ANALELE ȘTIINȚIFICE ALE UNIVERSITĂȚII "AL.I.CUZA" IAȘI Tomul XLV, s.I a, Matematică, 1999, f.1.

PURITY IN IDEAL LATTICES

BY

GRIGORE CĂLUGĂREANU

Abstract. In [4] T. HEAD gave a general definition of purity in complete lattices. In this note the pure elements of the lattice of all the nonempty ideals of a lattice are investigated.

1. Introduction. The utility of the purity as a property weaker then the direct summand property in commutative algebra is well–known.

In [4] an element p of a complete lattice L is called *pure* if for each compact element $k \in 1/p$, p has a complement in k/0. In a compactly generated lattice pure elements are more easily characterized.

The compact elements in a quotient sublattice b/a of a compactly generated lattice L are the elements $a \lor c$ with c compact in L and $a \lor c \le b$. Hence, if L is compactly generated, each compact element in a quotient sublattice 1/p has the form $p \lor c$, with c a compact element in L.

Remark 1.1. [4] An element p is pure in a compactly generated lattice L if and only if for every element c compact in L, there is an element $d \in L$ such that $p \lor d = p \lor c$ and $p \land d = 0$.

In what follows we study the pure elements in the lattice I(L) of all the nonempty ideals of a lattice L. Recall (see [2], [3] and [1]) that this is a (complete) compactly generated lattice, the compact elements being the principal ideals.

If $I, J \in I(L)$ we say that J is a *complement* of I in L (or, equivalently, that I, J are *complementary*), if $I \vee J = (I \cup J] = L$ (see [3]) and $I \wedge J = I \cap J = \{0\}$.

2. Elementary remarks.

Lemma 2.1. [4] In a modular lattice each complemented element is pure.

In the absence of the modularity, purity is no longer a weaker property than complementariness (e.g., in the 5-element non-modular (but complemented) lattice $\{0, a, b, c, 1\}$, a < b, the element a is complemented but not pure).

Moreover, in a complete lattice L each element is compact if and only if L is noetherian (i.e., has the ACC condition), so that in a complete noetherian (in particular finite or compact) lattice, purity is a stronger property than the complementariness (indeed, p is pure in L if and only if p has complement in each c/0, $p \leq c$, includes c = 1, with 1/0 = L).

Combining these two facts we get

Theorem 2.1. In a complete modular noetherian lattice an element is pure if and only if it has a complement.

Further, each nonempty ideal in a lattice L is principal if and only if L is artinian (i.e., has the DCC condition) and each lattice L can be embedded by $a \mapsto a/0$ in its lattice of ideals I(L), so that using

Consequence 2.1. An artinian lattice is isomorphic with its ideal lattice

and

Consequence 2.2. In a lattice of finite length each element is compact and each ideal is principal

one obtains

Theorem 2.2. In a lattice of finite length an element p is pure if and only if p has a complement in each principal ideal that contains it.

Theorem 2.3. In a lattice of finite length an ideal is pure if and only if it is generated by a pure element.

Proof. Using Consequence 2.2, a lattice of finite length is isomorphic with its lattice of ideals. So p has a complement in each c/0 (with $p \le c$) if and only if p/0 has an ideal complement in each $(c/0)/\{0\}$ (with $p/0 \subseteq (c/0)/\{0\}$, i.e., $p \le c$).

A lattice is called sectionally (or principally) complemented if L has zero and all the sublattices a/0 ($a \in L$) are complemented, and relative complemented if each interval (quotient sublattice) is complemented. In a lattice with zero, $e \in L$ is called essential if $e \wedge a \neq 0$ for each $a \neq 0$.

2

Clearly, each element in a sectionally (or relative) complemented lattice is pure.

Moreover, a converse can be obtained using the following simple result

Lemma 2.2. In a compactly generated lattice the only pure and essential element is 1.

Proof. Let p be a pure and essential element in a compactly generated lattice L. According to Remark 1.1, for each compact element $c \in L$ there is an element $d \in L$ such that $p \lor c = p \lor d, p \land d = 0$. The element being essential, d = 0 and so $p = p \lor c$ or $c \leq p$. L being compactly generated p = 1.

Then

Theorem 2.4. In a compactly generated modular lattice each element is pure if and only if the lattice is sectionally complemented.

Proof. Let us recall some auxiliary definitions and results:

In a lattice L with zero, b is called a pseudocomplement [see [5]] of a if b is maximal relative to the property $b \wedge a = 0$. L is called pseudocomplemented if each element has at least a pseudocomplement.

Each upper continuous [see [2]] (or, in particular, compactly generated) lattice is pseudocomplemented. Obviously each principal ideal a/0 of an upper continuous lattice is also an upper continuous sublattice, and hence it is pseudocomplemented.

If b is a pseudocomplement of a in a modular lattice L, then $a \lor b$ is essential in L.

Finally, if in a compactly generated (and hence upper continuous) modular lattice L each element is pure, for an arbitrary $a \in L$ let b be a pseudocomplement of c in a/0. Then $b \lor c$ is essential in a/0 and hence, using the previous Lemma, $b \lor c = 1$ so that b is also a complement of c in a/0. Notice that in an upper continuous lattice, if $p \leq a$ and p is pure in L, then p is also pure in a/0.

We insert here a

Consequence 2.3. If L is modular, each ideal in I(L) is pure if and only if I(L) is sectionally complemented.

Indeed, L is modular if and only if I(L) is modular and I(L) is compactly generated.

Example. In a partition lattice each element (ideal) is pure.

Indeed, a partition lattice is relatively complemented so that each element is pure.

3

3. Pure ideals in bounded or complete lattices. First of all, I(L) being a compactly generated lattice,

Remark 3.1. An ideal $P \in I(L)$ is pure if and only if for each principal ideal a/0 ($a \in L$), there is an ideal $I \in I(L)$ such that $P \cap I = \{0\}$ and $P \lor I = P \lor (a/0)$.

Hence, taking a = 1,

Remark 3.2. In a bounded lattice, each pure ideal P has a complement in I(L).

Hence, in a bounded lattice the purity in the lattice of all the ideals is stronger than complementariness.

Moreover,

Theorem 3.1. If L is a bounded modular lattice an ideal in I(L) is pure if and only if it is complemented.

Indeed, L is modular if and only if I(L) is modular and one applies Lemma 2.1.

A little more can be said about the *principal* pure ideals and their connection with the complemented ones.

A simple case is the one of the artinian lattices. Using the previous remark and Consequence 2.1 we immediately obtain

Theorem 3.2. Let L be an artinian lattice with a largest element and $p \in L$. If a (principal) ideal p/0 is pure then p/0 (or p) is complemented.

Indeed, in this case L is bounded, all the ideals are principal, the lattice L is isomorphic with its ideal lattice and the ideal p/0 is complemented in I(L) if and only if p is complemented in L.

Consequence 3.1. Let *L* be an artinian modular lattice with a largest element and $p \in L$. Then p/0 is pure if and only if *p* is complemented.

In a bounded lattice L, notice that p/0 is complemented in I(L) if p is complemented in L but the converse does not generally hold.

Further

Theorem 3.3. Let L be a bounded lattice. If $p \in L$ is a distributive complemented element in L then the principal ideal p/0 is pure in I(L).

Proof. If $p \lor q = 1$, $p \land q = 0$ then $(p/0) \lor ((q \land a)/0) = (p/0) \lor (a/0)$ and $(p/0) \land ((q \land a)/0) = \{0\}.$ Indeed, $p \lor (q \land a) \stackrel{distr}{=} (p \lor q) \land (p \lor a) = p \lor a$ and $p \land (q \land a) \le p \land q = 0$ and the Remark 3.1 holds.

Consequence 3.2. Let *L* be a bounded artinian lattice and let $p \in L$ be a distributive element. Then p/0 is pure if and only if *p* is complemented.

From [3] recall that each standard element is a distributive element. Then

Theorem 3.4. Let p be a standard element in a bounded lattice L. Then p/0 is pure if and only if p is complemented.

Proof. Taking a = 1 in Remark 3.1, p/0 being pure in I(L), there is an ideal $I \in I(L)$ such that $(p/0) \lor I = L = 1/0, (p/0) \land I = \{0\}$. These ideals being principal and p (or p/0) being standard, using Exercise 17, p.151 [3], the ideal I is also principal, say I = q/0. Hence q is a complement of p in L.

The converse follows using the above remark and theorem.

4. Pure ideals in noncomplete lattices with zero. Notice that we have not defined pure elements in a noncomplete lattice L with zero but even for such lattices pure ideals are defined I(L) being (complete and) compactly generated. The example below was provided by Prof. G. Grätzer.

Set $\mathcal{N}(\mathbf{R}) = \{X \in \mathcal{P}(\mathbf{R}) | card(X) \leq \aleph_0\}$ and consider the corresponding lattice (together with the usual \cap and \cup). Clearly \emptyset is the smalest element and $\mathcal{N}(\mathbf{R})$ has no largest element. Hence this is not a bounded and so not a complete lattice. In fact, this is a noncomplete sublattice in the Boole algebra ($\mathcal{P}(\mathbf{R}), \subseteq$) and so it is a distributive (and so also modular) lattice.

In $I(\mathcal{N}(\mathbf{R}))$ the principal ideal generated by X is $\mathcal{P}(X)$, the set of all the subsets of X.

Proposition 4.1. Each principal ideal in $I(\mathcal{N}(\mathbf{R}))$ is complemented and hence pure.

Indeed, each principal ideal $\mathcal{P}(X)$ has as complement $\mathcal{P}(\mathbf{R}-X)\cap\mathcal{N}(\mathbf{R})$ (recall that this lattice is distributive and $I \vee J = \{i \vee j | i \in I, j \in J\}$ holds, for $I, J \in I(L)$ in each distributive lattice L).

Remark 4.1. Not every ideal in this lattice is pure.

Indeed, consider in $\mathcal{N}(\mathbf{R})$ the set P of all the finite subsets of \mathbf{R} is clearly an ideal (closed to unions and lower bounds).

P is an essential element in $I(\mathcal{N}(\mathbf{R}))$ (i.e., $\forall J \in I(\mathcal{N}(\mathbf{R})): P \cap I \neq \{\emptyset\}$). Hence *P* has no (relative) complements and hence *P* is not pure nor complemented.

In this case (noncomplete lattice with zero) there seem to be no more general connections between pure elements and complements. 5. Pure–simple lattices of ideals. A complete lattice will be called *pure–simple* if its only pure elements are 0 and 1.

Some elementary results can be obtained using Lemma 2.2.

Consequence 5.1. A compactly generated lattice such that all the nonzero elements are essential is pure-simple.

Consequence 5.2. Let L be a lattice with zero. If all the nonzero ideals in I(L) are essential then I(L) is pure-simple.

Lemma 5.1. If a lattice L has a smallest nonzero element then each element is essential. If L is finite or in L the meet of all the essential elements is nonzero the converse also holds.

Proof. The first part is obvious, each meet of two nonzero elements containing the smalest nonzero element.

As for the converse, clearly L has at most one atom a (otherwise each atom would not be essential). This must be a lower nonzero element (for each $b \neq 0$, surely $a \wedge b \neq 0$ and then $a \wedge b = a$ or $a \leq b$). If L has no atoms both hypothesis imply that the meet u of all the essential elements must be nonzero. Moreover, this is the lower nonzero element.

Consequence 5.3. If L has a lower nonzero (principal) ideal then I(L) is pure-simple.

Consequence 5.4. A finite lattice L is pure-simple if and only if it has a smallest nonzero (principal) ideal.

REFERENCES

- BIRKHOFF, G., Lattice Theory, AMS Colloquium Publications, vol. XXV, third ed., 1967.
- CRAWLEY, P., DILWORTH, R.P. Algebraic Theory of Lattices, Prentice–Hall, Englewood Cliffs, N.J., 1973.
- 3. GRÄTZER, G. General Lattice Theory, Akademie Verlag, Berlin, 1978.
- HEAD, T.J. Purity in compact generated modular lattices, Acta Math. Acad. Sci. Hung., 17, p.55-59, 1966.
- STENSTROM, B. Rings of Quotients, Springer Verlag, Berlin, Heidelberg, New York, 1975.

Received: 4.VI.1998

Department of Algebra Faculty of Math. & Comput. Sci. "Babeş–Bolyai University" of Cluj RO-3400 Cluj–Napoca, ROMANIA e-mail: calu@math.ubbcluj.ro

 $\mathbf{44}$