Design of Engineering Experiments Chapter 2 – Basic Statistical Concepts

- Simple **comparative** experiments
 - The hypothesis testing framework
 - The two-sample *t*-test
 - Checking assumptions, validity

Portland Cement Formulation (Table 2-1, pp. 22)

Observation (sample), <i>j</i>	Modified Mortar (Formulation 1) \mathcal{Y}_{lj}	Unmodified Mortar (Formulation 2) \mathcal{Y}_{2j}
1	16.85	17.50
2	16.40	17.63
3	17.21	18.25
4	16.35	18.00
5	16.52	17.86
6	17.04	17.75
7	16.96	18.22
8	17.15	17.90
9	16.59	17.96
10	16.57	18.15

Graphical View of the Data Dot Diagram, Fig. 2-1, pp. 22

Dotplots of Form 1 and Form 2

(means are indicated by lines)

Box Plots, Fig. 2-3, pp. 24

Boxplots of Form 1 and Form 2

(means are indicated by solid circles)

The Hypothesis Testing Framework

- **Statistical hypothesis testing** is a useful framework for many experimental situations
- Origins of the methodology date from the early 1900s
- We will use a procedure known as the **two**sample *t*-test

The Hypothesis Testing Framework

- Sampling from a **normal** distribution
- Statistical hypotheses: $H_0: \mu_1 = \mu_2$

$$H_1: \mu_1 \neq \mu_2$$

Montgomery_Chap_2

Estimation of Parameters

 $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ estimates the population mean μ

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$$
 estimates the variance σ^{2}

Summary Statistics (pg. 35)

Formulation 1

"New recipe"

Formulation 2

"Original recipe"

 $\overline{y}_1 = 16.76$ $\overline{y}_2 = 17.92$ $S_1^2 = 0.100$ $S_2^2 = 0.061$ $S_1 = 0.316$ $S_2 = 0.247$ $n_1 = 10$ $n_2 = 10$

How the Two-Sample *t*-Test Works:

Use the sample means to draw inferences about the population means $\overline{y}_1 - \overline{y}_2 = 16.76 - 17.92 = -1.16$

Difference in sample means

Standard deviation of the difference in sample means

 $\sigma_{\overline{y}}^2 = \frac{\sigma^2}{n}$

This suggests a statistic:

$$Z_0 = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

How the Two-Sample *t*-Test Works: Use S_1^2 and S_2^2 to estimate σ_1^2 and σ_2^2 The previous ratio becomes $\frac{\overline{y_1} - \overline{y_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$

However, we have the case where $\sigma_1^2 = \sigma_2^2 = \sigma^2$ Pool the individual sample variances:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Montgomery_Chap_2

How the Two-Sample *t*-Test Works:

The test statistic is

$$t_0 = \frac{\overline{y}_1 - \overline{y}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- Values of t_0 that are near zero are consistent with the null hypothesis
- Values of t_0 that are very different from zero are consistent with the alternative hypothesis
- t_0 is a "distance" measure-how far apart the averages are expressed in standard deviation units
- Notice the interpretation of t_0 as a signal-to-noise ratio

The Two-Sample (Pooled) t-Test

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = \frac{9(0.100) + 9(0.061)}{10 + 10 - 2} = 0.081$$
$$S_p = 0.284$$

$$t_0 = \frac{\overline{y}_1 - \overline{y}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{16.76 - 17.92}{0.284 \sqrt{\frac{1}{10} + \frac{1}{10}}} = -9.13$$

The two sample means are about 9 standard deviations apart Is this a "large" difference?

The Two-Sample (Pooled) t-Test

- So far, we haven't really done any "statistics"
- We need an **objective** basis for deciding how large the test statistic t_0 really is
- In 1908, W. S. Gosset derived the reference distribution for t₀... called the *t* distribution
- Tables of the *t* distribution - text, page 640

Figure 2-10 The *t* distribution with 18 degrees of freedom with the critical region $\pm t_{0.025,18} = \pm 2.101$.

The Two-Sample (Pooled) t-Test

- A value of t_0 between -2.101 and 2.101 is consistent with equality of means
- It is possible for the means to be equal and t₀ to exceed either
 2.101 or -2.101, but it would be a "rare event" ... leads to the conclusion that the means are different
- Could also use the *P*-value approach

Figure 2-10 The *t* distribution with 18 degrees of freedom with the critical region $\pm t_{0.025,18} = \pm 2.101$.

The Two-Sample (Pooled) t-Test

Figure 2-10 The *t* distribution with 18 degrees of freedom with the critical region $\pm t_{0.025,18} = \pm 2.101$.

- The *P*-value is the risk of wrongly rejecting the null hypothesis of equal means (it measures rareness of the event)
- The *P*-value in our problem is P = 3.68E-8

Two-Sample *t***-Test Results**

Checking Assumptions – The Normal Probability Plot

Montgomery_Chap_2

Importance of the *t*-Test

Just keep in mind this is for comparing two samples coming from "normal" distributions!!

- Provides an **objective** framework for simple comparative experiments
- Could be used to test all relevant hypotheses in a two-level factorial design, because all of these hypotheses involve the mean response at one "side" of the cube versus the mean response at the opposite "side" of the cube

Confidence Intervals (See pg. 42)

- Hypothesis testing gives an objective statement concerning the difference in means, but it doesn't specify <u>"how different"</u> they are
- General form of a confidence interval $L \le \theta \le U$ where $P(L \le \theta \le U) = 1 - \alpha$
- The 100(1-α)% confidence interval on the difference in two means:

$$\overline{y}_{1} - \overline{y}_{2} - t_{\alpha/2, n_{1}+n_{2}-2} S_{p} \sqrt{(1/n_{1}) + (1/n_{2})} \le \mu_{1} - \mu_{2} \le \overline{y}_{1} - \overline{y}_{2} + t_{\alpha/2, n_{1}+n_{2}-2} S_{p} \sqrt{(1/n_{1}) + (1/n_{2})}$$