\qquad Class \qquad Date \qquad

Lesson Objectives

\boldsymbol{V} Solve quadratic equations by graphing
2 Solve quadratic equations using square roots

NAEP 2005 Strand: Algebra
Topic: Equations and Inequalities
Local Standards: \qquad

Key Concepts

Standard Form of a Quadratic Equation

A quadratic equation is an equation that can be written in the form \qquad where $a \neq 0$. This form is called the \qquad form of a quadratic equation.

Example

(1) Solving by Graphing Solve each equation by graphing the related function.
a. $2 x^{2}=0$
Graph $y=2 x^{2}$
b. $2 x^{2}+2=0$
Graph $y=2 x^{2}+2$

There is one solution,

$x=\square$.
There is \square solution.

Check Understanding

1. Solve each equation by graphing the related function.
a. $x^{2}-1=0$

\square
b. $2 x^{2}+4=0$

\square
c. $x^{2}-16=-16$

\square
\qquad Class \qquad Date \qquad

Examples

(2) Using Square Roots Solve $3 x^{2}-75=0$.

(3) Applying Quadratic Equations A museum is planning an exhibit that will contain a large globe. The surface area of the globe will be $315 \mathrm{ft}^{2}$. Find the radius of the sphere. Use the equation $S=4 \pi r^{2}$, where S is the surface area and r is the radius.

The radius of the sphere is about \square ft .

Check Understanding

2. Solve each equation.
a. $t^{2}-25=0$

b. $3 n^{2}+12=12$

c. $2 g^{2}+32=0$

3. A city is planning a circular fountain. The depth of the fountain will be 3 ft . The maximum volume will be $1800 \mathrm{ft}^{3}$. Find the radius of the fountain using the equation $V=\pi r^{2} h$, where V is the volume, r is the radius, and h is the depth.

