AP Worksheet \#4
End of Chapter 2
All work must be shown and done on another sheet of paper!
This is just your answer sheet!

Grading:		
100%	$=19$ correct	78%
95%	$=18$ correct	75%
correct	$=13$ correct	
90%	$=17.5$ correct	70%
$=12$ correct		
88%	$=17$ correct	68%
85%	$=16$ correct	65%
80%	$=10.5$ correct	
	$=15$ correct	60%

Work must support your answers.
No exceptions.
$80 \%=15$ correct $\quad 60 \%=10$ correct
Due Date: Friday, October $24^{\text {th }}$

Score: \qquad Name: \qquad

Do not use calculator (even for basic math) unless ** is by the problem.

Problems marked with @ are problems that will not be able to be done until the end of chapter 2.

1. If $f(x)=x^{\frac{3}{2}}$, then $f^{\prime}(4)=$
2. @If $x^{3}+3 x y+2 y^{3}=17$, then in terms of x and $y, \frac{d y}{d x}=$
3. If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}-4}{x+2}$ when $x \neq-2$, the $f(-2)=$
4. An equation of the line (in standard form) tangent to the graph of $y=\frac{2 x+3}{3 x-2}$ at the point $(1,5)$ is
5. If $y=\tan x-\cot x$, then $\frac{d y}{d x}=$
6.
7. \qquad
8. If h is the function given by $h(x)=f(g(x))$, where $f(x)=3 x^{2}-1$ and $g(x)=|x|$, then $h(x)=$
9. If $f(x)=(x-1)^{2} \sin x$, then $f^{\prime}(0)=$
10.
11. \qquad
12. The fundamental period of $2 \cos (3 x)$ is
13. \qquad
14. The slope of the line normal (perpendicular) to the graph of
15. \qquad $y=2 \sec x$ at $x=\frac{\pi}{4}$ is
16. @**Boats A and B leave the same place at the same time.
17. \qquad Boat A heads due North at $12 \mathrm{~km} / \mathrm{hr}$. Boat B heads due east at $18 \mathrm{~km} / \mathrm{hr}$. After 2.5 hours, how fast is the distance between the boats increasing?
18. If $f(x)=\left(x^{2}-2 x-1\right)^{\frac{2}{3}}$, then $f^{\prime}(0)=$
19. \qquad
20. A particle moves along the y-axis so that at time t, where
21. $0 \leq t \leq \pi$, its position is given by $s(t)=-2 \cos t-\frac{t^{2}}{2}+10$. What is the velocity of the particle when its acceleration is zero?
22. $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{2 \sin ^{2} \theta}$ is
23. @**The top of a 25 -foot ladder is sliding down a vertical
24. \qquad wall at a constant rate of 3 feet per minute. When the top of the ladder is 7 feet from the ground, what is the rate of change of the distance between the bottom of the ladder and the wall?
25. @Consider the equation $x^{2}-2 x y+4 y^{2}=52$. Find the equation of the tangent line(s) to the curve at the point $x=2$.
26. If f is a differentiable function, then $f^{\prime}(a)$ is given by which of the following? Justify.
27.
28. \qquad
\qquad
I. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
II. $\quad \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
III. $\lim _{x \rightarrow h} \frac{f(x+h)-f(x)}{h}$
29. @The radius of a circle is increasing at a nonzero rate, and at a certain instant, the rate of increase in the area of the circle
30.
31. \qquad is numerically equal to the rate of increase in the circumference. At this instant, the radius of the circle is
32. If $f(x)=\sqrt{1+\sqrt{x}}$, find $f^{\prime}(x)$.
33. If $f(x)=\sin ^{2} x$, find $f^{\prime \prime \prime}(x)$.
34.
35. \qquad
36. If $y=\left(\frac{x^{3}-2}{2 x^{5}-1}\right)^{4}$, find $\frac{d y}{d x}$ at $x=1$.

I did not use my calculator (even for basic math) on these problems unless the problem was marked with a **.
Signature: \qquad

