

Fruit Fly Exercise 1- Level 1

Description of StarGenetics

In this exercise you will use StarGenetics, a software tool that simulates mating experiments, to analyze the nature and mode of inheritance of specific genetic traits.

Getting started with StarGenetics

- To get to StarGenetics, please navigate to: http://web.mit.edu/star/genetics/.
- Click on the **Start** button to launch the application.
- Click **Trust** when a prompt appears asking if you trust the certificate.
- Click on File → New in the drop-down menu in the upper left hand corner.
- Click on the Fruit Fly Exercise 1-Level 1 file.

You have begun a research project in a genetics laboratory that studies the fruit fly *Drosophila melanogaster*. Your research advisor decides to give you an interesting mutant fly called *grounded* that has just been discovered in one of the fly vials in the lab. In addition, you are also given two <u>true-breeding</u> wild-type flies (male and female). All 3 flies can be found within the Strains box.

1 First, describe the sex and phenotype of the mutant fly. Describe the phenotype as it compares to wild type.

• The sex and phenotype of each fly should be visually obvious. You can also obtain this information by clicking on the fly and looking at the **Properties** window.

Answer

2 You want to determine the genotype of *grounded*. You are unsure whether its phenotype is caused by a <u>dominant</u> or <u>recessive</u> allele. You are also not sure if *grounded* is <u>true-breeding</u> or not. To determine its genotype, cross *grounded* with one of the wild-type flies.

- Set up a cross between *grounded* and a wild-type fly by dragging each to the Mating Site and by clicking on the Mate button.
- Each resulting offspring can be viewed within the **Individual** tab or a summary of the results is available on the **Summary** tab.

Answer

Number of F1 flies that look like the wild-type parent:
Number of F1 flies that look like the <i>grounded</i> mutant parent:
Total number of progeny generated:
% of progeny that is wild type:
% of progeny that is mutant:
Circle the ratio that best fits the progeny that you observe.
3 WT : 1 mutant 1 WT : 1 mutant 1 WT : 3 mutant

 $\mathbf{3}$ Based on the results that you obtained in question 2, does the mutant allele seem to be dominant or recessive to the wild-type allele? Why?

Answer

4 Based on the results that you obtained in question 2, is the grounded parent fly a <u>true-breeding</u> fly? What is the likely genotype of this grounded fly? Please explain.

• You can use the **Punnett Square** tool to help determine genotypes for a given trait. In the **Punnett Square** tool, click on the different genotype options to see the resulting genotypic ratios.

Answer

5 Now you have determined some facts about the *grounded* allele and the trait that it causes. Given what you know, do you expect the mutant F1 flies to be homozygous or heterozygous for the allele that causes the grounded trait? According to your reasoning, if you mated two mutant F1 flies, what percentage of flies would you expect to be wild type versus mutant in the F2 progeny? Draw a Punnett square of this cross to justify your answer.

Answer

6 Now mate a mutant F1 female fly with a mutant F1 male fly. What percentage of flies are wild type and what percentage are mutant in these 50 F2 progeny?

- You can collect individual flies that you have generated (for use in future experiments) by dragging them to the **Strains** box or by clicking the **Add to strains** button within the **Strains** window.
- To start a new mating experiment, click on the **Save experiment** button.

Answer
Number of F2 flies that look like the wild-type parent:
Number of F2 flies that look like the <i>grounded</i> parent:
% of progeny that is wild type:
% of progeny that is mutant:
Ratio of <i>grounded</i> : wild-type flies:

7 From the cross in question 6, you notice that the percentage of wild-type and mutant progeny generated is not quite what you had predicted in question 5. Continue to mate the mutant F1 female fly with the mutant F1 male fly to produce 1000 progeny flies. What percentage of flies are wild type and what percentage are mutant in the 1000 F2 progeny?

• To add additional flies to one cross click on the Mate button again after the initial mating between the two F1 mutant flies.

Answer
Number of F2 flies that look like the wild-type parent:
Number of F2 flies that look like the <i>grounded</i> parent:
% of progeny that is wild type:
% of progeny that is mutant:
Ratio of <i>grounded</i> : wild-type flies:

 $\bf 8$ Record the <u>percentages</u> of wild-type and mutant flies that you obtained for both the 50 and the 1000 progeny sample sizes on the white board!

 ${\bf 9}$ Do you notice a difference between the percentages of wild-type and mutant progeny generated when you observe 50 F2 flies versus 1000 F2 flies? Which of these two sample sizes, the smaller set of 50 flies or the larger set of 1000 flies, do you think offers a more accurate view of the inheritance pattern of the grounded trait? Explain your answer.

Answer

10 In the 1000 progeny flies generated in question 7, you are surprised by the percentages of wild-type and mutant flies that you observe.

a) Based on the Punnett square that you drew in question 5, do you expect to find a mutant F2 fly that, when crossed with a wild-type fly, produces only mutant progeny? See if you can find this fly by performing a few crosses. Are you surprised by your results? Explain your answer. *Hint: You do not need to cross all of the mutant F2 flies to answer this question, just try some.*

Answer

b) You are still very puzzled by your results. Then, you remember that you noticed an usually large number of underdeveloped dead embryos in your vial from the matings between the two F1 mutant flies (in question 6). Aha!

State a new hypothesis to explain your data. Explain your reasons for proposing this hypothesis.

Answer

11 Record your new hypothesis on the whiteboard to share with your classmates!

12 How does your hypothesis compare with those of your classmates? If you came up with different hypotheses, what crosses could you perform to test your hypotheses? Explain.

Answer