A Low-Cost Reference Clock

Solution” for details.

User Clocks

The user clocks clock data out of the HD-SDI receiver and into the fabric of the FPGA. Each

RocketIO transceiver requires two user clocks on the receiver side called RXUSRCLK and

RXUSRCLK2. Each RocketIO transceiver also has two user clocks for the transmitter side

http://www.xilinx.com

10 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Implementing the HD-SDI Receiver
R

called TXUSRCLK and TXUSRCLK2. If the transmitter portion of the transceiver is not used,

the TXUSRCLK and TXUSRCLK inputs should still be driven with valid clock signals. In this

case, simply connect TXUSRCLK to RXUSRCLK and TXUSRCLK2 to RXUSRCLK2.

RXUSRCLK is the clock signal that clocks data out of the RocketIO transceiver. The receiver

output ports, such as RXDATA, change synchronously with the rising edge of RXUSRCLK. The

frequency of RXUSRCLK is equal to the word rate of the HD-SDI interface, either 74.25 MHz or

74.25 / 1.001 MHz.

The frequency and phase relationships between RXUSRCLK and RXUSRCLK2 depend on the

width of the RXDATA port of the RocketIO transceiver. For HD-SDI, a 20-bit RXDATA port is

convenient to use because it matches the data word width of HD-SDI (10 bits of Y and 10 bits

of C). When using a 20-bit RXDATA port, RXUSRCLK2 must have the same frequency and

phase as RXUSRCLK (simply connect RXUSRCLK and RXUSRCLK2 to the same clock

source). Consult the RocketIO Transceiver User Guide for RXUSRCLK2 requirements when

other RXDATA port widths are used.

Note that the RocketIO transceiver’s RXDATA port is actually only 16 bits wide when a two-byte

interface is selected. However, with the internal 8B/10B decoder bypassed, four additional

output data bits are provided on other receiver output ports to form a 20-bit output data word.

For simplicity, this application note calls the entire 20-bit output port RXDATA.

In serial protocols that have clock correction capability, the RXUSRCLK and RXUSRCLK2

signals usually are derived from the same source as the reference clock. Then the RocketIO

transceiver’s clock correction capability is used to occasionally insert or remove idle characters

to compensate for the minor differences between the actual clock frequency of the incoming

bitstream and the frequency of the local reference clock.

HD-SDI does not support clock correction. Therefore, deriving RXUSRCLK and RXUSRCLK2

from the reference clock quickly results in either an overflow or underflow condition on the

output data port of the RocketIO receiver because RXUSRCLK and RXUSRCLK2 are running

at a slightly different frequency than the frequency of the incoming bitstream.

When implementing an HD-SDI receiver, the recovered clock (RXRECCLK) from the RocketIO

receiver is used as the source of RXUSRCLK and RXUSRCLK2. When connected in this

manner, as shown in Figure 8, RXUSRCLK and RXUSRCLK2 always run at the same

frequency as the incoming bitstream provided the RocketIO receiver’s CDR unit is locked to the

bitstream. Thus underflow and overflow conditions are prevented on the RXDATA port of the

RocketIO receiver.

Figure 8: Typical RocketIO Transceiver Clock Connections for an HD-SDI Receiver

74.25 MHz

XO

IBUFGDS

74.1758 MHz

XO

IBUFGDS

BREFCLK2

or REFCLK2

BREFCLK

or REFCLK

RXRECCLK

BUFGTXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

Bit Rate
Selection Logic

REFCLKSEL

RocketIO

Transceiver

RXDATA Decoder Framer Video

Video Clock

x681_08_120803

http://www.xilinx.com

Reference Design

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 11

1-800-255-7778

R

RXRECCLK

The RXRECCLK output of the RocketIO transceiver is the recovered clock from the receiver’s

CDR unit. When the CDR unit is locked to the incoming bitstream, this clock is exactly 1/20th

the frequency of the bitstream. When the CDR unit is not locked to the bitstream frequency,

RXRECCLK runs at the same frequency as the selected reference clock. Thus RXRECCLK

always provides a word-rate clock for the HD-SDI receiver logic downstream from the RocketIO

transceiver.

As shown in Figure 8, it is common to connect RXRECCLK to a BUFG global clock buffer. The

output of the BUFG can be connected to the RXUSRCLK and RXUSRCLK2 inputs of the

RocketIO transceiver and also to the clock inputs of the other portions of the HD-SDI receiver,

such as the decoder, framer, and CRC checker.

Reference
Design

The HD-SDI receiver reference design can be downloaded from

http://www.xilinx.com/bvdocs/appnotes/xapp681.zip. A high-level description of the reference

design is in the following section. Detailed information about the reference design can be found

in “Appendix A: Reference Design Details.”

Most of the HD-SDI receiver reference design is contained in the module called hdsdi_rx. This

module contains the HD-SDI decoder, framer, CRC checker, and the video format detector. It

does not include the RocketIO transceiver module. The RocketIO module is kept separate from

hdsdi_rx so that the RocketIO transceiver can be shared between an HD-SDI transmitter and

receiver, if desired. Also not included in the hdsdi_rx module are the video timing decoder

module (hdsdi_rx_timing) and a module (hdsdi_rx_autorate) that automatically toggles

between the reference clock inputs to the RocketIO transceiver until the HD-SDI receiver locks.

An example of how to connect the hdsdi_rx module to the RocketIO transceiver and the other

modules is given in the sdv_hdsdi_rx module. This HD-SDI receiver example was designed

specifically for the Xilinx SDV demo board. On the SDV board, there are no provisions for

bringing the received parallel video out of the Virtex-II Pro FPGA. So, the received video is

simply checked for CRC errors to determine correct reception. Figure 9 is a block diagram of

the sdv_hdsdi_rx design.

Figure 9: Xilinx SDV Demo Board HD-SDI Receiver Reference Design

74.25 MHz

XO

IBUFGDS

74.1758 MHz
XO

IBUFGDS

brefclk2

brefclk

rxrecclk

BUFGtxusrclk

txusrclk2

rxusrclk

rxusrclk2

refclk_sel

hdsdi_rio

rxdata

hdsdi_rx

c

y

xyz

sav

eav

c_ln_err

y_ln_err

trs_err

std_locked

y_crc_err

std

c_crc_err
rxdata

hdsdi_rx_timing
Video
Timing

hdsdi_rx_autorate

Error
Latches

LEDs

20

10

4

Cable

Equalizer
HD-SDI In

rxp

rxn

x681_09_120503

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp681.zip

12 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Reference Design
R

Figure 10 shows a block diagram of the main HD-SDI receiver module, hdsdi_rx. This module

contains the four submodules described in the following paragraphs.

The 20-bit parallel data comes into the hdsdi_rx module from the RocketIO transceiver. The

data is encoded and unframed at this point. The data words are sent into the hdsdi_decoder

module. The decoder performs the two-step decoding process.

The output of the decoder is connected to the input of the framer module. There are two

different framer modules provided in the reference design. They perform the same framing

function but are implemented using different resources in the FPGA. The module called

hdsdi_framer implements all framer functions using the fabric of the FPGA (LUTs and flip-

flops). The hdsdi_framer_mult module provides an alternative implementation where six

MULT18X18 multiplier blocks implement the barrel shifter function inside the framer, reducing

the amount of FPGA fabric required for the framer by about one-half. This implementation can

be a good trade-off if the multiplier blocks otherwise are unused.

The hdsdi_rx_crc module computes CRC values for both Y and C channels for each video line

and compares them to the CRCs inserted into the video stream by the HD-SDI transmitter.

Finally, the hdsdi_autoformat_ln module examines the data and determines the video format.

Once it recognizes the format, it asserts the std_locked output and outputs a 4-bit code

indicating the format. This module is identical to the module of the same name described in

detail in XAPP680.

Figure 11 shows the block diagram of the hdsdi_rio module. This module is a wrapper around

the RocketIO transceiver primitive (GT_CUSTOM). In addition to the RocketIO primitive, the

module contains bit swap functions on the input and output data ports of the RocketIO primitive

and a reset delay circuit for the RocketIO transceiver.

Figure 10: hdsdi_rx Block Diagram

rxdata hdsdi_
decoder

clk

20

dec_bypass

d q 20

hdsdi_
framer

0

1
d

frame_en frame_en

c

y

trs

xyz

eav

sav

trs_err

nsp

hdsdi_

rx_crc

c

y

trs

c_crc_err

y_crc_err

c_line_num

y_line_num

hdsdi_

autodetect_
ln

vid_in

eav

sav

ln

ln_valid

std

std_locked

c

y

trs

xyz

nsp

trs_err

eav

sav

10

10

c_crc_err

y_crc_err

c_ln

y_ln

11

11

y_ln
4

std_locked

c_ln_err

y_ln_err=

=

x681_10_120503

http://www.xilinx.com

Reference Design

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 13

1-800-255-7778

R

The RocketIO transceiver transmits the MSB of the TXDATA port first. Likewise, the RocketIO

receiver outputs the first bit it receives on the MSB of the RXDATA port. HD-SDI always

transmits the LSB first, just the opposite of how the RocketIO transceiver operates. In order to

accommodate this difference, the hdsdi_rio module swaps the bit order on the input and output

ports.

The RXRESET input of the GT_CUSTOM primitive must remain asserted for at least two

RXUSRCLK cycles after all clock inputs become stable. The hdsdi_rio primitive contains some

logic to keep the RXRESET input asserted until several clock cycles after the dcm_locked input

becomes asserted. This input is called dcm_locked because it can be driven by the LOCKED

output of a DCM, if a DCM is used to generate the RXUSRCLK and TXUSRCLK signals. If a

DCM is not used to generate these clock signals, then the dcm_locked input either can be

connected to another appropriate signal that indicates when the clocks are stable or can be tied

High if the clocks are always running.

When an HD-SDI bitstream initially is connected to the RocketIO transceiver, the selected

reference clock might not be the correct reference clock for the frequency of the bitstream. If the

correct reference clock is selected, then the RocketIO transceiver quickly locks to the bitstream,

and the HD-SDI receiver begins decoding and framing the data. However, if the wrong

reference clock is selected, the HD-SDI receiver receives the video with many errors. The

hdsdi_rx_autorate module examines the errors detected by the HD-SDI receiver and

determines when it is appropriate to change the frequency of the reference clock. This module

is described in more detail in “Appendix A: Reference Design Details.”

Figure 12 shows the results of input jitter tolerance measurements made on an HD-SDI

receiver design implemented on the Xilinx SDV demo board. The input jitter tolerance of the

receiver was measured at different jitter frequencies and then plotted relative to the HD-SDI

transmitter jitter template. As can be seen in the figure, the receiver’s input jitter tolerance is

well above the HD-SDI jitter template for all jitter frequencies measured.

Figure 11: hdsdi_rio Module

GT_CUSTOM

brefclk

brefclk2

refclk

refclk2

refclk_sel

loopback_en

loopback_mode

Loopback

Encoding

2

txusrclk

txusrclk2

rxusrclk2

rxusrclk

rxp

rxn

rst

dcm_locked

Reset

Logic

BREFCLK

BREFCLK2

REFCLK

REFCLK2

REFCLKSEL

LOOPBACK

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

RXP

RXN

TXRESET

RXRESET

refclk_sel
20 Bit

Swapping
16

2

2
TXCHARDISPMODE

TXDATA

TXCHARDISPVAL

TXP

TXN

Bit

Swapping
16

2

2
RXCHARISK

RXRUNDISP

RXDATA

RXRECCLK

20
rxdata

rxrecclk

txp

txn

x680_15_111703

http://www.xilinx.com

14 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Reference Design
R

Reference Design Size

Table 1 shows the FPGA resources used by the HD-SDI receiver reference design. The

complete reference design with all the modules is shown with the regular hdsdi_framer and

hdsdi_framer_mult modules. The sizes of the optional modules (hdsdi_rx_timing,

hdsdi_autodetect_ln, and hdsdi_rx_autorate) are also shown. If the optional modules are not

included, their sizes can be subtracted from the implementation size of the fully featured

design.

Figure 12: HD-SDI Receiver Input Jitter Tolerance

Table 1: Reference Design Implementation Sizes

Design LUTs FFs MULT18X18s

HD-SDI receiver with all features using

hdsdi_framer

581 361 0

HD-SDI receiver with all features using

hdsdi_framer_mult

477 361 6

Size of optional hdsdi_rx_timing 16 12 0

Size of optional hdsdi_autodetect_ln 174 71 0

Size of optional hdsdi_rx_autorate 30 21 0

0.1

0.5

1.0

5.0

10.0

15.0

10 100 1K 10K 100K 1M 10M

Jitter Frequency (Hz)

J
it

te
r

A
m

p
li

tu
d

e
 (

U
I)

Maximum transmitter output jitter
allowed by the SMPTE 292M standard.

Actual measured input jitter tolerance of
HD-SDI receiver using RocketIO
transceiver on Xilinx SDV demo board.

x681_12_120503

http://www.xilinx.com

Conclusion

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 15

1-800-255-7778

R

Conclusion This application note describes the implementation details of an HD-SDI receiver using the

RocketIO multi-gigabit transceivers available in the Virtex-II Pro FPGA family. An HD-SDI

receiver easily can be implemented from RocketIO transceivers combined with an HD-SDI

decoder, framer, and other support functions built in the fabric of the FPGA.

The HD-SDI receiver reference design requires very few resources in the FPGA, making it quite

easy to implement multiple HD-SDI interfaces in even the smallest member of the Virtex-II Pro

family or to integrate video processing functions and an HD-SDI receiver all in the same part.

References The following references provide related information for this application note:

1. All the SMPTE standards referenced in this application note are available from The Society

of Motion Picture and Television Engineers. These standards can be purchased at the

SMPTE website: http://www.smpte.org.

2. Xilinx application note XAPP680 – HD-SDI Receiver Using Virtex-II Pro RocketIO Multi-

Gigabit Transceivers

3. The Xilinx SD-SDI applications notes are:

♦ XAPP247 – Serial Digital Interface (SDI) Physical Layer

♦ XAPP288 – Serial Digital Interface (SDI) Video Decoder

♦ XAPP298 – Serial Digital Interface (SDI) Video Encoder

♦ XAPP299 – Serial Digital Interface (SDI) Ancillary Data and EDH Processors

♦ XAPP625 – SDI: Video Standard Detector and Flywheel Decoder

4. Xilinx application note XAPP683 – Multi-Rate HD/SD-SDI Transmitter using Virtex-II Pro

RocketIO Transceivers (planned for future release)

5. Xilinx application note XAPP684 – Multi-Rate HD/SD-SDI Receiver using Virtex-II Pro

RocketIO Transceivers (planned for future release)

6. Xilinx application note XAPP682 – HDTV Video Pattern Generator (planned for future

release)

7. The Xilinx SDV Demo board is available from Cook Technologies (part number CTXIL103).

Further information is available at http://www.cook-tech.com.

8. The Gennum GS1524 data sheet is located at

http://www.gennum.com/vb/pdffiles/14976DOC.pdf

9. UG024: RocketIO Transceiver User Guide

http://www.xilinx.com
http://www.smpte.org
http://www.xilinx.com/bvdocs/appnotes/xapp288.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp298.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp299.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp625.pdf
http://www.gennum.com/vb/pdffiles/14976DOC.pdf
http://www.cook-tech.com
http://www.xilinx.com/bvdocs/userguides/ug024.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp680.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp247.pdf

16 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Appendix A: Reference Design Details
R

Appendix A:
Reference
Design Details

This appendix contains detailed design information for the hdsdi_decoder, hdsdi_framer, and

hdsdi_framer_mult modules.

hdsdi_decoder

The hdsdi_decoder module implements the two-stage decoding process to convert encoded

HD-SDI data into decoded video data. The output data from the decoder is unaligned to word

boundaries and must be framed by the hdsdi_framer module. Figure 13 shows a block diagram

of the decoder module.

The decoder module first does the NRZI-to-NRZ conversion by XORing each bit with the

previous bit in the bitstream. Remember that the LSB was the first bit received, so XORing d[1]

with d[0] produces a new d[1] bit that has been converted to NRZ. The bit preceding d[0] is

d[19] from the previous clock cycle. The prev_d19 register always captures the d[19] bit every

clock cycle so that it can be XORed with the d[0] bit of the next clock cycle to produce an NRZ

d[0] bit.

Then the 20 NRZ bits are passed through the descrambler block. This block XORes each bit

with two other bits to reverse the pseudorandom scrambling done by the HD-SDI encoder. In

order to descramble all 20 bits, the descrambler needs the nine most significant bits produced

by the NRZI-to-NRZ converter during the previous clock cycle. These bits are held in the

prev_nrz register.

hdsdi_framer

The data from the RocketIO receiver is not aligned and usually contains bits from two different

samples. The framer realigns the video samples so that each sample output from the framer

contains the Y and C words from the same sample.

The framer searches for the bit pattern that marks the beginning of a timing reference, either

EAV or SAV. When this unique pattern is located, the framer knows the offset of the least

significant bit of the sample within the 20-bit data from the decoder. The framer uses this offset

value to control a barrel shifter to realign all the subsequently received video samples.

Figure 14 shows a block diagram of the hdsdi_framer module. The framer has three main

sections: the input pipeline registers, the timing reference signal (TRS) detector, and the barrel

shifter.

Figure 13: hdsdi_decoder Block Diagram

d

clk

D Q
prev_d19

x[n]
x[n-1]

y[n]

For each bit y[19:0]

20

[19:11]
D Q
prev_nrz

N
R

Z
I-

to
-N

R
Z [8:0]

[28:9]

20
D Q
out_reg

D
e

s
c
ra

m
b
le

r

20
q

d[19]

20

x[n]
x[n+4]
x[n+9]

y[n]

For each bit y[19:0]

x681_13_120603

http://www.xilinx.com

Appendix A: Reference Design Details

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 17

1-800-255-7778

R

A TRS (either EAV or SAV) begins with the unique sequence of words: 3FFH, 000H, 000H. The

Y and C channels each have a TRS that occurs at the same time in both channels. So the

framer sees a 60-bit sequence like this: 3FFH, 3FFH, 000H, 000H, 000H, 000H. The TRS

detector does not need to match the entire 60-bit sequence. It can still look for the 30-bit

sequence 3FFH, 000H, 000H because this pattern is still unique in the bitstream even after

interleaving the channels. In this case, the 3FFH and the second 000H are from the Y channel,

and the middle 000H is from the C channel. Searching for just the 30-bit sequence, rather than

the entire 60-bit sequence, significantly reduces the size of the TRS detector.

The 30-bit TRS sequence that the TRS detector is searching for can begin at any bit position in

the 20-bit words coming into the framer. The TRS detector must look at bit 0 plus the next 29

bits for a match. It must also look at bit 1 plus the next 29 bits for a match, and so on up to bit

19 plus the next 29 bits. When the TRS detector takes in a new 20-bit word to determine if a

TRS begins in this word, it must have this 20-bit word plus the 29 bits that were received

immediately after it, forming a 49-bit vector that the TRS detector scans.

To form this 49-bit vector for the TRS detector, there are two pipeline delay registers called

in_reg and dly_reg. Every clock cycle, in_reg captures the 20-bit word coming in the d input

port, and dly_reg loads the previous word from in_reg. The 40 bits from these two registers plus

the least significant nine bits from the d input port form the 49-bit vector scanned by the TRS

detector.

An additional 10-bit pipeline register, called prev_reg, loads the most significant 10 bits of

dly_reg every clock cycle. The TRS detector ignores the first 3FFH word in the 60-bit TRS

sequence and determines where the TRS begins by finding the starting location of the second

3FFH word in the sequence. Thus, when the TRS detector finds the TRS location, some or all

of the 10-bit C word that began the TRS sequence might have passed out of dly_reg. These

bits are captured in prev_reg and are provided to the barrel shifter so that it has all the bits it

needs to output the aligned sample.

The TRS detector implements a brute force pattern matcher, basically consisting of twenty 30-

bit comparators. Each comparator is wired to look for the 3FFH, 000H, 000H pattern. There is

one comparator for each of the 20 possible starting positions where the pattern could begin in

the input vector.

When a new TRS is detected, the TRS detector asserts the trs_detected signal and generates

a binary code, called offset_val, indicating the bit position where the TRS was detected. This

Figure 14: hdsdi_framer Block Diagram

d

clk

D Q
in_reg

20 20
D Q
dly_reg

20

[19:10]
D Q
prev_reg

10

9 20 20
[8:0]

offset_val

5

trs_detected

frame_en

D Q

offset_reg

clk

EN

 D Q

clk

nsp

Barrel Shifter

5

[8:0]

D

clk

out_reg

20
c

10

y
10

clk

xyz
eav
sav
trs
trs_errV

id
e

o
 T

im
in

g

T
R

S
 D

e
te

c
t

[9:0]

[29:10]

[38:30]

[19:0]

[39:20]

[48:40]

10

x681_14_120603

http://www.xilinx.com

18 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Appendix A: Reference Design Details
R

code is compared with the bit offset currently being used by the framer, stored in offset_reg. If

the frame_en input to the framer is asserted, then a difference between the new offset_val and

offset_reg causes offset_reg to load the new offset_val. If frame_en is not asserted, then

offset_reg is not loaded, and the nsp output is asserted, indicating that a TRS was detected

that did not match the current offset used by the framer.

The nsp output, combined with the framer_en input, can be used by control logic external to the

framer module to implement simple or sophisticated TRS filtering. Sometimes, noise corrupts

the HD-SDI bitstream and produces a bit sequence in the bitstream that looks like a TRS. If the

framer always aligns to new TRS offsets, such an erroneous TRS could cause the framer to

misalign data until the next TRS arrives. By controlling the framer_en input and monitoring

when new TRS starting positions are detected based on the nsp output, control logic can

prevent the framer from switching to a new TRS offset until some number of timing reference

sequences arrive at the new offset.

The framer keeps the nsp output asserted until either the framer is allowed to reload offset_reg

by the assertion of frame_en or when a TRS is detected that has a starting position that

matches the current contents of offset_reg.

A simple TRS filtering scheme can be implemented by connecting nsp to frame_en. With this

connection, the framer does not reload offset_reg when a TRS is detected that does not match

offset_reg. Instead, nsp is asserted. With the assertion of nsp, frame_en is asserted, and the

framer is allowed to reload offset_reg when the next TRS is detected. This next TRS either:

• matches the current offset_reg value if the TRS that caused the assertion of nsp was

erroneous, thus filtering out the erroneous TRS, or

• forces the offset_reg to reload if the new TRS does not match the current offset_reg

contents.

The offset value stored in offset_reg controls a barrel shifter. This barrel shifter realigns the

video samples to their correct word alignment. The input vector for the barrel shifter is 39 bits

wide made from the 10-bit output of prev_reg, 20 bits from dly_reg, and the nine least

significant bits of in_reg. Depending on the value of offset_reg, the barrel shifter extracts a 20-

bit output value from the 39-bit input vector.

In the hdsdi_framer module, the barrel shifter is made from three levels of MUXes. The first

level consists of 2:1 MUXes that shift the input vector either 0 or 16 bit positions. The second

level takes the output of the first level and shifts it 0, 4, 8, or 12 bit positions. Finally, the third

level takes the output of the second level and applies the final 0, 1, 2, or 3 bit position shift.

The output of the barrel shifter is loaded into the barrel_out register, which drives the y and c

output ports of the framer.

The framer module also contains some decoding logic that produces some TRS-related video

timing signals. The trs output is asserted when all four samples of a TRS are output from the

framer. The xyz output is asserted when the XYZ word of a TRS is output from the framer. The

eav and sav outputs are asserted when the framer outputs the XYZ word of an EAV or SAV,

respectively. Finally, the trs_err output is asserted when the XYZ word is output from the framer,

if an error is detected in the XYZ word by examining the XYZ protection bits.

hdsdi_framer_mult

The hdsdi_framer_mult module is an alternate implementation of the framer. It is identical in

function to hdsdi_framer with the only difference in how the barrel shifter is implemented. In the

hdsdi_framer_mult module, six MULT18X18 multiplier blocks implement the barrel shifter rather

than LUTs, as in hdsdi_framer. This can be a good trade-off if the multipliers are not required for

other purposes since it essentially reduces the number of LUTs required to implement the

framer in half.

A MULT18X18 block can be used as a barrel shifter by inputting the data to be shifted into one

of the multiplier’s inputs and by putting a unary bit shift code into the other multiplier input. To

http://www.xilinx.com

Appendix A: Reference Design Details

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 19

1-800-255-7778

R

shift the data zero positions, the shift code should be 1. To shift one position to the left, the shift

code should be 2, and so on.

In the hdsdi_framer_mult module, the barrel shifter is implemented in two levels with three

MULT18X18 blocks used in each level as shown in Figure 15. The top level of the barrel shifter

shifts the input vector either 0 bit positions or 12 bit positions. The bottom level of the barrel

shifter shifts the output of the top level from 0 to 11 bit positions. Thus, the barrel shifter can

shift the input vector anywhere from 0 to 33 bit positions. However, the framer only requires

shifts of 0 to 19 bit positions. So, the barrel shifter is not fully wired to support shifting by more

than 19 bits.

In the top level of the barrel shifter, each multiplier acts like a 9-bit 2:1 MUX as shown in

Figure 16. Note how every other output of the multiplier is used. The shift code, applied to the

B input of the multiplier, only takes on the values of 1 or 2. When the shift code is 1, the X input

bit of each MUX is selected and passes straight down to the output. When the shift code is 2,

the Y input bit of each MUX is selected (by shifting it left one bit position).

Figure 15: hdsdi_framer_mult Barrel Shifter

MULT18X18

B A

P

MULT18X18

B A

P

MULT18X18

B A

P

barrel_in

39

9 9 9

[26:18] [17:9] [8:0]

5

[31:27]

MULT18X18

B A

P

MULT18X18

B A

P

MULT18X18

B A

P

9 9 9

32

[17:0][24:7][31:18]

[19:14] [13:7] [6:0]

20

barrel_out

Shift Code

Encoder

5

12
offset_reg

This level shifts the input vector

either 0 or 12 bits to the right.

This level shifts the output of the

top level from 0 to 11 bits to the

right.

Each MULT18X18 at this level

implements nine 2:1 MUXes.

Each MULT18X18 at this level

implements seven 12:1 MUXes.

x681_15_120603

http://www.xilinx.com

20 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Appendix A: Reference Design Details
R

In the bottom level of the barrel shifter, each multiplier acts like a 7-bit barrel shifter. Each

multiplier has an 18-bit input vector connected to its A input and a shift code applied to its B

input. If the shift code is 2048, the 7-bit output of the multiplier is equal to A[6:0]. If the shift code

is 1024, the 7-bit output is equal to A[7:1], and so on until the shift code is 1 and the output is

equal to A[17:11].

Figure 16: MULT18X18 used as Nine 2:1 MUXes

A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

100000000000000000 X8 Y8 X7 Y7 X6 Y6 X5 Y5 X4 Y4 X3 Y3 X2 Y2 X1 Y1 X0 Y0

X8 X7 X6 X5 X4 X3 X2 X1 X0

With shift code = 1, the X inputs are

transferred to the MUX outputs.

A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

010000000000000000 X8 Y8 X7 Y7 X6 Y6 X5 Y5 X4 Y4 X3 Y3 X2 Y2 X1 Y1 X0 Y0

With shift code = 2, the Y inputs are

transferred to the MUX outputs.

Y8 Y7 Y6 Y5 Y2 Y1 Y0Y3Y4

P[35:18] are

unused.

P[35:18] are
unused.

x681_16_120603

http://www.xilinx.com

Appendix A: Reference Design Details

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 21

1-800-255-7778

R

hdsdi_rx_autorate

This module selects the correct reference clock for the RocketIO transceiver. If the incorrect

reference clock is selected, not matching the bitstream frequency, the RocketIO transceiver

does not correctly recover the data.

Because the two HD-SDI frequencies are so close, much of the data is recovered correctly,

even when the wrong reference clock is selected. The CDR unit in the RocketIO transceiver

Figure 17: MULT18X18 used as Seven 12:1 MUXes

A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

1 0000000000000000 X17 X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

X6 X5 X4 X3 X2 X1 X0

With shift code = 2048, the X[6:0]

inputs are transferred to the MUX

outputs.

A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

01 00000000 00000000 X17 X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

X7 X6 X5 X4 X3 X2 X1

With shift code = 1024, the X[7:1]

inputs are transferred to the MUX

outputs.

A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

P17 P16 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

10000000000000000 X17 X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

X13 X12 X11X17

With shift code = 1, the X[17:11]

inputs are transferred to the MUX

outputs.

X16 X15 X14

P[35:18] are
unused.

P[35:18] are
unused.

P[35:18] are
unused.

0

0

x681_17_120603

http://www.xilinx.com

22 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Appendix A: Reference Design Details
R

attempts to lock to the bitstream and recovers the data. However, after a certain period of time,

the CDR unit determines that the frequency of the bitstream is not close enough to the

frequency of the reference clock, and it switches back to using the reference clock to lock the

CDR’s PLL. Once locked to the reference clock, the PLL then is freed to lock to the bitstream.

This cycle repeats continuously since the reference clock is not close enough to the bitstream

frequency.

When the PLL is close to the bitstream frequency, valid data is received. When the PLL is

locked to the reference clock, the data is invalid.

The hdsdi_rx_autorate module examines the errors received by the HD-SDI receiver and

determines when to toggle the REFCLKSEL input to the RocketIO transceiver. The CRC

checkers in the HD-SDI receiver do a very good job of detecting errors in the received data.

However, looking at CRC errors alone is not sufficient because the CRC checkers only work

correctly if the TRS symbols are found by the receiver. When the wrong reference clock is

selected, TRS symbols are detected roughly two-thirds of the time. Because these symbols are

found so often, simply looking for some number of consecutive missing TRS symbols is not an

adequate strategy.

Thus, the hdsdi_rx_autorate module uses a combination of missing TRS symbols and CRC

errors to determine when to toggle the reference clock. A state machine looks for some number

of video lines containing either CRC errors or a missing SAV. When this error threshold is

reached, the state machine toggles the reference clock and again begins monitoring the HD-

SDI output.

The error threshold is controlled by a counter called errcnt. The bit width of this counter is

controlled by the parameter or constant ERRCNT_WIDTH. The maximum number of lines

containing errors before the switching threshold is reached is controlled by MAX_ERRS. By

default, the error counter is two bits wide, and the switching threshold is reached when three

consecutive video lines containing errors have been detected. By changing the error counter

width and maximum error threshold, you can trade off error tolerance for switching latency. The

more consecutive lines with errors that are required before the switching threshold is reached

will decrease the likelihood that the reference clock will be switched erroneously. However, this

also increases the latency for the reference clock switch when the frequency of the bitstream

does change.

Figure 18 shows the state diagram of the state machine in hdsdi_rx_autorate.

http://www.xilinx.com

Appendix B: Implementing an HD-SDI Receiver and Transmitter with one RocketIO Transceiver

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 23

1-800-255-7778

R

Appendix B:
Implementing
an HD-SDI
Receiver and
Transmitter with
one RocketIO
Transceiver

In the RocketIO transceiver, the receiver and transmitter portions of the transceiver share the

same reference clock. It is not possible to select one reference clock for the transmitter and a

different reference clock for the receiver inside of the same RocketIO transceiver. This sharing

of the reference clock can lead to complications when trying to implement an HD-SDI

transmitter and receiver in the same RocketIO transceiver. Depending on the application, it

might not be possible to place the transmitter and receiver in one RocketIO transceiver.

If it is required that the transmitter is running at one HD-SDI bit rate while the receiver is

receiving a bitstream at the other HD-SDI bit rate, then the receiver and transmitter must be

placed in separate RocketIO transceivers.

One case where it makes sense to put the HD-SDI transmitter and receiver in the same

RocketIO transceiver is a pass-through HD-SDI interface. In a pass-through interface, the video

received by the HD-SDI receiver is connected to the HD-SDI transmitter to be retransmitted. In

such a configuration, the transmitter always runs at the same rate as the receiver. Some

processing might be done on the video between the receiver and the transmitter.

Figure 19 shows an example where the data is received by the RocketIO transceiver. The video

is decoded and framed by the HD-SDI receiver, then a logo “bug” is inserted into the video. New

CRC values for the video lines are calculated, the video is encoded by the HD-SDI transmitter,

and the encoded video is transmitted by the RocketIO transceiver.

Figure 18: hdsdi_rx_autorate State Diagram

reset

sav_ok

otherwise

clear errcnt

UNLOCK TOGGLE
trs_tc

LOCK1

LOCK2

sav_ok AND NOT crc_err

ERR1
sav_ok AND crc_err

OR trs_tc

ERR2

NOT max_errcnt

max_errcnt

toggle <= 1

clear errcnt

inc errcnt

sav_ok is asserted when an SAV is detected and

its XYZ protection bits indicate no error.

trs_tc is asserted when a TRS timeout occurs - an

SAV is not detected within a given timespan.

otherwise

x681_18_120803

http://www.xilinx.com

24 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Appendix B: Implementing an HD-SDI Receiver and Transmitter with one RocketIO Transceiver
R

As shown in Figure 19, the RXRECCLK signal from the RocketIO receiver clocks all logic

downstream from the receiver because RXRECCLK is exactly the frequency of the video

stream. RXRECCLK clocks the HD-SDI transmitter and also clocks the encoded data into the

RocketIO transmitter because it is connected to TXUSRCLK and TXUSRCLK2. The FIFO at

the input of the RocketIO transmitter moves the data from the TXUSRCLK domain to the

REFCLK domain. Data is clocked from the TXDATA port into the FIFO using TXUSRCLK

(which is connected to RXRECCLK). Data is read from the FIFO using the selected reference

clock. Data is read from the FIFO using the reference clock because the serializer is running

synchronous to the reference clock, but at 20 times the frequency of the reference clock.

Herein lies the problem with sharing the reference clock between the receiver and the

transmitter. If TXUSRCLK is not frequency locked to the reference clock, then the FIFO at the

input of the RocketIO transmitter underflows or overflows. However, when using one RocketIO

for both the transmitter and receiver in a pass-through HD-SDI interface, TXUSRCLK must run

at the video rate, that is, it must be connected to RXRECCLK. Because RXRECCLK and the

reference clock are rarely the same frequency, the RocketIO transmitter FIFO will underflow or

overflow in this configuration. There are two possible solutions to this problem.

The first solution is to resynchronize the video to the reference clock after it is received. Video

resynchronization, sometimes done on a per line basis, usually is done on a frame basis.

Resynchronizing video to the local reference clock requires a line buffer for line synchronization

or a frame buffer for frame synchronization. Discussion of these video synchronization

techniques is beyond the scope of this document.

A second solution is to somehow force REFCLK to track the frequency of RXRECCLK.

RXRECCLK cannot be directly used as the reference clock because it has too much jitter.

Figure 20 shows a single RocketIO transceiver pass-through configuration that has been

successfully tested on the Xilinx SDV demo board. The reference clocks are provided by

VCXOs. The frequency of each VCXO is controlled by a phase detector, where the combination

of the VCXO, the loop filter, and the phase detector forms a PLL. The phase detector compares

Figure 19: The Problem with Sharing REFCLK Between Transmitter and Receiver

HD-SDI

IN

74.25 MHz

XO

Cable

Equalizer

RocketIO

Transceiver

REFCLK

CDR
RXP/RXN

RXRECCLK

RXDATA HD-SDI

Rx

Logo

Insertion

CRC

Recalc

HD-SDI

TxSerializer

20X

HD-SDI

OUT

Cable Driver

TXP/TXN TXDATA

RXUSRCLK

RXUSRCLK2

TXUSRCLK

TXUSRCLK2

FIFO

74.1758 MHz

XO

REFCLK2

REFCLKSEL

x681_19_120803

http://www.xilinx.com

Appendix B: Implementing an HD-SDI Receiver and Transmitter with one RocketIO Transceiver

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 25

1-800-255-7778

R

the frequency of the VCXO and RXRECCLK and adjusts the VCXO so that its frequency

matches that of RXRECCLK.

This scheme solves the initialization problem of trying to spin up the CDR unit in the RocketIO

receiver prior to having a stable RXRECCLK. Recall that during spin up, RXRECCLK is equal

to the reference clock. If RXRECCLK is supplying the reference clock, then there is a cyclic

problem with initializing the system. Because the pull range of a VCXO (the range over which

the frequency of the VCXO can be adjusted by the control input) is limited to within something

like ±100 ppm, the VCXO always is close in frequency to its normal center frequency, allowing

the CDR unit to spin up and lock to the incoming bitstream frequency. During the initial stages

of the CDR spin-up process, RXRECCLK is set equal to the reference clock input (the VCXO’s

output). The phase detector, seeing that RXRECCLK is the same frequency as the VCXO,

does not try to adjust the frequency of the VCXO. As the CDR unit begins to lock to the

bitstream, RXRECCLK starts to move towards the bitstream frequency, and the phase detector

forces the VCXO to track this frequency change, keeping the reference clock locked to the

frequency of RXRECCLK.

As shown in Figure 20, this technique usually requires two VCXOs, one for each of the two HD-

SDI reference clock frequencies because the pull range of most VCXOs is not sufficient to allow

one VCXO to operate at both HD-SDI frequencies.

Using a VCO instead of a VCXO is a tempting consideration because VCOs typically have a

much larger pull range than a VCXO, possibly allowing one VCO to run at both HD-SDI bit

rates. However, VCOs typically have more jitter than VCXOs, so a low-jitter VCO is required.

Also, some sort of mechanism is required to force the VCO to run at the two HD-SDI

frequencies of 74.25 MHz and 74.1758 MHz under control of a supervisor circuit to provide the

necessary reference for CDR spin up. After spin up, the VCO is controlled by the phase

detector and tracks the RXRECCLK frequency.

Figure 20: Using a VCXO to Lock the Reference Clock to RXRECCLK

RocketIO

Transceiver

HD-SDI

OUT

Cable

Equalizer
HD-SDI

IN

HD-SDI

Receiver

Automatic

Rate
Selector

TXDATA

RXDATA

RXRECCLK

Phase

Detector

Loop

Filter
74.25 MHz

VCXO

TXUSRCLKs &

RXUSRCLKs

BUFG

Cable Driver

74.1758 MHz

VCXO

REFCLK
faster

slower

Vc

Vc

x681_20_120803

http://www.xilinx.com

26 www.xilinx.com XAPP681 (v1.0) December 12, 2003

1-800-255-7778

Appendix C: A Low-Cost Reference Clock Solution
R

Appendix C:
A Low-Cost
Reference
Clock Solution

As documented earlier in this application note, the RocketIO transceiver requires two reference

clock frequencies of 74.25 MHz and 74.25 / 1.001 MHz in order to support the two HD-SDI bit

rates. These two reference clock frequencies can be provided using either two crystal

oscillators (one for each frequency) or a frequency synthesizer.

One possible low-cost frequency synthesizer is the ICS660 Digital Video Clock Source

(http://www.icst.com). This device can synthesize a number of different video related

frequencies from one input reference clock. The ICS660 can produce both 74.25 MHz and

74.25 / 1.001 MHz from either a 13.5 MHz or 27 MHz reference. It also can produce a

74.25 / 1.001 MHz from a 74.25 MHz reference clock and 74.25 MHz from a 74.25 / 1.001 MHz

reference clock.

Currently, the jitter produced by the ICS660 makes it marginal for use as a reference clock

source for the RocketIO transceiver. Testing of the ICS660 on the Xilinx SDV demo board

shows that the ICS660 can be used as a reference clock source for implementing an HD-SDI

receiver. But when used as a reference clock source for an HD-SDI transmitter, the output

alignment jitter of the HD-SDI transmitter is at the maximum amount allowed by the SMPTE

292M specification. As of this writing, ICS is planning a new part based on the ICS660 that will

improve its jitter characteristics with the intention of making it suitable for use as a RocketIO

reference clock source for both an HD-SDI transmitter and an HD-SDI receiver. Until then, the

ICS660 can be used as a reference clock source for HD-SDI receivers built with RocketIO

transceivers, but not for HD-SDI transmitters.

In Figure 21, an ICS660 uses a 27 MHz crystal from which it can synthesize either 74.25 MHz

or 74.25 / 1.001 MHz on its output. The output of the ICS660 is connected to an IOB of the

Virtex-II Pro FPGA. Internally, this signal is connected directly to the reference clock input of the

RocketIO transceiver. A single output from the Virtex-II Pro FPGA commands the ICS660 to

generate either 74.25 MHz or 74.25 / 1.001 MHz. This output can come from a module like

hdsdi_rx_autorate, which toggles this signal periodically until the RocketIO transceiver locks to

the incoming bitstream.

Figure 21: ICS660 Providing REFCLK to RocketIO Transceiver

ICS660

X1

X2

SELIN

S3

S2

S1

S0

27 MHz

CLCL

VDD VDD VDDO

GND VDDR

REF

CLK

0.01µF 0.01µF 0.01µF1µF

bead3.3V 2.5V

33Ω

IBUFG_LVCMOS25

RocketIO

Transceiver

REFCLK

hdsdi_rx_

autorate

0 = 74.25 MHz

1 = 74.25/1.001 MHz

x681_21_120803

http://www.xilinx.com
http://www.icst.com

Revision History

XAPP681 (v1.0) December 12, 2003 www.xilinx.com 27

1-800-255-7778

R

In order to get the best performance from the ICS660, follow all the guidelines given in the

ICS660 data sheet for power supply filtering and layout. Note that the REF clock output is

disabled by grounding VDDR, which reduces the output jitter on the CLK output. Also note that

the VDDO supply pin is connected to 2.5V to make the CLK output compatible with the 2.5V I/O

standards of the Virtex-II Pro FPGA. The SELIN pin selects between using a crystal as the

reference clock to the ICS660 (when High) or using an external clock source (when Low).

SELIN has an internal pull-up resistor. The S[3:0] inputs also have internal pull up resistors. To

generate 74.25 MHz and 74.25 / 1.001 MHz, the settings of S[3:0] are as follows:

• S3 and S2 are Low

• S1 is High

• S0 is Low to generate 74.25 MHz and High to generate 74.25 / 1.001 MHz

The S0 pin is driven with either the LVCMOS33 or the LVCMOS25 standard from the Virtex-II

Pro FPGA.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

12/12/03 1.0 Initial Xilinx release.

http://www.xilinx.com

