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Design of Engineering Experiments

Chapter 2 – Basic Statistical Concepts

� Simple comparative experiments

– The hypothesis testing framework

– The two-sample t-test

– Checking assumptions, validity
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Portland Cement Formulation (Table 2-1, pp. 22)

18.1516.5710

17.9616.599

17.9017.158

18.2216.967

17.7517.046

17.8616.525

18.0016.354

18.2517.213

17.6316.402

17.5016.851

Unmodified Mortar 

(Formulation 2)

Modified Mortar

(Formulation 1)

Observation 

(sample), j
1jy 2 jy



Montgomery_Chap_2 3

Graphical View of the Data
Dot Diagram, Fig. 2-1, pp. 22
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(means are indicated by lines)
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Box Plots, Fig. 2-3, pp. 24
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The Hypothesis Testing Framework

� Statistical hypothesis testing is a useful 

framework for many experimental 

situations

� Origins of the methodology date from the 

early 1900s

� We will use a procedure known as the two-

sample t-test
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The Hypothesis Testing Framework

� Sampling from a normal distribution

� Statistical hypotheses:
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Estimation of Parameters
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Summary Statistics (pg. 35)

Formulation 2
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How the Two-Sample t-Test Works:

1 2
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How the Two-Sample t-Test Works:
2 2 2 2
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How the Two-Sample t-Test Works:
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� Values of t0 that are near zero are consistent with the null 
hypothesis

� Values of  t0 that are very different from zero are consistent 
with the alternative hypothesis

� t0 is a “distance” measure-how far apart the averages are 
expressed in standard deviation units

� Notice the interpretation of t0 as a signal-to-noise ratio
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The Two-Sample (Pooled) t-Test
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The Two-Sample (Pooled) t-Test

� So far, we haven’t really 
done any “statistics”

� We need an objective
basis for deciding how 
large the test statistic t0  

really is

� In 1908, W. S. Gosset
derived the reference
distribution for t0 … 
called the t distribution

� Tables of the t
distribution - text, page 
640
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The Two-Sample (Pooled) t-Test

� A value of t0 between     
–2.101 and 2.101 is 
consistent with 
equality of means

� It is possible for the 
means to be equal and 
t0 to exceed either 
2.101 or –2.101, but it 
would be a “rare
event” … leads to the 
conclusion that the 
means are different 

� Could also use the   
P-value approach
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The Two-Sample (Pooled) t-Test

� The P-value is the risk of wrongly rejecting the null 
hypothesis of equal means (it measures rareness of the event)

� The P-value in our problem is P = 3.68E-8
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Two-Sample t-Test Results

Two-Sample T-Test and CI: Form 1, Form 2

Two-sample T for Form 1 vs Form 2

N      Mean StDev SE Mean

Form 1  10    16.764     0.316      0.10 =.316/3.16

Form 2  10    17.922     0.248     0.078 = 0.248/3.16

Difference = mu Form 1 - mu Form 2

Estimate for difference:  -1.158

95% CI for difference: (-1.425, -0.891)

T-Test of difference = 0 (vs not =): T-Value = -9.11  

P-Value = 0.000  DF = 18

Both use Pooled StDev = 0.284
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Checking Assumptions –

The Normal Probability Plot

Form 1 

Form 2 
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Importance of the t-Test
Just keep in mind this is for comparing two samples 

coming from “normal” distributions!!

� Provides an objective framework for simple 

comparative experiments

� Could be used to test all relevant hypotheses 

in a two-level factorial design, because all 

of these hypotheses involve the mean 

response at one “side” of the cube versus 

the mean response at the opposite “side” of 

the cube
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Confidence Intervals (See pg. 42)

� Hypothesis testing gives an objective statement 

concerning the difference in means, but it doesn’t 

specify “how different” they are

� General form of a confidence interval 

� The 100(1- )%  confidence interval on the 

difference in two means:
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