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Abstract. We prove theoretical guarantees for an averaging-ensemble of randomly
projected Fisher Linear Discriminant classifiers, focusing on the case when there are
fewer training observations than data dimensions.
The specific form and simplicity of this ensemble permits a direct and much more
detailed analysis than existing generic tools in previous works. In particular, we are
able to derive the exact form of the generalization error of our ensemble, conditional
on the training set, and based on this we give theoretical guarantees which directly
link the performance of the ensemble to that of the corresponding linear discriminant
learned in the full data space. To the best of our knowledge these are the first theo-
retical results to prove such an explicit link for any classifier and classifier ensemble
pair. Furthermore we show that the randomly projected ensemble is equivalent
to implementing a sophisticated regularization scheme to the linear discriminant
learned in the original data space and this prevents overfitting in conditions of small
sample size where pseudo-inverse FLD learned in the data space is provably poor.
Our ensemble is learned from a set of randomly projected representations of the
original high dimensional data and therefore for this approach data can be collected,
stored and processed in such a compressed form.
We confirm our theoretical findings with experiments, and demonstrate the utility
of our approach on several datasets from the bioinformatics domain and one very
high dimensional dataset from the drug discovery domain, both settings in which
fewer observations than dimensions are the norm.
A preliminary version of this work received the best paper award at the 5th Asian
Conference on Machine Learning.

Keywords: Random Projections, Ensemble Learning, Linear Discriminant Analy-
sis, Compressed Learning, Learning Theory

1. Introduction

Classification ensembles that use some form of randomization in the
design of the base classifiers have a long and successful history in
machine learning, especially in the case when there are fewer train-
ing observations than data dimensions. Common approaches include:
Bagging [6]; random subspaces [30]; random forests [7].

c© 2014 Kluwer Academic Publishers. Printed in the Netherlands.

MLJ_Submitted_Version.tex; 28/05/2014; 15:46; p.1



2 Durrant & Kabán

Surprisingly, despite the well-known theoretical properties of random
projections as dimension-reducing approximate isometries [11, 1] and
empirical and theoretical studies demonstrating their usefulness when
learning a single classifier (e.g. [20, 14]), results in the literature employ-
ing random projections to create weak learners for ensemble classifica-
tion are sparse compared to results for other approaches such as bagging
and random subspaces. On the other hand, given their appealing prop-
erties and tractability to analysis, random projections seem like a rather
natural choice in this setting. Those empirical studies we could find on
randomly-projected ensembles in the literature [22, 19, 44] all report
good empirical performance from the ensemble, but none attempt a
theoretical analysis. Indeed for all of the randomizing approaches men-
tioned above, despite a wealth of empirical evidence demonstrating the
effectiveness of these ensembles, there are very few theoretical studies.

An important paper by [21] gives an approximate analytical model
as a function of the ensemble size, applicable to linear combiners, which
explains the variance reducing property of bagging. However, besides
the inherent difficulties with the approach of bias-variance decomposi-
tion for classification problems [43], such analysis only serves to relate
the performance of an ensemble to its members and [21] correctly point
out that even for bagging, the simplest such approach and in use since at
least 1996, there is ‘no clear understanding yet of the conditions under
which bagging outperforms an individual classifier [trained on the full
original data set]’. They further state that, even with specific assump-
tions on the data distribution, such an analytical comparison would
be a complex task. In other words, there is no clear understanding yet
about when to use an ensemble vs. when to use one classifier.

Here we take a completely different approach to address this last
open issue for a specific classifier ensemble: Focusing on an ensemble of
randomly projected Fisher linear discriminant (RP-FLD) classifiers as
our base learners, we leverage recent random matrix theoretic results
to link the performance of the linearly combined ensemble to the corre-
sponding classifier trained on the original data. In particular, we extend
and simplify the work of [37] specifically for this classification setting,
and one of our main contributions is to derive theoretical guarantees
that directly link the performance of the randomly projected ensem-
ble to the performance of Fisher linear discriminant (FLD) learned in
the full data space. This theory is, however, not simply of abstract
interest: We also show experimentally that the algorithm we analyze
here is highly competitive with the state-of-the-art. Furthermore our
algorithm has several practically desirable properties, amongst which
are: Firstly, the individual ensemble members are learned in a very low-
dimensional space from randomly-projected data, and so training data
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Random Projections as Regularizers 3

can be collected, stored and processed entirely in this form. Secondly,
our approach is fast – training on a single core typically has lower time
complexity than learning a regularized FLD in the data space, while
for classification the time complexity is the same as the data space
FLD. Thirdly, parallel implementation of our approach is straightfor-
ward since, both for training and classification, the individual ensemble
members can be run on separate cores. Finally, our approach returns
an inverse covariance matrix estimate for the full d-dimensional data
space, the entries of which are interpretable as conditional correlations;
this may be useful in a wide range of settings.

Our randomly projected ensemble approach can be viewed as a
generalization of bagged ensembles, in the sense that here we generate
multiple instances of training data by projecting a training set of size
N onto a subspace drawn uniformly at random with replacement from
the data space, whereas in bagging one generates instances of training
data by drawingN ′ training examples uniformly with replacement from
a training set of size N > N ′. However, in this setting, an obvious
advantage of our approach over bagging is that it is able to repair the
rank deficiency of the sample covariance matrix we need to invert in
order to build the classifier. In particular, we show that when there
are fewer observations than dimensions our ensemble implements a
data space FLD with a sophisticated covariance regularization scheme
(parametrized by an integer parameter) that subsumes a combination
of several previous regularization schemes. In order to see the clear
structural links between our ensemble and its data space counterpart
we develop our theory in a random matrix theoretic setting. We avoid
a bias-variance decomposition approach since, in common with the
analysis of [43], a key property of our ensemble is that its effect is
not simply to reduce the variance of a biased classifier.

The structure of the remainder of the paper is as follows: We give
some brief background and describe the randomly projected FLD clas-
sifier ensemble. Next, we present theoretical findings that give insight
into how this ensemble behaves. We continue by presenting extensive
experiments on real datasets from the bioinformatic domain where
FLD (and variants) are a popular classifier choice even though often
restricted to a diagonal covariance choice because of high dimensional-
ity and data scarcity [25, 13]. We further present experimental results
on a 100,000-dimensional drug discovery dataset, that is from another
problem domain where the small sample size problem typically arises.
Our experiments suggest that in practice, when the number of training
examples is less than the number of data dimensions, our ensemble
approach outperforms the traditional FLD in the data space both in
terms of prediction performance and computation time. Finally, we
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4 Durrant & Kabán

summarize and discuss possible future directions for this and similar
approaches.

2. Preliminaries

We consider a binary classification problem in which we observe N
i.i.d examples of labelled training data TN = {(xi, yi) : xi ∈ R

d, yi ∈
{0, 1}}Ni=1 where (xi, yi)

i.i.d∼ Dx,y. We are interested in comparing the
performance of a randomly-projected ensemble classifier working in
the projected space R

k, k ≪ d, to the performance achieved by the
corresponding classifier working in the data space Rd. We will consider
Fisher’s linear discriminant classifier working in both of these settings
since FLD is a popular and widely used linear classifier (in the data
space setting) and yet it is simple enough to analyse in detail.
The decision rule for FLD learned from training data is given by:

ĥ(xq) := 1

{

(µ̂1 − µ̂0)
T Σ̂−1

(

xq −
µ̂0 + µ̂1

2

)

> 0

}

where µ̂0, µ̂1, and Σ̂ are maximum likelihood (ML) estimates of the
class-conditional means and (shared) covariance matrix respectively,
and 1(·) is the indicator function which returns 1 if its argument is
true and 0 otherwise. In the setting considered here we assume that
N ≪ d. Hence, Σ̂ will be singular and so one can either pseudo-invert
or regularize Σ̂ to obtain a working decision rule; both approaches are
used in practice [42].
To construct the randomly projected ensemble, we choose the number
of ensemble members M and the projection dimensionality k, and gen-
erate M random matrices R ∈ Mk×d with i.i.d entries rij ∼ N (0, σ2)
each. We can take σ2 = 1 without loss of generality. Such matrices
are called random projection matrices in the literature [4, 1]. Pre-
multiplying the data with one of the matrices R maps the training
examples to a random k-dimensional subspace of the data space R

d

and for each instance of R we learn a single FLD classifier in this
subspace. By linearity of expectation and of the projection operator,
the decision rule for a single randomly projected classifier is then given
by:

ĥR(xq) :=1

{

(µ̂1 − µ̂0)
TRT

(

RΣ̂RT
)−1

R

(

xq −
µ̂0 + µ̂1

2

)

>0

}

For an ensemble, various different combination rules can be applied.
The most common choices include majority voting (when there is an
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Random Projections as Regularizers 5

odd number of classifiers in the ensemble) and linear combination [8].
We want to make the most of the weak learners’ confidence estimates
so we choose to employ the averaged linear decisions of M base learners
as our combination rule which gives the following ensemble decision:

ĥens(xq) := 1

{

1

M

M
∑

i=1

(µ̂1 − µ̂0)
TRT

i

(

RiΣ̂R
T
i

)−1
Ri

(

xq −
µ̂1 + µ̂0

2

)

> 0

}

Our algorithm is therefore very simple: We learn M FLD classifiers
from M different instances of randomly projected data, average their
outputs and take the sign of this average as the ensemble decision.
This combination rule is called ‘voting’ in the ensemble literature but,
to avoid any possible confusion with majority voting, we shall refer to
it as ‘RP averaging’; it does not require the number of classifiers in the
ensemble to be odd for good generalization and, as we shall see, it also
has the advantage of analytical tractability.
We commence our theoretical analysis of this algorithm by examining
the expected performance of the RP-FLD ensemble when the training
set is fixed, which is central to linking the ensemble and data space
classifiers, and then later in Theorem 3.2 we will consider random
instantiations of the training set.
To begin, observe that by the law of large numbers the LHS of the
argument of the decision rule of the ensemble converges to the following:

lim
M→∞

1

M

M
∑

i=1

(µ̂1 − µ̂0)
TRT

i

(

RiΣ̂R
T
i

)−1
Ri

(

xq −
µ̂0 + µ̂1

2

)

= (µ̂1 − µ̂0)
TE

[

RT
(

RΣ̂RT
)−1

R

](

xq −
µ̂1 + µ̂0

2

)

(2.1)

provided that this limit exists. If ρ is the rank of Σ̂, then it will
turn out that for R ∈ Mk×d having i.i.d zero-mean Gaussian entries
rij ∼ N (0, 1), if k ∈ {1, ..., ρ−2} then this expectation is indeed defined
for each entry. From equation (2.1) we see that, for a fixed training set,
in order to quantify the error of the ensemble it is enough to consider
the expectation (w.r.t random matrices R):

E

[

RT
(

RΣ̂RT
)−1

R

]

(2.2)

Before continuing, we should note that for the case k ∈ {1, ..., ρ−2} [37]
provide a procedure to compute this expectation exactly. However we
are more interested in how this expectation relates to characteristics of
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6 Durrant & Kabán

the maximum likelihood estimate of the sample covariance Σ̂, since we
shall see in theorem 3.2 that improving the conditioning of this matrix
has a direct impact on the generalization error of the FLD classifier.
Our approach and proof techniques are therefore very different to those
followed by [37], specifically we bound this expectation from both sides
in the positive semi-definite ordering in order to provide an estimate of
the extreme eigenvalues of the inverse covariance matrix implemented
by our ensemble.

3. Theory

Our main theoretical results are the following three theorems: The first
characterizes the regularization effect of our ensemble, while the second
bounds the generalization error of the ensemble for an arbitrary training
set of size N in the case of multivariate Gaussian class-conditional
distributions with shared covariance. The third is a finite sample gen-
eralization of the negative result of [5] showing that when the data

dimension d is large compared to the rank of Σ̂ (which is a function
of the sample size) then, with high probability, pseudoinverted FLD
performs poorly.

Theorem 3.1 (Regularization). Let Σ̂ ∈ Md×d be a symmetric pos-
itive semi-definite matrix with rank ρ ∈ {3, ..., d − 1}, and denote by

λmax(Σ̂), λmin 6=0(Σ̂) > 0 its greatest and least non-zero eigenvalues. Let
k < ρ− 1 be a positive integer, and let R ∈ Mk×d be a random matrix

with i.i.d N (0, 1) entries. Let S−1 := E

[

RT
(

RΣ̂RT
)−1

R

]

, and de-

note by κ(S−1) its condition number, κ(S−1) = λmax(S
−1)/λmin(S

−1).
Then:

κ(S−1) 6
ρ

ρ− k − 1
· λmax(Σ̂)

λmin 6=0(Σ̂)

This theorem implies that for a large enough ensemble the condition

number of the sum of random matrices 1
M

∑M
i=1R

T
i

(

RiΣ̂R
T
i

)−1
Ri is

bounded. Of course, any one of these summands RT
i

(

RiΣ̂R
T
i

)−1
Ri is

singular by construction. On the other hand if we look at the decision
rule of a single randomly projected classifier in the k-dimensional space,

ĥR(xq) := 1

{

(µ̂1 − µ̂0)R
T (RΣ̂RT )−1R

(

xq −
µ̂0 + µ̂1

2

)

>0

}

(3.1)
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Random Projections as Regularizers 7

we have for all z 6= 0, Rz 6= 0 almost surely, and RΣ̂RT is full rank
almost surely – therefore with probability 1 the k-dimensional system
in (3.1) is well-posed.

The significance of this theorem from a generalization error analysis
point of view stems from the fact that the rank deficient maximum-
likelihood covariance estimate has unbounded condition number and,
as we see below in theorem 3.2, (an upper bound on) the generalization
error of FLD increases as a function of the condition number of the
covariance estimate employed. In turn, the bound given in our theorem
3.1 depends on the extreme non-zero eigenvalues of Σ̂, its rank1 ρ,
and the subspace dimension k, which are all finite for any particular
training set instance. We should also note that the subspace dimension
k is a parameter that we can choose, and in what follows k therefore
acts as the integer regularization parameter in our setting.

Theorem 3.2 (Tail bound on generalization error of the converged
ensemble). Let T = {(xi, yi)}Ni=1 be a set of training data of size N =
N0+N1, subject to N < d and Ny > 1 ∀y. Let xq be a query point with
Gaussian class-conditionals xq|(yq = y) ∼ N (µy,Σ), and let Pr{yq =
y} = πy. Let ρ be the rank of the maximum likelihood estimate of the
covariance matrix and let k < ρ− 1 be a positive integer. Then for any
δ ∈ (0, 1) and any training set of size N , the generalization error of
the converged ensemble of randomly projected FLD classifiers is upper-
bounded with probability at least 1− δ by the following:

Pr
xq ,yq

(ĥens(xq) 6= yq) 6
1
∑

y=0

πyΦ

(

−
[

g

(

κ̄

(

√

2 log
5

δ

))

. . . ×
[

√

‖Σ− 1

2 (µ1 − µ0)‖2 +
dN

N0N1
−
√

2N

N0N1
log

5

δ

]

+

. . . −
√

d

Ny

(

1 +

√

2

d
log

5

δ

)])

Where Φ is the c.d.f of the standard Gaussian, κ̄(ǫ) is a high probability
(w.r.t. the random draw of training set) upper bound on the condition

number of ΣŜ−1 given by eq. (4.17) and g(·) is the function g(a) :=
√
a

1+a
.

The principal terms in this bound are: (i) The function g : [1,∞) →
(0, 12 ] which is a decreasing function of its argument and here captures
the effect of the mismatch between the estimated model covariance
matrix Ŝ−1 and the true class-conditional covariance Σ, via a high-
probability upper bound on the condition number of Ŝ−1Σ; (ii) The

1 In the setting considered here we typically have ρ = N − 2
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8 Durrant & Kabán

Mahalanobis distance between the two class centres which captures the
fact that the better separated the classes are the smaller the generaliza-
tion error should be; and (iii) antagonistic terms involving the sample
size (N) and the number of training examples in each class (N0, N1),
which capture the effect of class (im)balance – the more evenly the
training data are split, the tighter the bound.
We note that a bound on generalization error with similar behaviour
can be obtained for the much larger family of sub-Gaussian distri-
butions, or when the true class-conditional covariance matrices are
taken to be different (see e.g. [14, 16]). Therefore the distributional
assumptions on Theorem 3.2 are not crucial.

Theorem 3.3 (High probability lower bound on generalization error
of pseudoinverted FLD). For any δ ∈ (0, 1), and any data set of size
N0 + N1 = N , assuming Gaussian classes with shared covariance and
κ(Σ) < ∞ , the generalization error of pseudo-inverted FLD is lower-
bounded with probability at least 1−δ over the random draws of training
set by:

Pr(ĥ+(xq) 6= yq) > Φ



−1

2

√

1 +

√

8

N
log

2

δ

. . . ×
(

1 +

√

2λmax(Σ) log(2/δ)

Tr(Σ) + ‖µ1 − µ0‖2N0N1

N

)

. . . ×

√

ρ

d

‖µ1 − µ0‖2 + Tr(Σ) N
N0N1

λmin(Σ)





Where Φ is the c.d.f of the standard Gaussian.

It is interesting to notice that this lower bound depends on the rank
of the covariance estimate, not on its fit to the true covariance Σ. Note
in particular that when N ≪ d our lower bound explains the bad
performance of pseudo-inverted FLD since ρ, the rank of Σ̂, is at most
min{N − 2, d} and the lower bound of theorem 3.3 becomes tighter as
ρ/d decreases. Allowing the dimensionality d to be large, as in [5], so
that ρ/d → 0, this fraction goes to 0 which means the lower bound
of Theorem 3.3 converges to Φ(0) = 1/2 – in other words random
guessing.
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4. Proofs

4.1. Proof of Theorem 3.1

Estimating the condition number of E

[

RT
(

RΛ̂RT
)−1

R

]

is the key

result underpinning our generalization error results. We will make use
of the following two easy, but useful, lemmas:

Lemma 4.1 (Unitary invariance). Let R ∈ Mk×d with rij
i.i.d∼ N (0, σ2).

Let Σ̂ be any symmetric positive semi-definite matrix, and let Û be a
unitary matrix such that Σ̂ = Û Λ̂ÛT , where Λ̂ is a diagonal matrix with
the eigenvalues of Σ̂ in descending order along the diagonal. Then:

E

[

RT
(

RΣ̂RT
)−1

R

]

= ÛE

[

RT
(

RΛ̂RT
)−1

R

]

ÛT

Lemma 4.2 (Expected preservation of eigenvectors). Let Λ̂ be a diag-

onal matrix, then E

[

RT
(

RΛ̂RT
)−1

R

]

is a diagonal matrix.

Furthermore, if Û diagonalizes Σ̂ as Σ̂ = Û Λ̂ÛT , then Û also diago-

nalizes E

[

RT
(

RΣ̂RT
)−1

R

]

.

We omit the proofs which are straightforward and can be found in
[37].

Now, it follows from lemmas 4.1 and 4.2 that at convergence our
ensemble preserves the eigenvectors of Σ̂, and so we only need to con-

sider the diagonal entries (i.e. the eigenvalues) of E

[

RT
(

RΛ̂RT
)−1

R

]

,

which we now do. To fix ideas we will look first at the case k = 1, when
we are projecting the high dimensional data on to a single line for
each classifier in the ensemble. In this case the i-th diagonal element

of E

[

RT
(

RΛ̂RT
)−1

R

]

is E

[

r2i
∑ρ

j=1
λjr

2
j

]

, where ri is the i-th entry of

the single row matrix R. This can be upper and lower bounded as:

1

λmax
E

[

r2i
∑ρ

j=1 r
2
j

]

6 E

[

r2i
∑ρ

j=1 λjr2j

]

6
1

λmin 6=0
E

[

r2i
∑ρ

j=1 r
2
j

]

where λmin 6=0 denotes the smallest nonzero eigenvalue of Λ̂ (and of Σ̂),
and λmax its largest eigenvalue.
Recall that as a result of lemmas 4.1 and 4.2 we only need consider the
diagonal entries of this expectation as the off-diagonal terms are known

MLJ_Submitted_Version.tex; 28/05/2014; 15:46; p.9



10 Durrant & Kabán

to be zero.
Now, we evaluate the remaining expectation. There are two cases:
If i > ρ then ri is independent from the denominator and we have

E

[

r2i
∑ρ

j=1
r2j

]

= E
[

r2i
]

E
[

1/
∑ρ

j=1 r
2
j

]

= 1
ρ−2 , where we used the expec-

tation of the inverse-χ2 with ρ degrees of freedom, and the fact that

E
[

r2i
]

= 1. When i 6 ρ, then in turn we have E

[

r2i
∑ρ

j=1
r2j

]

= E
[

r2i
‖r‖2

]

=

1
ρ
. That is,

E

[

diag

(

r2i
∑ρ

j=1 r
2
j

)]

=

[

1
ρ
Iρ 0

0 1
ρ−2Id−ρ

]

and so E

[

RT
(

RΛ̂RT
)−1

R

]

is full rank, hence invertible. Its inverse

may be seen as a regularized covariance estimate in the data space, and
its condition number, κ, is upper bounded by:

κ 6
ρ

ρ− 2
· λmax

λmin 6=0

whereas in the setting N < d the ML covariance estimate has un-
bounded condition number.
For the general k < ρ − 1 case we write R as a concatenation of two
matrices R = [P, S] where P is k × ρ and S is k × (d − ρ), so that

E

[

RT
(

RΛ̂RT
)−1

R

]

can be decomposed as two diagonal blocks:







E[P T
(

P Λ̂P T
)−1

P ] 0

0 E[ST
(

P Λ̂P T
)−1

S]







Where here in P Λ̂P T we use Λ̂ to denote the ρ×ρ positive definite upper
block of the positive semi-definite matrix Λ̂. Now, rewrite the upper

block to orthonormalize P as the following: E[P T
(

P Λ̂P T
)−1

P ] =

E[P T(PP T )−
1

2

(

(PP T )−
1

2P Λ̂P T(PP T )−
1

2

)−1
(PP T )−

1

2P ]

Denoting by Pi the i-th column of P , we can write and bound the i-th
diagonal element as:

E[P T
i (PP T )−

1

2

(

(PP T )−
1

2P Λ̂P T (PP T )−
1

2

)−1
(PP T )−

1

2Pi]
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Random Projections as Regularizers 11

6 E

[

P T
i (PP T )−1Pi

λmin((PP T )−
1

2P Λ̂P T (PP T )−
1

2 )

]

6 E

[

P T
i (PP T )−1Pi

λmin 6=0

]

with λmin 6=0 the smallest non-zero eigenvalue of Λ̂ as before, and where
we used the Rayleigh quotient and the Poincaré separation theorem
respectively (e.g. [31] Thm 4.2.2, Corr 4.3.16). This holds for all i, so
then replacing we have:

E[P T (PP T )−1P ]/λmin 6=0 < E
[

P T (P Λ̂P T )−1P
]

(4.1)

where A < B denotes A−B is positive semi-definite. Now the remaining
expectation can be evaluated using the expectation of the ρ-dimensional
Wishart matrix P TP with k degrees of freedom:

E[P T (PP T )−1P ] = E[P TP ]/ρ =
k

ρ
· Iρ

Similarly to equation (4.1) we can also show that:

E
[

P T (P Λ̂P T )−1P
]

< E[P T
(

PP T
)−1

P ]/λmax (4.2)

in much the same way. Put together, the diagonal elements in the upper
block are all in the interval:

[

1

λmax

k

ρ
,

1

λmin 6=0

k

ρ

]

Hence, we see that in this upper block the condition number is reduced
in comparison to that of Λ̂ in its column space.

λmax(E[P
T (P Λ̂P T )−1P ])

λmin(E[P T (P Λ̂P T )−1P ])
6

λmax(Λ̂)

λmin 6=0(Λ̂)

That is, in the range of Σ̂, the ensemble has the effect of a shrinkage
regularizer [34]. Next, we consider its effect in the null space of Σ̂.

The lower block is E
[

ST (P Λ̂P T )−1S
]

= Tr
(

E
[

(P Λ̂P T )−1
])

· Id−ρ

since S is independent of P . We again rewrite this to orthonormalize

P . Going through similar steps, we obtain: Tr
(

E
[

(P Λ̂P T )−1
])

=

Tr

(

E

[

(

PP T
)− 1

2

(

(

PP T
)− 1

2P Λ̂P T
(

PP T
)− 1

2

)−1
(

PP T
)− 1

2

])
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12 Durrant & Kabán

6
Tr
(

E
[

(

PP T
)−1
])

λmin 6=0
=

k

ρ− k − 1
· 1

λmin 6=0

where we used the expectation of the inverse Wishart. Likewise,

Tr

(

E

[

(

P Λ̂P T
)−1

])

>
k

ρ− k − 1
· 1

λmax
(4.3)

Hence, the lower block is a multiple of Id−ρ with the coefficient in the
interval:

[

k

ρ− k − 1

1

λmax
,

k

ρ− k − 1

1

λmin 6=0

]

That is, in the null space of Σ̂ the ensemble acts as a ridge regularizer
[29].
Putting everything together, the condition number of the covariance
(or inverse covariance) estimate is upper bounded by:

κ 6
ρ

ρ− k − 1
· λmax

λmin 6=0
(4.4)

which we see reduces to equation (4.1) when k = 1. �

4.2. Proof of Theorem 3.2

Traditionally ensemble methods are regarded as ‘meta-learning’ ap-
proaches and although bounds exist (e.g. [33]) there are, to the best
of our knowledge, no results giving the exact analytical form of the
generalization error of any particular ensemble. Indeed, in general it is
not analytically tractable to evaluate the generalization error exactly, so
one can only derive bounds. Because we deal with a particular ensemble
of FLD classifiers we are able to derive the exact generalization error of
the ensemble in the case of Gaussian classes with shared covariance Σ,
the setting in which FLD is Bayes’ optimal. This allows us to explicitly
connect the performance of the ensemble to its data space analogue.
As noted earlier, an upper bound on generalization error with similar
behaviour can be derived for the much larger class of sub-Gaussian
distributions (see e.g. [14, 16]), therefore this Gaussianity assumption
is not crucial.
We proceed in two steps: (1) Obtain the generalization error of the
ensemble conditional on a fixed training set; (2) Bound the deviation
of this error caused by a random draw of a training set.

4.2.1. Generalization error of the ensemble for a fixed training set
For a fixed training set, the generalization error is given by the following
lemma:
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Lemma 4.3 (Exact generalization error with Gaussian classes). Let
xq|(yq = y) ∼ N (µy,Σ), where Σ ∈ Md×d is a full rank covariance
matrix, and let πy := Pr{yq = y}. Let R ∈ Mk×d be a random
projection matrix with i.i.d. zero-mean Gaussian entries and denote

Ŝ−1 := ER

[

RT
(

RΣ̂RT
)−1

R

]

. Then the exact generalization error of

the converged randomly projected ensemble classifier (2.1) is given by

Pr(xq ,yq){ĥens(xq) 6= yq} =

1
∑

y=0

πyΦ



−1

2

(µ̂¬y − µ̂y)
T Ŝ−1(µ̂0 + µ̂1 − 2µy)

√

(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)



 (4.5)

Where Φ is the c.d.f of the standard Gaussian.

The proof of this lemma is similar in spirit to the one for a single
FLD in [40]. For completeness we give it below.

Proof of Lemma 4.3

Without loss of generality let xq have label 0. By assumption the classes
have Gaussian distribution N (µy,Σ) so then the probability that xq is
misclassified by the converged ensemble is given by:

Prxq |yq=0

{

(µ̂1 − µ̂0)
T Ŝ−1

(

xq −
µ̂0 + µ̂1

2

)

> 0

}

(4.6)

Define aT := (µ̂1 − µ̂0)
T Ŝ−1 and observe that if xq ∼ N (µ0,Σ) then:

(

xq −
µ̂0 + µ̂1

2

)

∼ N
((

µ0 −
µ̂0 + µ̂1

2

)

,Σ

)

and so:

aT
(

xq −
µ̂0 + µ̂1

2

)

∼ N
(

aT
(

µ0 −
µ̂0 + µ̂1

2

)

, aTΣa

)

which is a univariate Gaussian. Therefore:

aT
(

xq − µ̂0+µ̂1

2

)

− aT
(

µ0 − µ̂0+µ̂1

2

)

√
aTΣa

∼ N (0, 1)

Hence, for the query point xq we have the probability (4.6) is given by:

Φ

(

aT
(

µ0− µ̂0+µ̂1
2

)

√
aTΣa

)

= Φ

(

−1
2

(µ̂1−µ̂0)T Ŝ−1(µ̂0+µ̂1−2µ0)√
(µ̂1−µ̂0)T Ŝ−1ΣŜ−1(µ̂1−µ̂0)

)

(4.7)
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14 Durrant & Kabán

where Φ is the c.d.f of the standard Gaussian.
A similar argument deals with the case when xq belongs to class 1, and
applying the law of total probability completes the proof. �
Indeed equation (4.5) has the same form as the error of the data space
FLD (See [5, 40] for example.) and the converged ensemble, inspected
in the original data space, produces exactly the same mean estimates
and covariance matrix eigenvector estimates as FLD working on the
original data set. However it has different eigenvalue estimates that
result from the sophisticated regularization scheme that we analyzed
in section 4.1.

4.2.2. Tail bound on the generalization error of the ensemble.
The previous section gave the exact generalization error of our ensemble
conditional on a given training set. In this section our goal is to derive
an upper bound with high probability on the ensemble generalization
error w.r.t. random draws of the training set.

We will use the following concentration lemma:

Lemma 4.4 (Concentration bound on exponential random variables).
Let X be a Gaussian random vector in R

d with mean vector E[X] = µ
and covariance matrix Σ. Let ǫ > 0. Then:

Pr
{

‖X‖2 > (1 + ǫ)
(

Tr (Σ) + ‖µ‖2
)}

6 exp

(

−Tr(Σ) + ‖µ‖2
2λmax(Σ)

(√
1 + ǫ− 1

)2
)

(4.8)

Furthermore, if ǫ ∈ (0, 1):

Pr
{

‖X‖2 6 (1− ǫ)
(

Tr (Σ) + ‖µ‖2
)}

6 exp

(

−Tr(Σ) + ‖µ‖2
2λmax(Σ)

(√
1− ǫ− 1

)2
)

(4.9)

The proof, which follows immediately from the more general result
we give in [15], is given in appendix A for completeness. Now we can
bound the generalization error of the RP-FLD ensemble. We begin
by decomposing the numerator of the generalization error term (for a
single class) obtained in lemma 4.3 as follows:

(µ̂1 + µ̂0 − 2µ0)
T Ŝ−1 (µ̂1 − µ̂0)

= (µ̂1 − µ̂0)
T Ŝ−1(µ̂1 − µ̂0) + 2 (µ̂0 − µ0)

T Ŝ−1(µ̂1 − µ̂0)
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Random Projections as Regularizers 15

Using this decomposition we can rewrite the argument of the first term
in lemma 4.3 in the following form:

Φ

(

−1

2
[A−B]

)

Where:

A =
(µ̂1 − µ̂0)

T Ŝ−1 (µ̂1 − µ̂0)
√

(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)

and:

B =
2 (µ0 − µ̂0)

T Ŝ−1 (µ̂1 − µ̂0)
√

(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)

We will lower bound A and upper bound B with high probability over
the random draw of training set in order to bound the whole term from
above with high probability and, since Φ is monotonic increasing in its
argument, this will give the upper bound on generalization error.

Lower-bounding the term A
Applying the Kantorovich inequality (e.g. [31] Thm 7.4.41), A is lower
bounded by:

‖Σ− 1

2 (µ̂1 − µ̂0) ‖ ·
2

√

κ(Ŝ− 1

2ΣŜ− 1

2 )

1 + κ(Ŝ− 1

2ΣŜ− 1

2 )
(4.10)

where κ(H) := λmax(H)
λmin(H) denotes the condition number of the matrix H.

Next, since Σ− 1

2 µ̂1 and Σ− 1

2 µ̂0 are independent with Σ− 1

2 µ̂y ∼ N (Σ− 1

2µy, Id/Ny),

we have Σ− 1

2 (µ̂1 − µ̂0) ∼ N (Σ− 1

2 (µ1 − µ0), N/(N0N1) · Id).
Applying the second concentration bound of lemma 4.4, (4.9), we

have:

‖Σ− 1

2 (µ̂1 − µ̂0)‖ >

√

(1− ǫ)

(

d ·N
N0N1

+ ‖Σ− 1

2 (µ1 − µ0)‖2
)

(4.11)

with probability at least:

1− exp

(

−d+ ‖Σ− 1

2 (µ1 − µ0)‖2N0N1/N

2

(√
1− ǫ− 1

)2

)

(4.12)

To complete the bounding of the term A, we denote g(a) :=
√
a

1+a
,

and observe that this is a monotonic decreasing function on [1,∞).

So, replacing a with the condition number κ(Ŝ− 1

2ΣŜ− 1

2 ) ∈ [1,∞) we
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16 Durrant & Kabán

need to upper bound this condition number in order to lower bound
g. Denoting this upper bound by κ̄, which will be quantified in lemma
4.5, then the term A is lower bounded with high probability by:

A > 2g(κ̄)

√

(1− ǫ)

(

‖Σ− 1

2 (µ1 − µ0)‖2 +
d ·N
N0N1

)

(4.13)

Upper-bounding the term B

We can rewrite B by inserting Σ− 1

2Σ
1

2 = Id, and using Cauchy-Schwarz
in the numerator to give:

B 6
2‖Σ− 1

2 (µ0 − µ̂0)‖ · ‖Σ
1

2 Ŝ−1(µ̂1 − µ̂0)‖
√

(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)
(4.14)

After cancellation, this simplifies to:

= 2‖Σ− 1

2 (µ0 − µ̂0)‖ (4.15)

and so by Lemma 4.4, (4.8), we have:

B 6 2
√

(1 + ǫ)d/N0 (4.16)

with probability at least 1− exp(−d
2(
√
1 + ǫ− 1)2).

To bound the condition number κ(Ŝ− 1

2ΣŜ− 1

2 ) with high probability
we need the following additional lemma:

Lemma 4.5 (Upper bound on κ(Ŝ− 1

2ΣŜ− 1

2 )). Under the conditions of
theorem 3.2 we have, ∀ǫ > 0:

κ(Ŝ− 1

2ΣŜ− 1

2 ) =
λmax(Σ

1

2 · ER[R
T (RΣ̂RT )−1R] · Σ 1

2 )

λmin(Σ
1

2 · ER[RT (RΣ̂RT )−1R] · Σ 1

2 )

6
(
√
N − 2 +

√
d+ ǫ)2(1 + ρ/k · κ(Σ))

(
√
N − 2−

√
k − ǫ)2

=: κ̄(ǫ) (4.17)

with probability at least 1− 2 exp(−ǫ2/2).

4.2.3. Proof of lemma 4.5

To upper bound the condition number κ(Ŝ− 1

2ΣŜ− 1

2 ) with high proba-
bility, we derive high-probability upper and lower bounds on (respec-
tively) the greatest and least eigenvalues of its argument. We will make
use of the following result, Eq. (2.3) from [47]:

MLJ_Submitted_Version.tex; 28/05/2014; 15:46; p.16



Random Projections as Regularizers 17

Lemma 4.6 (Singular Values of Wishart Matrices [47]). Let R be a
k×d matrix with i.i.d N (0, 1) entries. Then for all ǫ > 0 with probability
at least 1− 2 exp(−ǫ2/2) we have:

√
d−

√
k − ǫ 6 smin(R) 6 smax(R) 6

√
d+

√
k + ǫ (4.18)

Upper-bound on largest eigenvalue
By Jensen’s inequality, and noting that λmax(·) is a convex function,
we have:

λmax(Ŝ
− 1

2ΣŜ− 1

2 )

= λmax(Σ
1

2ER[R
T (RΣ̂RT )−1R]Σ

1

2 )

6 ER[λmax(Σ
1

2RT (RΣ̂RT )−1RΣ
1

2 )]

= ER[λmax((RΣ̂RT )−1RΣRT ]

= ER[λmax((RΣRT )
1

2 (RΣ̂RT )−1(RΣRT )
1

2 )]

= ER

[

1

λmin((RΣRT )−
1

2RΣ̂RT (RΣRT )−
1

2 )

]

6
N

(
√
N − 2−

√
k − ǫ)2

with probability at least 1 − exp(−ǫ2/2), ∀ǫ > 0, where throughout
we use the fact that the non-zero eigenvalues of AB are the same as
non-zero eigenvalues of BA, in the second to last step we used the
fact that for invertible matrices A we have λmax(A) = 1/λmin(A

−1),
and in the last step we used that for any particular full row-rank

matrix R, (RΣRT )−
1

2RΣ̂RT (RΣRT )−
1

2 (regarded as a function of the

training set and therefore Σ̂ is the random variable) is distributed as
a k-dimensional Wishart with N − 2 degrees of freedom and scale ma-
trix Ik (e.g. [36] Corr. 3.4.1.2), and we then used the high probability
lower-bound for the smallest eigenvalue of such a matrix, lemma 4.6.

Lower-bound on smallest eigenvalue
Dealing with the smallest eigenvalue is less straightforward. Although
λmin(·) is a concave function, Jensen’s inequality does not help with
lower bounding the smallest eigenvalue of the expectation since the
matrix Σ̂ in the argument of this expectation is singular. We therefore
take a different route and start by rewriting as follows:

λmin(Σ
1

2ER[R
T (RΣ̂RT )−1R)]Σ

1

2 )

=
1

λmax(Σ
− 1

2 (ER[RT (RΣ̂RT )−1R)])−1Σ− 1

2 )
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18 Durrant & Kabán

=
1

λmax(Σ
− 1

2 {Σ̂ + (ER[RT (RΣ̂RT )−1R)])−1 − Σ̂}Σ− 1

2 )

(4.19)

Now, using Weyl’s inequality, and the SVD decomposition Σ̂ = Û Λ̂ÛT

combined with Lemma 4.1, the denominator in (4.19) is upper-bounded
by:

λmax(Σ
− 1

2 Σ̂Σ− 1

2 ) + λmax(Σ
− 1

2 Û
(

(ER[R
T (RΛ̂RT )−1R])−1 − Λ̂

)

ÛTΣ− 1

2 )

6 λmax(Σ
− 1

2 Σ̂Σ− 1

2 ) + λmax((ER[R
T (RΛ̂RT )−1R])−1 − Λ̂)/λmin(Σ) (4.20)

Now observe from lemma 4.2 that the matrix ER[R
T (RΛ̂RT )−1R])−1−

Λ̂ is diagonal and, from our analysis in Section 4.1, it has the upper ρ
diagonal entries in the interval:

[

(
ρ

k
− 1)λmin 6=0(Λ̂), (

ρ

k
− 1)λmax(Λ̂)

]

and the lower d− ρ diagonal entries in the interval:
[

ρ− k − 1

k
λmin 6=0(Λ̂),

ρ− k − 1

k
λmax(Λ̂)

]

Hence, λmax((ER[R
T (RΛ̂R)−1R])−1−Λ̂) 6 ρ

k
λmax(Λ̂) and so the lower-

bounding of (4.20) continues as:

>
1

λmax(Σ
− 1

2 Σ̂Σ− 1

2 ) + ρ
k
λmax(Λ̂)
λmin(Σ)

(4.21)

Now observe that Σ− 1

2 Σ̂Σ− 1

2 is a d-dimensional standard Wishart with
N − 2 degrees of freedom and scale matrix Id (e.g. [36] Corr. 3.4.1.2),
and using the upper bound in lemma 4.6 for largest eigenvalues of
standard Wishart matrices we get (4.21) lower-bounded as

>
1

(
√
N − 2 +

√
d+ ǫ)2/N + ρ

k
λmax(Λ̂)
λmin(Σ)

(4.22)

with probability at least 1− exp(−ǫ2/2).

Finally, we bound λmax(Λ̂) as:

λmax(Λ̂) = λmax(Σ̂) = λmax(ΣΣ
−1Σ̂)

6 λmax(Σ)λmax(Σ
−1Σ̂) = λmax(Σ)λmax(Σ

− 1

2 Σ̂Σ− 1

2 )

6 λmax(Σ)(
√
N − 2 +

√
d+ ǫ)2/N
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To complete the bound on the condition number we apply union
bound and combine the eigenvalue estimates to obtain, after simple
algebra, lemma 4.5. �

Back to the proof of Theorem 3.2, substituting into lemma 4.3 the
high probability bounds for A and B, rearranging, then setting each of
the failure probabilities to δ/5 so that the overall probability of failure
remains below δ, then solving for ǫ we obtain Theorem 3.2 after some
algebra. For completeness we give these last few straightforward details
in Appendix B. �

4.3. Proof of Theorem 3.3

We start from the exact form of the error of FLD in the data space
with a fixed training set. Using a similar approach to that employed in
proving lemma 4.3, this is easily be shown to be:

Pr(ĥ+(xq) 6= yq)

=
1
∑

y=0

πyΦ



−1

2

(µ̂¬y − µ̂y)
T Σ̂+(µ̂0 + µ̂1 − 2µy)

√

(µ̂1 − µ̂0)T Σ̂+ΣΣ̂+(µ̂1 − µ̂0)





where Σ̂+ is the pseudo-inverse of the maximum likelihood covariance
estimate.
Make the rank ρ SVD decomposition Σ̂ = Û Λ̂Û

T
, where Û is the

d × ρ matrix of eigenvectors associated with the non-zero eigenvalues,

Û
T
Û = Iρ, and as before Λ̂ is the diagonal ρ × ρ matrix of non-zero

eigenvalues. Then we have:

(µ̂1 + µ̂0 − 2µ0)
T Û Λ̂

−1
Û

T
(µ̂1 − µ̂0)

√

(µ̂1 − µ̂0)T Û Λ̂
−1

Û
T
ΣÛ Λ̂

−1
Û

T
(µ̂1 − µ̂0)

6
(µ̂1 + µ̂0 − 2µ0)

T Û Λ̂
−1

Û
T
(µ̂1 − µ̂0)

√

λmin(Σ)

√

(µ̂1 − µ̂0)T Û Λ̂
−2

Û
T
(µ̂1 − µ̂0)

6
‖ÛT

(µ̂1 + µ̂0 − 2µ0)‖ · ‖Λ̂
−1

Û
T
(µ̂1 − µ̂0)‖

√

λmin(Σ)‖Λ̂
−1

Û
T
(µ̂1 − µ̂0)‖

=
‖ÛT

(µ̂1 + µ̂0 − 2µ0)‖
√

λmin(Σ)

where we used minorization by Rayleigh quotient and the Cauchy-
Schwartz inequality. We will use the well-known fact that Σ̂ and µ̂1+µ̂0
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are independent [36]. Observe that Û
T

is a random matrix with or-
thonormal rows representing the eigenvectors of the sample covariance
of a Gaussian sample. Using the rotational invariance of the multivari-
ate Gaussian distribution, by the Johnson-Lindenstrauss lemma (JLL)
this matrix acts as an approximate isometry with high probability
[11] that projects a d-dimensional vector onto a random subspace of
dimension ρ. Conditioning on µ̂1 + µ̂0 to hold this quantity fixed, and
using independence of Û and µ̂1 + µ̂0 [46], we have with probability at
least 1− exp(−Nǫ2/8) that:

‖ÛT
(µ̂1 + µ̂0 − 2µ0)‖
√

λmin(Σ)
6

√
1 + ǫ

√

ρ

d

‖µ̂1 + µ̂0 − 2µ0‖
√

λmin(Σ)

Further, applying Lemma 4.4 (4.8) to the norm on the r.h.s and replac-
ing in the generalization error expression, we have the following lower
bound:

Φ



−1

2

√

(1 + ǫ1)(1 + ǫ2)

√

ρ

d

‖µ1 − µ0‖2 +Tr(Σ) N
N0N1

λmin(Σ)





with probability at least 1−[exp(−Nǫ21/8)+exp(−Tr(Σ)+‖µ1−µ0‖2 N0N1
N

2λmax(Σ) (
√
1 + ǫ2−

1)2)].
Setting both of these exponential risk probabilities to δ/2 and solv-

ing for ǫ1 and ǫ2, we obtain the lower bound on the generalization error
of pseudoinverted FLD, Theorem 3.3. �

5. Remarks

5.1. On the effect of eigenvector misestimation

We have seen that the eigenvector estimates are not affected by the
regularization scheme implemented by our converged ensemble. One
may then wonder, since we are dealing with small sample problems,
how does misestimation of the eigenvectors of Σ affect the classification
performance?
It is known that the quality of eigenvector estimates depends on the
eigengaps (differences between ordered eigenvalues) of Σ as well as on
the data dimension and number of training examples [49, 32, 41, 48].
Although the sensitivity of eigenvectors to perturbations of matrix en-
tries is well known, the following simple but powerful example from
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[31] shows clearly both the problem and the importance of eigenvalue
separation. Let:

Σ =

[

1− ǫ 0
0 1 + ǫ

]

so that Σ has eigenvalues 1 ± ǫ and eigenvectors (1, 0)T , (0, 1)T . On
the other hand consider the following perturbed matrix (where the
perturbation could arise from, say, estimation error or noise):

Σ + E =

[

1− ǫ 0
0 1 + ǫ

]

+

[

ǫ ǫ
ǫ −ǫ

]

=

[

1 ǫ
ǫ 1

]

This matrix also has eigenvalues 1± ǫ, but has eigenvectors 1√
2
(1, 1)T ,

1√
2
(1,−1)T , regardless of how small ǫ is.

Applying this in the small sample setting we consider here, if the
eigengaps of Σ are too small we can expect bad estimates of its eigen-
vectors. However, we have seen in Theorem 3.2 that the generalization
error of the ensemble can be bounded above by an expression that de-
pends on covariance misestimation only through the condition number
of Ŝ−1Σ ≡ (Σ+E)−1Σ so even a large misestimation of the eigenvectors
need not have a large effect on the classification performance: If all the
eigengaps are small, so that all the eigenvalues of Σ are similar, then
poor estimates of the eigenvectors will not affect this condition number
too much. Conversely, following [32] if the eigengaps are large – i.e. we
have a very elliptical covariance – then better eigenvector estimates
are likely from the same sample size and the condition number of
Ŝ−1Σ should still not grow too much as a result of any eigenvector
misestimation. In the case of the toy example above, the eigenvalues of

Σ(Σ+E)−1 are 1±ǫ
√
2−ǫ2

1−ǫ2
, so its condition number is 1+ǫ

√
2−ǫ2

1−ǫ
√
2−ǫ2

. For small

ǫ this remains fairly close to one – meaning eigenvector misestimation
indeed has a negligible effect on classification performance.

5.2. On the effect of k

It is interesting to examine the condition number bound in (4.17) in
isolation, and observe the trade off for the projection dimension k
which describes very well its role of regularization parameter in the
context of our RP-FLD ensemble. To make the numerator smaller k
needs to be large while to make the denominator larger it needs to be
small. We also see natural behaviour with N , d and the conditioning of
the true covariance. From equations (4.13) and (4.16) we see that the
condition number bounded by equation (4.17) is the only term in the
generalization error bound affected by the choice of k, so we can also
partly answer the question left open in [37] about how the optimal k

MLJ_Submitted_Version.tex; 28/05/2014; 15:46; p.21



22 Durrant & Kabán

depends on the problem characteristics, from the perspective of classi-
fication performance, by reading off the most influential dependencies
that the problem characteristics have on the optimal k. The first term
in the numerator of (4.17) contains d but does not contain k while the
remaining terms contain k but do not contain d, so we infer that in
the setting of k < ρ − 1 < d the optimal choice of k is not affected
by the dimensionality d. Noting that for N < d and Gaussian class-
conditionals we have ρ = N − 2 with probability 1, we see also that for
small N or ρ the minimizer of this condition number is achieved by a
smaller k (meaning a stronger regulariser), as well as for a small κ(Σ).
Conversely, when N , ρ, or κ(Σ) is large then k should also be large to
minimize the bound.
It is also interesting to note that the regularization scheme implemented
by our ensemble has a particularly pleasing form. Shrinkage regulariza-
tion is the optimal regularizer (w.r.t the Frobenius norm) in the setting
when there are sufficient samples to make a full rank estimation of the
covariance matrix [34], and therefore one would also expect it to be

a good choice for regularization in the range space of Σ̂. Furthermore
ridge regularization in the null space of Σ̂ can also be considered optimal
in the following sense – its effect is to ensure that any query point lying
entirely in the null space of Σ̂ is assigned the maximum likelihood
estimate of its class label (i.e. the label of the class with the nearest
mean).

5.3. Bias of the Ensemble

By letting N → ∞ (and so ρ → d) while enforcing k < d = ρ we see
that our ensemble implements a biased estimate of the true covariance
matrix Σ. In particular, plugging in the true parameters µy and Σ in the
exact error (4.5) we find that the Bayes’ risk for FLD in the data space

is
∑1

y=0 πyΦ
(

−1
2‖Σ− 1

2 (µ1 − µ0)‖
)

but the expression in Theorem 3.2

converges to:

1
∑

y=0

πyΦ

(

−g

(

1 +
d

k
κ(Σ)

)

‖Σ− 1

2 (µ1 − µ0)‖
)

where we recall that g(1) = 1
2 . When N < d however, we see that

the generalization error of our RP-FLD ensemble is upper bounded
for any training sample containing at least two points for each class
whereas our Theorem 3.3 (and asymptotic results in [5]) demonstrate
that this is not the case in the data space setting if we regularize by
pseudoinverting.
Note that when we plug the expectation examined above into the
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classifier ensemble, this is equivalent to an ensemble with infinitely
many members and therefore, for any choice of k < ρ − 1, although
we can underfit (with a poor choice of k) the bounded loss of our
ensemble implies that we cannot overfit any worse than the pseudo-
inverse FLD data space classifier regardless of the ensemble size, since
we do not learn any combination weights from the data. This is quite
unlike adaptive ensemble approaches such as AdaBoost, where it is well-
known that increasing the ensemble size can indeed lead to overfitting.
Furthermore, we shall see from the experiments in the next Section 6
that this guarantee vs. the performance of pseudo-inversion appears
to be a conservative prediction of the performance achievable by our
randomly-projected ensemble.

5.4. Time Complexities for the RP-FLD Ensemble

We noted in the Introduction that our ensemble, although simple to
implement, is also fast. Here we briefly compare the time complexity of
our ensemble approach (for a finite ensemble) with that for regularized
FLD learnt in the data space.
The time complexity of training a regularized FLD in the data space
is dominated by the cost of inverting the estimated covariance ma-
trix Σ̂ [12], which is O(d3) or O(dlog2 7) ≃ O(d2.807) using Strassen’s
algorithm [23].2 On the other hand, in order to obtain a full-rank in-
verse covariance estimate in the data space using our ensemble requires
M ∈ O (⌈d/k⌉), and our experimental results in Section 6 suggest
that M of this order is indeed enough to get good classification per-
formance. Using this, and taking into account the M k × d matrix
multiplications required to construct the randomly-projected training
sets, implies that the time complexity of training our algorithm is
O( d

k
(Nkd + k3)) = O(Nd2 + k2d) overall, where the k3 term comes

from inverting the full-rank covariance matrix estimate in the projected
space. Since we have k < ρ− 1 < N ≪ d this is generally considerably
faster than learning regularized FLD in the original data space, and
furthermore, by using sparse random projection matrices such as those
described in [1, 2, 38] one can improve the constant terms hidden by
the O considerably.
For classification on a single core, one can avoid randomly projecting
the query pointM times by averaging the individual classifiers compris-
ing the ensemble. That is, by bracketing the argument to the ensemble

2 We note that pseudoinverting Σ̂ or inverting a diagonal covariance matrix has
typical time complexity of O(Nd2) or O(d) respectively. However, as we see from
Theorem 3.3 and the experiments in Section 6, the cost in classification performance
of these approaches can be prohibitive.
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decision rule as:
(

(µ̂1 − µ̂0)
T 1

M

M
∑

i=1

RT
i

(

RiΣ̂R
T
i

)−1
Ri

)

(

xq −
µ̂1 + µ̂0

2

)

we obtain a single linear classifier of the form ĥ = w+b, w ∈ R
d, b ∈ R,

where:

w :=
1

M

M
∑

i=1

(µ̂1 − µ̂0)
TRT

i

(

RiΣ̂R
T
i

)−1
Ri =

1

M

M
∑

i=1

wi

and

b := − 1

M

M
∑

i=1

(µ̂1 − µ̂0)
TRT

i

(

RiΣ̂R
T
i

)−1
Ri

(

µ̂1 + µ̂0

2

)

=
1

M

M
∑

i=1

bi

Classification of new points using our ensemble then has the same time
complexity as classification using the data space FLD, namely O(d).

6. Experiments

We now present experimental results which show that our ensemble
approach is competitive with the state of the art in terms of prediction
performance. We do not claim of course that the choice of FLD as a
classifier is optimal for these data sets; rather we demonstrate that the
various practical advantages of our RP-FLD approach that we listed in
the Introduction and Section 5.4, and most importantly its analytical
tractability, do not come at a cost in terms of prediction performance.

6.1. Datasets

We used six publicly available high dimensional datasets: Five from
the bioinformatics domain (colon, two versions of leukaemia, prostate,
and duke breast cancer), and one drug discovery dataset from the 2003
NIPS Feature Selection Challenge (dorothea). The characteristics of
these datasets are described in Table I. Our smallest datasets (colon
and leukaemia) were the highest dimensional ones used in the empirical
RP-classifier study of [20] (although that paper focuses on a single
randomly projected classifier vs. the data space equivalent). The 7,129
dimensional leukaemia-large was also the dataset of choice in evaluating
a technique for ultrahigh dimensional data in [17]. The 100,000 dimen-
sional dorothea dataset is currently the highest dimensional publicly
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Table I. Datasets

Name Source #samples #features

colon [3] 62 2000

leukaemia [24] 72 3571

leukaemia large [24] 72 7129

prostate [45] 102 6033

duke [50] 44 7129

dorothea [26] 800 100000

available dataset in the UCI repository from a problem domain where
N ≪ d is the norm.

6.2. Protocol

We standardized each data set to have features with mean 0 and vari-
ance 1. For dorothea we removed features with zero variance, there were
8402 such features which left a working dimensionality of 91598; we did
not do any further feature selection filtering to avoid any external effects
in our comparison. For the first five datasets we ran experiments on 100
independent splits, and in each split we took 12 points for testing and
used the remainder for training. For dorothea we used the same data
split as was used in the NIPS challenge, taking the provided 800 point
training set for training and the 350 point validation set for testing.
We ran 10 instances for each combination of projection dimension,
projection method, and ensemble size - that is 1120 experiments.

For our data space experiments on colon and leukaemia we used FLD
with ridge regularization and fitted the regularization parameter using
5-fold cross-validation independently on each training set, following
[10], with search in the set {2−11, 2−10, ..., 2}. However on these data
this provided no statistically significant improvement over employing
a diagonal covariance in the data space, most likely because of the
data scarcity. Therefore for the remaining three bioinformatics datasets
(which are even higher dimensional) we used diagonal FLD in the data
space. Indeed since diagonal FLD is in use for gene array data sets
[13] despite the features being known to be correlated (this constraint
acting as a form of regularization) one of the useful benefits of our
ensemble is that such a diagonality constraint is no longer necessary.

To satisfy ourselves that building on FLD was a reasonable choice of
classifier we also ran experiments in the data space using classical SVM
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(using the matlab implementation of [9] on the first five datasets, and
the ‘liblinear’ toolbox [18], which is specialised for very large datasets,
for dorothea) and ℓ1-regularized SVM [18] with linear kernel. In all
SVMs the C parameter was fitted by 5-fold cross-validation as above,
with search in the set {2−10, 2−9, ..., 210}.

For the dorothea dataset it was impractical to consider constructing
the full FLD in the dataspace since the covariance matrix would not
fit in memory on the authors’ machines. We linearized diagonal FLD
to get around this issue, but the performance of diagonal FLD was
extremely poor (Accuracy of 0.2686) and, since the classical linear
SVM is also known to perform poorly on this dataset [28, 27], for the
dorothea dataset we baselined against Bernoulli Näıve Bayes (without
preprocessing the binary data) following the advice of the challenge
organiser to her students given in [28]. We have also run ℓ1-regularised
SVM [18], which turned out successful on this data set.

For all experiments carried out in the projected space, the randomly
projected base learners are FLDs with full covariance and no regulariza-
tion (since we choose k < ρ−1 and so the projected sample covariances
are invertible).

6.3. Results

For the five bioinformatics datasets, in each case we compare the per-
formance of the RP ensembles with (regularized) FLD in the data
space, vanilla and ℓ1-regularized SVM, and (as suggested by one of
the anonymous referees) with an ensemble of Random Subspace (RS)
FLD classifiers3. For dorothea we also compare our RP-FLD ensemble
with Bernoulli Näıve Bayes.

Summary results for the rule of thumb choice k = ρ/2 are listed in
Table II as well as end-to-end running times for each data split on a
Linux machine with Intel r CoreTM i5-3570 CPU @ 3.40GHz and 7GB
memory for the bioinformatics datasets. The dorothea experiments
were run on a Microsoft r Windows 7TM machine with the same
CPU specification and 8GB memory and, because of the extremely
high dimensionality of the dorothea dataset, we refactored our code to
avoid randomly projecting the test set by using the approach described
in Section 5.4 for these experiments; therefore the running times for

3 The Random Subspace method [30] consists of projection onto the span
of k randomly chosen canonical basis vectors. Note that our theory developed
here applies to Gaussian random projection, and this is different to random
subspace projection. The RS-FLD decision rule is equivalent to ĥP (xq) :=

1
{

(µ̂1 − µ̂0)P
T (P Σ̂PT )+P

(

xq −
µ̂0+µ̂1

2

)

>0
}

where P is a canonical projection

matrix and e.g. is therefore not full rank.
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dorothea are not directly comparable with those for the biomedical
datasets. We note, however, that the main computational overhead for
the dorothea dataset comes from the random preprocessing of the data
(either random projection, or random subspace) so for these experi-
ments the running times for the preprocessing step are given which
still give a good indication of the overall running time.

We see from Table II that with M=1000 members in our ensem-
ble, the SVM outperforms us on two datasets (colon and duke), we
outperform it on two datasets (leukaemia-large, and dorothea) and
no statistical difference is found on the remaining two datasets. On
one dataset (dorothea) ℓ1-regularised SVM does better than us, we
outperform it on three data sets (colon, leukaemia, and leukaemia-
large), and there is no statistical difference on the remaining two data
sets. We outperform random subspace with 1000 ensemble members on
two datasets (duke and prostate) and there is no statistical difference
found on the remaining four datasets.

The picture looks not much different for our method having M=100
ensemble members, except there is no significant difference with the ℓ1-
regularised SVM on leukaemia-large, the random subspaces with 100
members beats us on colon and leukaemia, and displays no difference
on duke. In fact it turns out that our ensemble with 1000 members
differs from that with 100 members on only one data set (duke).

The random subspace FLD ensemble wins over our RP-FLD en-
semble with respect to computation time, although this difference is
of course confined to the training time only since the time complexity
for classification is still O(d). Interestingly for the random subspace
ensembles the overall error performance is just slightly behind that
of the random projection ensembles. Since trading off a small amount
of accuracy for a speed-up may be desirable for some applications,
an interesting research question is whether similar theoretical guaran-
tees to those we obtained for our RP-FLD ensemble can be proved
in the random subspace case. Nevertheless the computation time of
our RP-FLD ensemble is comparable with the sophisticated liblinear
implementation of ℓ1-regularised SVM, as is its performance. In fact
on three of the six data sets tested none of the competing methods
outperformed our RP-FLD ensemble at the 95% confidence level.

In figure 1 we plot the results for the regularized data space FLD
(Bernoulli Näıve Bayes for dorothea), for a single RP-FLD, and for en-
sembles of 10, 100, and 3000 RP-FLD classifiers (1000 for dorothea). We
see in all cases that our theoretical analysis is well supported, the RP-
FLD ensemble outperforms traditional FLD on a range of choices of k
andM , and the rule of thumb choice k = ρ/2 is not far from the optimal
performance – on these data sets ρ = N−2. It is interesting to see that,
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Table II. Mean error rates ± 1 standard error, and CPU times estimated
from 100 independent splits (10 instances of the fixed split for dorothea) for
random projection ensembles with 100 (RP-Ens M=100) or 1000 (RP-Ens
M=1000) members, and competing methods (see text for details). For both
RP-ensembles and RS-ensembles k = ρ/2 was used. The symbols in the
t-tests column indicate if the error rates of a competing method is statisti-
cally significantly superior (+) or inferior (−) to that of RP-Ensembles in
a paired t-test with 95% confidence level. The symbol in the first position
is a comparison with RP-Ens with M=100 members and the second symbol
is a comparison with RP-Ens with M=1000 members.

Dataset ρ/2 Method Error t-tests CPU Time (sec)

colon 24 RP-Ens M=100 13.50 ± 0.88 0.18 ± 0.002

RP-Ens M=1000 13.08 ± 0.88 1.48 ± 0.008

FLD-full 15.50 ± 0.89 −− 10.01 ± 0.064

SVM 11.58 ± 0.89 ++ 0.54 ± 0.001

SVM L1 15.83 ± 1.01 −− 0.53 ± 0.002

RS-Ens M=100 12.83 ± 0.82 + 0.12 ± 0.025

RS-Ens M=1000 12.58 ± 0.81 0.88 ± 0.000

leukaemia 29 RP-Ens M=100 2.08 ± 0.40 0.35 ± 0.004

RP-Ens M=1000 1.67 ± 0.33 3.31 ± 0.029

FLD-full 2.17 ± 0.39 − 44.99 ± 0.261

SVM 1.67 ± 0.36 1.09 ± 0.004

SVM L1 6.08 ± 0.66 −− 1.07 ± 0.003

RS-Ens M=100 1.83 ± 0.35 0.18 ± 0.000

RS-Ens M=1000 1.83 ± 0.37 1.81 ± 0.001

leuk-large 29 RP-Ens M=100 2.25 ± 0.44 0.59 ± 0.003

RP-Ens M=1000 1.92 ± 0.41 6.30 ± 0.056

FLD-diag 13.33 ± 1.09 −− 0.48 ± 0.003

SVM 3.50 ± 0.46 −− 2.18 ± 0.012

SVM L1 2.83 ± 0.55 − 7.03 ± 0.075

RS-Ens M=100 3.33 ± 0.56 −− 0.44 ± 0.006

RS-Ens M=1000 2.33 ± 0.49 4.16 ± 0.044

prostate 44 RP-Ens M=100 7.42 ± 0.70 0.82 ± 0.005

RP-Ens M=1000 7.00 ± 0.70 8.15 ± 0.054

FLD-diag 38.33 ± 1.57 −− 0.35 ± 0.000

SVM 7.33 ± 0.72 2.91 ± 0.023

SVM L1 6.75 ± 0.73 2.85 ± 0.008

RS-Ens M=100 8.75 ± 0.71 −− 0.56 ± 0.009

RS-Ens M=1000 8.92 ± 0.73 −− 4.95 ± 0.026

duke 15 RP-Ens M=100 17.50 ± 1.28 0.33 ± 0.002

RP-Ens M=1000 15.67 ± 1.25 + 3.28 ± 0.023

FLD-diag 30.58 ± 1.57 −− 0.47 ± 0.000

SVM 13.50 ± 1.10 ++ 0.90 ± 0.001

SVM L1 17.42 ± 1.05 1.14 ± 0.004

RS-Ens M=100 19.25 ± 1.30 − 0.21 ± 0.000

RS-Ens M=1000 18.67 ± 1.32 − 2.12 ± 0.002

dorothea 399 RP-Ens M=100 8.66 ± 0.044 211.56 ± 1.944

RP-Ens M=1000 8.80 ± 0.038 2149.00 ± 24.910

Bernoulli NB 33.43 −− 4.00

FLD-diag 71.34 −− 72.98

SVM 86.86 −− 308.64

SVM L1 6.00 ++ 958.53

RS-Ens M=100 8.57 ± 0.000 122.33 ± 1.312

RS-Ens M=1000 8.63 ± 0.000 1233.33 ± 10.563
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Figure 1. Effect of k. Plots show test error rate versus k and error bars mark 1
standard error estimated from 100 runs (10 repeated runs on the same split for
dorothea). In these experiments we used Gaussian random matrices with i.i.dN (0, 1)
entries. In each case the projection dimension runs along the x-axis from 1 through
to ρ− 2.
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Figure 2. Effect of different random projection matrices and comparison with
majority vote. Left hand column shows results on the Colon dataset, right hand
column shows results on Leukaemia-large.
Row 1: RP Majority Vote using Gaussian random matrices with i.i.d N (0, 1) entries;
Row 2: RP Averaging using Gaussian random matrices with i.i.d N (0, 1) entries;
Row 3: RP Averaging using ±1 random matrices with i.i.d entries;
Row 4: RP Averaging using the sparse {−1, 0,+1} random matrices from [1].
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despite the statistically insignificant difference in performance of full-
vs-diagonal covariance models we found for the two lower-dimensional
data sets in the data space, for the three higher dimensional data sets
(where we used a diagonality constraint for computational tractability)
the gap in generalization performance of the data space FLD vs the
competing approaches is very large, whereas the gap in performance
between the RP-FLD ensembles and the competing approaches is small.
Empirically we see, as we might reasonably expect, that capturing the
feature covariances via our ensemble approach produces better classifi-
cation results than working in the data space with a diagonal covariance
model.

We ran further experiments on the colon and leukaemia-large data
sets to compare the performance of the fast random projections from [1]
to Gaussian random projection matrices, and to compare our decision
rule to majority vote. Quite interestingly, the picture is very similar and
we find no statistically significant difference in the empirical results in
comparison with the ensemble that we have presented and analyzed
in detail here. The results of these experiments are plotted in figure
2. The performance match between the different choices of random
matrix is unsurprising, but the agreement with majority vote is both
striking and rather unexpected - we do not yet have an explanation for
this behaviour, although it does not appear to arise from the unsigned
confidences of the individual ensemble members being concentrated
around a particular value.

7. Discussion and Future Work

We considered a randomly projected (RP) ensemble of FLD classifiers
and gave theory which, for a fixed training set, explicitly links this
ensemble classifier to its data space analogue. We have shown that the
RP ensemble implements an implicit regularization of the correspond-
ing FLD classifier in the data space. We demonstrated experimentally
that the ensemble can recover or exceed the performance of a carefully-
fitted ridge-regularized data space equivalent but with generally lower
computational cost. Our theory guarantees that, for most choices of
projection dimension k, the error of a large ensemble remains bounded
even when the number of training examples is far lower than the number
of data dimensions and we gained a good understanding of the effect of
our discrete regularization parameter k. In particular, we argued that
the regularization parameter k allows us to finesse the known issue
of poor eigenvector estimates in this setting. We also demonstrated
empirically that with an appropriate choice of k we can obtain good
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generalization performance even with few training examples, and a rule
of thumb choice k = ρ/2 appears to work well.
We showed that, for classification, the optimal choice of k depends on
the true data parameters (which are unknown) thereby partly answer-
ing – in the negative – the question in [37] concerning whether a simple
formula for the optimal k exists.
It would be interesting to extend this work to obtain similar guarantees
for ensembles of generic randomly-projected linear classifiers in convex
combination, and for an ensemble of random subspace FLDs: we are
working on ways to do this. Furthermore, it would be interesting to
derive a concentration inequality for matrices in the p.s.d ordering to
quantify with what probability a finite ensemble is far from its expec-
tation; this however appears to be far from straightforward – the rank
deficiency of Σ̂ is the main technical issue to tackle.
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Appendix

A. Proof of Lemma 4.4

We prove the statement of eq. (4.8) fully, and outline the proof of (4.9)
which is very similar. Let t > 0 be a positive real constant (to be
optimized later), then:

Pr
{

‖X‖2 > (1 + ǫ)
(

Tr (Σ) + ‖µ‖2
)}

= Pr
{

exp
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E
[

exp
(

t‖X‖2
)]

(A.1)

Where (A.1) follows by Markov’s inequality. Now, X ∼ N (µ,Σ) and

so ‖X‖2 =
∑d

i=1X
2
i has a non-central χ2 distribution, and therefore

E
[

exp
(

t‖X‖2
)]

is the moment generating function of a non-central χ2

distribution. Hence (e.g. [35] proposition 1.2.8) for all t ∈ (0, 1/2λmax(Σ))
we have (A.1) is equal to:
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(A.2)

Now taking t = 1−(1+ǫ)−
1
2

2λmax(Σ) ∈ (0, 1/2λmax(Σ)) and substituting this

value of t into (A.2) yields, after some algebra, (4.8):
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The second inequality (4.9) is proved similarly. We begin by noting:

Pr
{

‖X‖2 6 (1− ǫ)
(

Tr (Σ) + ‖µ‖2
)}

= Pr
{

exp
(

−t‖X‖2
)

> exp
(

−t (1− ǫ)
(

Tr (Σ) + ‖µ‖2
))}

6 exp
(

t(1− ǫ)
(

Tr (Σ) + ‖µ‖2
)

− t
(

Tr (Σ) + ‖µ‖2
)

/1 + 2tλmax(Σ)
)

and then complete the proof as before, substituting in the optimal

t = 1+(1−ǫ)−
1
2

2λmax(Σ) to give the bound.
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B. Details for the end of proof of Theorem 3.2

There are five terms to simultaneously bound with high probability,
namely the two By, A, and the two extreme eigenvalues involved in
the condition number bound. We use the standard approach of setting
each of the confidence probabilities no greater than δ/5 and solving for
ǫ (or a function of ǫ appearing in the bound) then back-substituting
and applying the union bound to derive a guarantee which holds with
probability 1− δ.
Firstly, for the extreme eigenvalues we have (twice):

exp
(

−ǫ23/2
)

6 δ/5

=⇒
√

2 log(5/δ) 6 ǫ3 (B.1)

For the upper bounds on the By we have:
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and solving for
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1 + ǫy we obtain:
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Finally, for the lower bound on A (which holds for both classes simul-
taneously) we solve for

√
1− ǫ2 to obtain:
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Plugging the left hand sides of the inequalities (B.1), (B.2) and (B.3)
into the bounds on κ,B0,B1 andA for ǫ3,

√
1 + ǫ0,

√
1 + ǫ1 and

√
1− ǫ2

respectively gives, after some algebra, the stated Theorem 3.2.
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