

EUROPEAN SOUTHERN OBSERVATORY

Organisation Européenne pour des Recherches Astronomiques dans l'Hémisphère Austral Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

VLT PROGRAMME

VERY LARGE TELESCOPE

VLT Instrumentation Software

Acceptance Test Plan Template Document

Doc. No.: VLT-PLA-ESO-17240-2266

Issue: 6

Date: 16/02/2007

Name Prepared: A.Longinotti Date 16/02/2007

Signature

Signature

Signature

Name Approved: K.Wirenstrand

Name Released: M.Peron

VLT PROGRAMME * TELEPHONE: (089) 3 20 06-0 * FAX: (089) 3 20 06 514

Date

Date

CHANGE RECORD

Doc. Issue

Date

ISSUE	DATE	SECTION/PAGE AFFECTED	REASON/INITIATION DOCUMENTS/REMARKS	
1	17/08/2000	All	First issue	
2	28/03/2002	All	MAR2002	
3	31/03/2003	All	APR2003	
4	31/03/2004	1.2 3.9 4.2	Added Control Model tests. APR2004	
5	13/01/2005	1.2 3.9 3.10.6	Added tat tests	
		3.4.1 3.4.3 3.4.4	Examples changed	
		3.6.2 3.6.3 3.7.1		
		3.10.4 3.10.5	Added reference to document on DFS in the VCM	
		Chapter 4	Added TAT001 and VCM006	
			Updated according to new test scheme (VLTSW20040158)	
		Chapter 5	Removed unnecessary manual pages	
6	16/02/2007	3.4.4	ic0SelfTest replaced by inscSelfTestICS	
		3.10.4 3.10.5	updated links to TWiki pages	
		Chapter 6	new (VLTSW20060060)	

TABLE OF CONTENTS

Doc. Issue

Date

1 INTR	ODUCTION	5
1.1	PURPOSE	5
1.2	SCOPE	5
1.3	APPLICABLE DOCUMENTS	5
1.4	REFERENCE DOCUMENTS	6
1.5	ABBREVIATIONS AND ACRONYMS	6
1.6	GLOSSARY	7
1.7 1.7	STYLISTIC CONVENTIONS 7.1 Data Flow and Processor Model Diagrams	7 7
1.8	NAMING CONVENTIONS	7
1.9	PROBLEM REPORTING/CHANGE REQUEST	7
2 OVER	RVIEW	8
2.1	HARDWARE REQUIREMENTS	8
2.2	SOFTWARE REQUIREMENTS	8
3 TEST	DESCRIPTION	9
3.1 3.1 3.1 3.1	DOCUMENTATION .1 Instrument Software Acceptance Test Plan .2 Instrument Software User and Maintenance Manual (DOC001) .3 Instrument Software Acceptance Test Report	9 9 9 9
3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	STANDARDS2.1Programming Standards (STD001)2.2Standard Architecture (STD002)2.3DCS packages (STD003)2.4ICS package (STD004)2.5OS package (STD005)2.6Startup procedures (STD006)2.7Rules and package for templates (STD007)2.8Instrument Configuration files (STD008)2.9Users name (STD009)	9 9 9 9 9 9 9 9 10
3.3 3.3 3.3 3.3 3.3 3.3	 INSTALLATION Make sure that the Instrument Software is built from scratch (INS001) Usage of pkgin to build the Instrument Software (INS002) Access to cmm Archive (INS003) Installation failures check (INS004) Instrument package for P2PP (INS005) 	10 10 10 10 10 10
3.4 3.4 3.4 3.4 3.4	SUB-SYSTEMS TEST 4.1 DCS test (DCS001) 4.2 ICS special device LCU test (ICS001) 4.3 ICS special device test (ICS002) 4.4 ICS test (ICS003)	10 10 10 11 11
3.5 3.5 3.5	5.1 DCS stand-alone GUI (GUI001) 5.2 ICS stand-alone GUI (GUI002)	11 11 11

ESO

	3.5.3 3.5.4 3.5.5	OS Control GUI (GUI003) OS Status GUI (GUI004) GUIs layout (GUI005)	11 11 11
3.6	5 OS 3.6.1 3.6.2 3.6.3 3.6.4	Startup/Shutdown (OS001) Single exposure (OS002) Templates (OS003) Interface P2PP-BOB (OS004)	12 12 12 12 12
3.7	MS 3.7.1 3.7.2	Technical templates (MS001) Results format (MS002)	12 12 12
3.8	3.8.1 3.8.2 3.8.3	RMS Emergency cases (ALM001) Simulate alarms (ALM002) Configure alarm conditions (ALM003)	12 12 12 12
3.9	AUT 3.9.1	OMATIC REGRESSION TESTS Full cycle (TAT001)	13 13
3.1	0 VLT 3.10.1 3.10.2 3.10.3 3.10.4 3.10.5 3.10.6	CONTROL MODEL Make sure that the Instrument Software is built from scratch (VCM001) Build the Instrument Software for the VCM (VCM002) Templates (VCM003) Interface P2PP-BOB (VCM004) Interface OS-Archive (VCM005) Automatic Regression Tests (VCM006)	13 13 13 13 13 13 13 13
4 TE	CST EXI	CUTION	14
4.1	AT	THE AIV PREMISES	14
4.2	IN T	HE VLT CONTROL MODEL	18
5 RE	EFEREN	ICE	19
6 VE	ERIFICA	ATION MATRIX	20
6.1	Instr	ument specific requirements	20
6.2	Gene	eral requirements for Instrumentation Software	21

Doc. Issue

Date Page

1 INTRODUCTION

1.1 PURPOSE

Purpose of Preliminary Acceptance Europe (PAE) is to verify the readiness of an instrument, in terms of fulfilling requirements, before being shipped to Chile for commissioning.

According to the VLT Software Management Plan [AD 10], an Acceptance Test Plan (ATP) document has to be issued by the consortium in charge of the instrument and reviewed by ESO well before the foreseen PAE. Such a document must contain a list of tests, which have to successfully pass in order to certify that the instrument has completed the implementation phase and is ready for commissioning. As a result of PAE, an Acceptance Test Report (ATR) document has to be produced.

Doc.

Issue

Date

Page

The ATR document normally consists of the ATP added with the results of the PAE, including any relevant comment/remark. It has to be prepared by the consortium and agreed with ESO, before being issued.

The present document provides structure and contents of an ATP document and indicates which characteristics the software for an instrument, to be operated and maintained at Paranal, is expected to have, in terms of packages and standards used. In particular it aims to emphasize the importance of using common software to implement common functionality: it increases the maintainability of the final product.

This document is intended to be applicable to all contracts with consortia for. It should therefore be added to the list of applicable documents in the related Statement of Work.

1.2 SCOPE

The present document describes all tests foreseen for PAE, to verify the completeness of the instrument software before shipment to Chile. It covers the whole set of functionality as described in the User Requirements document. The Software PAE normally takes place at the location where the instrument has been assembled and integrated. The execution of a sub-set of the tests also in the VLT Control Model in Garching, e.g. to verify the interface with TCS or the Data Flow Software (Archive, Observation Handling Tool), is considered integral part of the PAE and is mandatory for all new instruments.

The availability of automatic regression test procedures is also considered mandatory for all new instruments and their successful execution is also part of the Software PAE run.

This document aims to provide instrumentation software responsible, from ESO and from consortia, with a template of Acceptance Test Plan (ATP) document. Instrument specific ATP documents should be based on this template. They must contain **at least** the tests described herein (whenever applicable), and possibly add instrument specific tests. **Paragraphs in italics should be removed.**

1.3 APPLICABLE DOCUMENTS

The following documents, of the exact issue shown, form a part of this document to the extent specified herein. In the event of conflict between the documents referenced herein and the contents of this document, the contents of this document shall be considered as a superseding requirement.

Reference	Document Number	Issue	Date	Title
[AD 01]	GEN-SPE-ESO-19400-0794	3.0	In preparation	DICB – Data Interface Control Document
[AD 02]	VLT-SPE-ESO-10000-0011	3	In preparation	VLT Software Requirements Specification
[AD 03]	VLT-PRO-ESO-10000-0228	2	In preparation	VLT Software Programming Standards
[AD 04]	VLT-PLA-ESO-10000-0441	1.0	01/05/1995	VLT Science Operation Plan
[AD 05]	VLT-MAN-ESO-17210-0667	1.2	08/10/2001	Guidelines for VLT applications.
[AD 06]	VLT-SPE-ESO-17212-0001	4	13/01/2005	INS Software Specification
[AD 07]	VLT-SPE-ESO-17240-0385	4	13/01/2005	INS Common Software Specification
[AD 08]	VLT-ICD-ESO-17240-19400	2.6	17/11/1997	ICD between VCS and Archive
[AD 09]	VLT-ICD-ESO-17240-19200	1.3	07/06/2000	ICD between VCS and OH

ESO Issue 6 Date 16/02/2007	Page 6 of 25
--------------------------------	--------------

[AD 10]	VLT-PLA-ESO-00000-0006	3	In preparation	VLT Software Management Plan
[AD11]	VLT-SPE-ESO-xxxx-xxxx	1	xx/xx/xxxx	XXXX Control Software User Requirements

1.4 REFERENCE DOCUMENTS

The following documents are referenced in this document.

Reference	Document Number	Issue	Date	Title
[RD 01]	VLT-MAN-ESO-17200-0888	1.0	17/08/1995	VLT Common Software Overview
[RD 02]	VLT-MAN-ESO-17200-0642	4	29/04/2004	VLT Common Software Installation Manual
[RD 03]	VLT-SPE-ESO-17100-3439	1	In preparation	Paranal Network/Computers Design Description
[RD 04]	VLT-MAN-SBI-17210-0001	3.7	05/10/2001	LCU Common Software User Manual
[RD 05]	VLT-MAN-ESO-17210-0600	1.7	02/10/1998	Motor Control sw User Manual API/ACI
[RD 06]	VLT-MAN-ESO-17210-0669	1.6	02/10/1998	Motor Engineering Interface User Manual
[RD 07]	VLT-MAN-ESO-17210-0619	2.4	31/03/2004	Central Control Software User Manual
[RD 08]	VLT-MAN-ESO-17210-0707	1.6	30/09/1999	On Line Database Loader User Manual
[RD 09]	VLT-MAN-ESO-17210-0771	1.8	06/10/2001	EVH User Manual
[RD 10]	VLT-MAN-ESO-17210-0770	1.8	30/09/2001	Extended CCS User Manual
[RD 11]	VLT-MAN-ESO-17210-0690	5	31/03/2002	Panel Editor User Manual
[RD 12]	VLT-MAN-ESO-17240-0853	3	26/03/2004	INS Common sw – oslx User Manual
[RD 13]	VLT-MAN-ESO-17240-0672	1.6	25/09/1998	CCD Detectors Control Software User Manual
[RD 14]	VLT-MAN-ESO-14100-1878	1.4	01/12/2003	IRACE-DCS User Manual
[RD 15]	VLT-MAN-ESO-17240-0934	5	31/03/2004	Base ICS User Manual
[RD 16]	VLT-MAN-ESO-17240-2265	4	05/04/2004	Base OS Stub User Manual
[RD 17]	VLT-MAN-ESO-17240-1913	4	31/03/2004	Installation Tool for VLT Sw packages
[RD 18]	VLT-MAN-ESO-17240-2153	4	31/03/2004	Startup Tool Stub User Manual
[RD 19]	VLT-MAN-ESO-17220-0737	3	28/03/2002	HOS – Sequencer User Manual
[RD 20]	VLT-MAN-ESO-17220-1999	4	19/04/2004	Broker for Observation Blocks User Manual
[RD 21]	VLT-MAN-ESO-13640-1388	3	31/03/2004	FIERA CCD Controller Software User Manual
[RD 22]	VLT-MAN-ESO-17240-2240	4	31/03/2004	Common Software for Templates User Manual
[RD 23]	VLT-MAN-ESO-17240-1973	5	13/01/2005	Template Instrument User Manual
[RD 24]	VLT-MAN-ESO-17240-2606	3	31/03/2004	Base ICS GUI User Manual
[RD 25]	VLT-MAN-ESO_17200-0908	1.4	15/02/2001	Tool for Automated Testing User Manual

1.5 ABBREVIATIONS AND ACRONYMS

This document employs several abbreviations and acronyms to refer concisely to an item, after it has been introduced. The following list is aimed to help the reader in recalling the extended meaning of each short expression:

- AIV Assembly Integration and Verification
- ATP Acceptance Test Plan
- ATR Acceptance Test Report
- CCS Central Control Software
- CPU Central Processing Unit
- DCSDetector Control SoftwareDFSData Flow System
- ESO European Southern Observatory
- FITS Flexible Image Transport Format
- GUI Graphical User Interface
- HW Hardware
- ICS Instrument Control Software
- INS Instrumentation Software Package
- I/O input/output
- ISF Instrument Summary File
- IWS Instrument Workstation

ESO Acceptance Test Plan Template Document	Doc. Issue Date Page	VLT-PLA-ESO-17240-2266 6 16/02/2007 7 of 25
---	-------------------------------	--

LAN	Local Area Network
LCC	LCU Common Software
LCU	Local Control Unit
MS	Maintenance Software
N/A	Not Applicable
OMT	Object Modeling Technique
00	Object Oriented
OOD	Object Oriented Design
OS	Observation Software
PAE	Preliminary Acceptance Europe
P2PP	Phase 2 Proposal Preparation
RAM	Random Access Memory
SW	Software
TAT	Tool for Automated Testing
TBC	To Be Clarified
TBD	To Be Defined
TCS	Telescope Control Software
TIM	Time Interface Module
TRS	Time Reference System
TSF	Template Signature File
UIF	(Portable) User Interface (Toolkit)
VCM	VLT Control Model
VLT	Very Large Telescope
VLTI	VLT Interferometer
VME	Versa Module Eurocard
WS	Workstation

1.6 GLOSSARY

No special definition is introduced in this manual

1.7 STYLISTIC CONVENTIONS

The following styles are used:

bold

in the text, for commands, filenames, pre/suffixes as they have to be typed.

italic

in the text, for parts that have to be substituted with the real content before typing.

teletype

for examples. <name>

in the examples, for parts that have to be substituted with the real content before typing.

bold and *italic* are also used to highlight words.

1.7.1 Data Flow and Processor Model Diagrams

Data Flow and processor Model Diagrams are based on De Marco/Yourdon notation for real-time systems [RD 20].

1.8 NAMING CONVENTIONS

This implementation follows the naming conventions as outlined in [AD 03].

1.9 PROBLEM REPORTING/CHANGE REQUEST

The form described in [RD 02] shall be used.

2 OVERVIEW

The present document is structured as follows:

- Chapter 3 gives a detailed description of the tests to be performed.
- Chapter 4 describes the exact sequence of actions to be executed during PAE.
- Chapter 5 contains the manual pages of the test scripts used to run the tests.

2.1 HARDWARE REQUIREMENTS

The list below refers to the Template Instrument XXXX. It must be modified to reflect the actual requirements of each specific instrument.

Doc.

Issue

Date

Page

In order to perform the whole set of tests described in this document, the following computers and hardware components must be available:

- One Instrument Workstation
- Two LCUs for ICS
- One LCU for the TCCD
- One Sparc LCU for IRACE
- One Sparc LCU for FIERA

2.2 SOFTWARE REQUIREMENTS

In order to perform the whole set of tests described in this document, the following software components must be available:

- UNIX Operating System (see [**RD 02**] for the types and versions supported).
- VLT Common Software MAR2001or higher, installed according to [RD 02].
- Access to the *cmm* Archive.

3 TEST DESCRIPTION

3.1 DOCUMENTATION

This section describes the documents produced for PAE.

3.1.1 Instrument Software Acceptance Test Plan

It is prepared and reviewed before PAE.

It consists of the present document.

3.1.2 Instrument Software User and Maintenance Manual (DOC001)

It is based on [RD 23] and includes:

1. One chapter dedicated to an overview of the architecture of the whole Instrumentation sw (LAN, computers, processes, environments, and database).

Doc.

Issue

Date

Page

- 2. One chapter dedicated to the installation of the whole Instrumentation Software.
- 3. One chapter dedicated to observation scenarios, including a layout of the GUIs.
- 4. One chapter dedicated to Templates.

3.1.3 Instrument Software Acceptance Test Report

It is produced after PAE.

It is derived from the present document, in particular chapter 4, by adding the results and comments from PAE.

3.2 STANDARDS

The following aspects of the Instrumentation Software will be verified through code inspection.

3.2.1 Programming Standards (STD001)

Compliance with Software Programming Standards ([AD 03]) is verified through code inspection on files (randomly around 10% of the total source code) of all main categories (C++, C, tcl).

Since this verification takes time, it is recommended to do it separately before the actual PAE takes place.

3.2.2 Standard Architecture (STD002)

The LAN and hardware platforms (WS, LCUs), including names, are conform to what specified in [RD 03]. For VLTI, VST, La Silla instruments an equivalent reference document should exist.

3.2.3 DCS packages (STD003)

DCS uses the standard DCS package FIERA ([RD 13]) or CCD ([RD 14]) or IRACE ([RD 21]). Exceptions must be justified and agreed upon at FDR latest.

3.2.4 ICS package (STD004)

ICS uses the base ICS package *icb* **[RD 15]** and *icbpan* **[RD 24]**. *The specific code developed for the instrument ICS must be justified and documented.*

3.2.5 OS package (STD005)

OS uses the common OS package *BOSS*, **[RD 16]**. *The specific code developed for the instrument OS must be justified and documented.*

3.2.6 Startup procedures (STD006)

Startup/Shutdown procedures are based on the common tool *stoo*, **[RD 18]**. *If not based on stoo, at least a short description of the startup procedure (processes started, initialized attributes, commands sent) must be included in the documentation (see 3.1.2).*

3.2.7 Rules and package for templates (STD007)

Templates use the common library *tpl* and follow the rules defined in [RD 22].

3.2.8 Instrument Configuration files (STD008)

All files dealing with the instrument configuration for Paranal belong to one single dedicated module (*xxmcfg*). The User Manual describes the procedures to be followed to keep under sw configuration control any change to the Instrument configuration parameters.

3.2.9 Users name (STD009)

ESO

The target Instrument WS defines two users:

- 1. *xxxxmgr*, responsible for the installation
- 2. xxxx, who runs the instrument sw.

For both users, INTROOT and INS_ROOT must be defined according to the standard adopted at Paranal:

Doc.

Issue

Date

Page

- INTROOT set to /vlt/XXXX/INTROOT
- INS_ROOT set to /data/XXXX/INS_ROOT

3.3 INSTALLATION

All tests described in this section must be executed at the AIV premises as user xxxxmgr

3.3.1 Make sure that the Instrument Software is built from scratch (INS001)

It is possible to rebuild from scratch the complete instrument software and related environments. Before running the installation procedure, the old contents of \$INTROOT, \$INS_ROOT, \$VLTDATA/ENVIRONMENTS, \$VLTDATA/config are (re)moved, to verify that installation can be done from scratch.

3.3.2 Usage of pkgin to build the Instrument Software (INS002)

The Instrument Software installation is based on pkgin ([RD 17]).

In any case, there must be an automatic installation procedure. To minimize the downtime of the target host during software upgrades at Paranal, verify that the installation procedure is or can be split into two main phases (as pkgin does):

- 1. Creation of the INTROOT, placing there all files needed by the instrument software, creation of CCS and LCU environments. It should be possible to execute this phase off-line, not necessarily on the target WS. It should be possible to copy the result (INTROOT) to the target host.
- 2. The rest of the installation (environment initialization and startup, scan links creation and scan system startup) is always executed at the target host. If possible, this phase should not need access to the sources, only to the INTROOT produced by the first phase.

It must be possible to execute each of these steps with one single UNIX shell command.

3.3.3 Access to cmm Archive (INS003)

The complete code is accessible and can be retrieved from the *cmm* Archive. This can be verified by checking the contents of the file *xxins/config/xxinsINSTALL.cfg*.

In order to be able to repeat the tests at any time with exactly the same configuration, all module versions are explicitly registered in this file.

3.3.4 Installation failures check (INS004)

The installation procedure, being based on *pkgin*, allows easy tracing of failures and possible reasons.

3.3.5 Instrument package for P2PP (INS005)

As result of the build and installation procedure, the Instrument Packages XXXX.zip (observations) and XXXX_tec.zip (maintenance), as defined by P2PP, are produced and placed in \$INTROOT/config.

3.4 SUB-SYSTEMS TEST

All tests described in this section must be executed at the AIV premises as user xxxxmgr

3.4.1 DCS test (DCS001)

Run dedicated test procedure(s), which exercises for every individual detector system (DCS):

- the proper startup/shutdown
- state change
- execution of the main operations when online:
 - one single exposure, for all implemented read-out modes, or a selection of them, if too many.
 - verify if FITS files are properly saved in \$INS_ROOT/SYSTEM/DETDATA.
- An example is provided in xxmmpe/test/xxmmpeTestDCS.

It must be possible to run the same test under tat (see [RD 25]).

3.4.2 ICS special device LCU test (ICS001)

Run for each ICS special device from the vxWorks shell a low-level test, which exercises the device functionality by accessing directly the associated driver.

Doc.

Issue

Date

Page

Examples are available in ic0sen/test.

3.4.3 ICS special device test (ICS002)

Run for each ICS special device a self-test procedure, which exercises:

• state change

ES

- SETUP all functions in all possible named positions (or samples over a continuous range),
- STATUS -header

An example is available in xxmmpe/test/xxmmpeTestICS.

It must be possible to run the same test under tat (see [RD 25]).

3.4.4 ICS test (ICS003)

Run the ICS self test procedure, based on *inscSelfTestICS*. It exercises:

- the proper startup/shutdown
- state change
- SETUP all functions in all possible named positions (or samples over a continuous range),
- STATUS -header -dumpFits.

An example is available in xxmmpe/test/xxmmpeTestICS.

It must be possible to run the same test under tat (see [RD 25]).

3.5 GRAPHICAL USER INTERFACE

All tests described in this section must be executed at the AIV premises as user xxxx

3.5.1 DCS stand-alone GUI (GUI001)

The DCS stand-alone GUI allows performing all main operations foreseen:

- startup/shutdown
- go online
- set simulation level
- define a setup
- execute an exposure.

3.5.2 ICS stand-alone GUI (GUI002)

The ICS stand-alone GUI is based on icbpan and allows performing all main operations foreseen:

- startup/shutdown
- go online
- set global simulation level
- set single device simulation level
- define a setup
- execute a setup

3.5.3 OS Control GUI (GUI003)

The OS Control GUI has the following characteristics:

It is complementary (not alternative) to BOB, in particular

- there is no START button
- there are PAUSE, CONTINUE, CHANGE exp. time, ABORT one single exposure, whenever applicable.
- It shows a summary of the current instrument status
- It shows the current instrument mode
- It shows the main ongoing activities (e.g. status of running exposures).

3.5.4 OS Status GUI (GUI004)

The OS Status GUI shows the detailed status of the whole instrument and its devices.

3.5.5 GUIs layout (GUI005)

GUIs used during observations fit into the scheme and space adopted by Paranal.

- In particular, they fit into two screens:
- 1. Main screen for BOB (left) and OS control (right).
- 2. Second screen for image display with RTD.

3.6 OS

All tests described in this section must be executed at the AIV premises as user xxxxmgr

3.6.1 Startup/Shutdown (OS001)

Run the startup/shutdown procedure, based on the *stoo* package, for the whole instrument. Exercise also the state change commands (STANDBY, ONLINE, OFF).

3.6.2 Single exposure (OS002)

Execute, through a dedicated test script, one single exposure for each observing mode, involving all sub-systems (DCSs, ICS), and verify the result (FITS file) and its contents. Verify also that the generated FITS file is placed by *volac* in the right directory for archiving: \$INS_ROOT/SYSTEM/ARCDATA.

An example is available in xxmmpe/test/xxmmpeTestOS.

It must be possible to run the same test under tat (see [RD 25]).

3.6.3 Templates (OS003)

Execute through a dedicated test OB (file *.obd*), in sequence the complete set of templates implemented. *An example is available in xxmmpe/test/xxmmpeTestTPL. It must be possible to run the same test under tat (see* **[RD 25]***).*

Purpose is not to verify the scientific result, but just the technical result.

In particular, the run time of such an OB should not be more than one hour, possibly < 15 minutes. Templates, which require the availability of sub-systems (typically acquisition templates, which require the telescope) should preferably implement a simulation of the missing sub-systems. Alternatively, they should not be part of the complete test OB and be included instead in a separate dedicated test OB, to be run only when the sub-systems are available.

3.6.4 Interface P2PP-BOB (OS004)

Verify that the P2PP and the Instrument Package are properly installed on the Observation Handling Workstation. Define an OB with the P2PP tool and fetch it from BOB. Execute it from BOB. *For test purposes P2PP can be installed and started on the Instrument Workstation (see manual page of inscP2PPInstall).*

3.7 MS

All tests described in this section must be executed at the AIV premises as user xxxxmgr

3.7.1 Technical templates (MS001)

All MS procedures are implemented in form of technical templates. Exceptions should be justified and agreed upon. An example is available in xxmmpe/test/xxmmpeTestMS. It must be possible to run the same test under tat (see [RD 25]).

3.7.2 Results format (MS002)

The results produced by MS procedures are archived either in form of an ASCII file, with the same format supported by the CCS sampling tool (for those results obtained through this tool or equivalent), or as part of the operational logs file (short-FITS format).

3.8 ALARMS

All tests described in this section must be executed at the AIV premises as user xxxx

3.8.1 Emergency cases (ALM001)

The main emergency conditions that may affect the instrument are identified and documented.

3.8.2 Simulate alarms (ALM002)

Alarms corresponding to emergency conditions are implemented in the software.

If possible, check that these alarms work. If it is impossible to test the real cases, HW shall implement simulation conditions. The SW simulation shall be done if there is really no other alternative. Special care will be taken for Emergency Stops, if any.

3.8.3 Configure alarm conditions (ALM003)

Alarm thresholds (if applicable, e.g. LN2 tank level, temperature threshold) can be set through a GUI.

3.9 AUTOMATIC REGRESSION TESTS

All tests described in this section must be executed at the AIV premises as user xxxxmgr

3.9.1 Full cycle (TAT001)

It must be possible to verify with an automatic procedure, i.e. with no user interactions, that the complete Instrument Software can be rebuilt from scratch, the environments can be created and started and all sub-systems tests are performed successfully. This procedure must be based on the VLT standard Tool for Automatic Tests (*tat*, see [**RD 25**]). *An example is available in xxmmpe/test/TestList.lite*

Doc.

Issue

Date

Page

3.10 VLT CONTROL MODEL

All tests described in this section must be executed on the VLT Control Model (VCM) in Garching as user xxxxmgr.

3.10.1 Make sure that the Instrument Software is built from scratch (VCM001)

See INS001.

3.10.2 Build the Instrument Software for the VCM (VCM002)

Because of the different hardware available in the VCM, the installation module to be used in *xxmgar*. Files in this module contains all the definitions characterizing the Garching configuration.

3.10.3 Templates (VCM003)

Execute through a dedicated test OB (file .obd), in sequence the complete set of templates implemented.

3.10.4 Interface P2PP-BOB (VCM004)

Verify that P2PP is running on the VCM OH Workstation and OBs can be transferred to BOB (see instructions under <u>http://websqa.hq.eso.org/sdd/bin/view/VLTSW/IWSDfsSetup</u>).

3.10.5 Interface OS-Archive (VCM005)

Verify that all FITS files generated when running an OB are transferred to the online Archive WS (see instructions under <u>http://websqa.hq.eso.org/sdd/bin/view/VLTSW/IWSDfsSetup</u>).

3.10.6 Automatic Regression Tests (VCM006)

Execute the automatic regression test procedure for the VCM configuration. *An example is available in xxmgar/test/TestList.lite*

TEST EXECUTION 4

ESO

This chapter describes, in tabular form, the sequence of actions/commands performed during the PAE to run the complete set of tests/verifications.

The last column in the table is reserved for notes and remarks to be added during PAE and included in the ATR document.

The names of commands and scripts refer to the Template Instrument XXXX. They have to be adapted to each specific instrument.

It is assumed that the installation module for the location where AIV takes place is named xxmmpe. It must be changed according to the actual AIV location.

AT THE AIV PREMISES 4.1

Test ID	Action/Command	Expected results	Notes/comments
DOC001	Check contents of Software User and Maintenance Manual	Document structure and contents similar to [RD 23]	
STD001	Inspect around 10% of the code	Compliance with [AD 03]	
STD002	Check contents of Software User and Maintenance Manual	Compliance with [RD 03] or equivalent	
STD003	Code and documentation inspection	Standard DCS packages are used. Exceptions are explained, justified and agreed by ESO.	
STD004	Code and documentation inspection	Standard ICS package is used. Exceptions are explained, justified and agreed by ESO.	
STD005	Code and documentation inspection	Standard OS package is used. Exceptions are explained, justified and agreed by ESO.	
STD006	Code and documentation inspection	Standard startup package is used. Exceptions are explained, justified and agreed by ESO.	
STD007	Code and documentation inspection	Standard templates package is used. Exceptions are explained, justified and agreed by ESO. Compliant with rules described in [RD 22]	

ESO

Date Page

STD008	Code and documentation inspection	All configuration files are in module <i>xxmcfg</i> . Manual describes clearly procedures to update the instrument configuration.	
STD009	Login on the Instrument WS as user xxxxmgr and xxxx	It is possible to login as xxxxmgr and xxxx. INTROOT and INS_ROOT set as in section 3.2.9	
INS001	Run as user xxxxmg: mv \$HOME/XXXXSource \$HOME/XXXXSource.old mkdir \$HOME/XXXXSource cd \$HOME/XXXXSource cmmCopy xxmmpe cd xxmmpe/test; make export TARGET=INTEGRATION /bin/xxmmpeTestClean	\$INTROOT, \$INS_ROOT \$VLTDATA/ENVIRONME NTS are empty. \$VLTDATA/config/lxx* files do not exist. Same check on DCS SLCUs, if any.	
INS002	Run as user xxxxmgr: cd \$HOME/XXXXSource export TARGET=INTEGRATION pkginBuild xxmmpe	No errors from <i>pkginBuild</i> . INTROOT and INS_ROOT contain all files needed to run the instrument software.	
INS003	Check contents of xxmmpe/config/xxmmpeINSTALL.cfg	Only <i>cmm</i> modules are used to build the software from scratch. For each module, the version is specified.	
INS004	Check contents of INSTALL/pkginBuild.err	File does not contain errors.	
INS005	Check contents of \$INTROOT/config	The following files exists: XXXX.zip XXXX_tec.zip	
DCS001	Run as user xxxxmg: cd \$HOME/XXXXSource/xxmmpe/test /bin/xxmmpeTestDCS	The script terminates without errors.	
ICS001	Login on the LCU <i>lxxics2</i> : rlogin lxxics2 From the vxWorks shell run: -> lcubootAutoLoadNoAbort 1,"xxidev",0 -> xxidevTestVx "/iser0"	The program executes without errors all what specified in 0	
ICS002 ICS003	Run as user xxxxmg: cd \$HOME/XXXXSource/xxmmpe/test /bin/xxmmpeTestICS	The program executes without errors all what specified in 3.4.3 and 3.4.4	

Doc. Issue Date

GUI001	Run as user xxxx: xxinsStart –panel TCCD xxinsStart –panel FIERA xxinsStart –panel IRACE xxinsStart –panel TCCD_RTD xxinsStart –panel FIERA_RTD xxinsStart –panel IRACE_RTD	It is possible to execute all operations described in 0 on each of the DCS panels	
GUI002	Run as user xxxx: xxinsStart –panel ICS	It is possible to execute all operations described in 3.5.2	
GUI003	Run as user xxxx: xxinsStart –panel OS_CONTROL	It is possible to execute all operations described in 3.5.3	
GUI004	Run as user xxxx: xxinsStart –panel OS_STATUS	It is possible to execute all operations described in 3.5.4	
GUI005	Run as user xxxx: xxinsStartup Wait that the startup configuration panel pops-up Push the button START	The default panels fits into two screen and the layout is the same as described in 3.5.5	
OS001 OS002	Run as user xxxxmgr: cd \$HOME/XXXXSource/xxmmpe/test /bin/xxmmpeTestOS	The script executes without errors all what specified in 3.6.2 Verify that the results are stored in FITS file(s) and check contents.	
OS003	Load from BOB panel the file XXXX_gen_tec_SelfTest.obd Run from BOB panel that OB. Verify that this OB contains all observation templates.	The OB terminates successfully	
OS004	Start p2pp as user <i>xxxxmgr</i> (see 3.6.4) Build an OB, which produces at least one FITS file Fetch the OB from the BOB panel and start it.	The OB can be defined with the P2PP GUI and executed without errors from BOB.	
MS001	Load from BOB panel the file XXXX_gen_tec_MSTest.obd Run from BOB panel that OB. Verify that this OB contains all maintenance templates.	The OB terminates successfully	
MS002	Check results of the execution of XXXX_gen_tec_MSTest.obd	The format is the same as specified in 3.7.2	
ALM001	Check contents of Software User and Maintenance Manual	Emergency cases are identified and documented	

ESO Acceptance Test Plan Template Document	Doc. Issue Date Page	VLT-PLA-ESO-17240-2266 6 16/02/2007 17 of 25	
---	-------------------------------	---	--

ALM002	Run as user xxxxmgr: cd \$HOME/XXXXSource/xxmmpe/test /bin/xxmmpeTestAlarms	All foreseen software alarms are one by one triggered. Verify that alarms simulated by HW trigger software alarms	
ALM003	Run as user xxxx: xxinsStart –panel ALARM	It is possible to configure through a GUI alarm conditions	
TAT001	Run as user xxxxmgr: cd \$HOME/XXXXSource/xxmmpe/test export TARGET=INTEGRATION tat	PASSED	

Doc.

Issue

Date

Page

4.2 IN THE VLT CONTROL MODEL

VCM001	Run as user xxxmgr: mkdir –p \$HOME/XXXXSource cd \$HOME/XXXXSource rm –rf xxmgar cmmCopy xxmgar cd xxins/test; make export TARGET=CM_FULL /bin/xxmgarTestClean	\$INTROOT, \$INS_ROOT \$VLTDATA/ENVIRONMENTS are empty. \$VLTDATA/config/lxx* files do not exist. Same check on DCS SLCUs, if any.	
VCM002	Run as user xxxmgr: cd \$HOME/XXXXSource export TARGET=CM_FULL pkginBuild xxmgar	No errors from <i>pkginBuild</i> . INTROOT and INS_ROOT contain all files needed to run the instrument software.	
VCM003	Make sure that TCS is online Start the Instrument Software. Run: xxinsStart Load from BOB panel the file XXXX_gen_tec_SelfTest.obd Run from BOB panel that OB. Verify that this OB contains all observation templates.	The OB terminates successfully	
VCM004	Start <i>p2pp</i> on the OH WS (see 3.10.4). Build an OB, which produces at least one FITS file Fetch the OB from the BOB panel and start it.	The OB can be defined with the P2PP GUI and executed without errors from BOB.	
VCM005	Make sure that the on-line archive is active (see 3.10.5) On the on-line archive WS verify that the FITS files produced with the last OB executed have been transferred.	The FITS files are on the on-line archive WS disk.	
VCM006	Run: cd \$HOME/XXXXSource/xxmgar/test export TARGET=CM_FULL; tat export TARGET=CM_WS; tat	PASSED PASSED	

5 REFERENCE

ESO

This section contains the manual pages of the test scripts/procedures implemented. Only manual pages providing additional information needed to properly execute the tests have to be presented here.

Doc.

Issue

Date Page

6 VERIFICATION MATRIX

ESO

6.1 Instrument specific requirements

The following table contains the links between the instrument specific requirements, defined in [AD11], and the corresponding test.

Doc.

Issue

Date Page

Req.	TEST	DESCRIPTION
REQ01	ICS003	List of devices and assemblies
REQ02	ICS003	Lamps in stand-by state
REQ03	ICS003	Derotator modes
REQ04	ICS003	Measures to overcome mechanical backlash
REQ05	ICS003	Gratings setup parameters
REQ06	DOC001	Sensors sampling period
REQ07	DCS001	UV detector size
REQ08	DCS001	IR detector size
REQ09	DOC001	Cryogenic devices kept to the necessary minimum
REQ10	DOC001	List of observing modes
REQ11	OS002	Automatic settings in UV spectroscopy
REQ12	OS002	Automatic settings in IR spectroscopy
REQ13	OS002	Automatic settings in dichroic spectroscopy
REQ14	OS002	Automatic settings in IR imaging
REQ15	OS001	Description of state OFF
REQ16	OS001	Description of state LOADED
REQ17	OS001	Description of state STANDBY
REQ18	OS001	Description of state ONLINE
REQ19	STD008	Save and retrieve Instrument Configuration
REQ20	STD008	User acknowledgement before changing Instrument Configuration
REQ21	STD008	Protection of Instrument Configuration files
REQ22	VCM006	Device hardware simulation
REQ23	VCM006	Support full hardware simulation
REQ24	DCS001	Data acquisition maximum speed
REQ25	DCS001	Maximum Software overhead for data acquisition
REQ26	GUI001	Display all images
REQ27	OS002	Maximum delay between acquisition and display
REQ28	GUI001	Mouse driven operations on image display
REQ29	OS002	Image files in FITS format
REQ30	OS002	FITS header conform to ESO standards
REQ31	OS002	Sensors information in the FITS header
REQ32	DOC001	Typical disk storage requirement for one night
REQ33	DOC001	Maximum disk storage requirement for one night
REQ34	OS002	Archive all image FITS files
	OS003	
DECO	MS001	
REQ35	OS003	Archive in background
REQ36	OS003	On-line data processing on the IWS
DE027	MS001	
REQ3/	ICS003	Information to be logged
	05002	
DE030	GU1002	Information displayed in the OS control CUU
REQ30	GUI003	Information displayed in the OS status GUI
REQ39	GU1004	User Station screen 1 contents
REQ40	GUI005	User Station screen 2 contents
REQ41	05004	P2PP on dedicated screen
REQ42	N/A	Off line data reduction on dedicated WS and screen
TLV1J	11/17	

Req.	TEST	DESCRIPTION
REQ44	OS003	Functionality required from TCS
REQ45	ALM001	Hardware interlocks
-	ALM002	
REQ46	OS003	Science operations according to the Science Operations Plan
REQ47	OS003	Parameters during science operations in high level units
REQ48	OS002	Check for parameters value validity
REQ49	OS003	Parallel setup of devices
REQ50	OS003	Lamps with warm-up time switched on at the first setup
REQ51	OS003	Continuous derotator motion during integrations
REQ52	MS001	Parameters during maintenance operations in high level or engineering units
REQ53	MS001	Maintenance operations supported by Templates
REQ54	OS003	List of Templates
	MS001	
REQ55	OS002	Maximum time for bias exposure
REQ56	all	List of scripts/procedures for the test Software
REQ57	ALM002	Software alarms warn for approaching hardware interlock conditions
	ALM003	
REQ58	ALM002	Warnings shall be logged
REQ59	ALM002	Warnings treated as low priority alarms
REQ60	ALM002	Alarms displayed with standard tool
REQ61	GUI005	Alarms GUI permanently displayed in the User Station
REQ62	ALM001	List of Alarms
REQ63	ALM002	Alarms shall be logged
REQ64	ALM002	Sounds associated to alarms
	ALM003	
REQ65	ALM002	Alarms monitoring also in STANDBY
REQ66	ICS003	Initialization maximum time
REQ67	ICS003	Setup maximum time

Doc.

Issue

Date Page

6.2 General requirements for Instrumentation Software

The following table section contains the links between the general requirements for instrumentation Sw, defined in [AD 06], and the corresponding test.

Req.	TEST	DESCRIPTION
INS01	DOC001	Define Instrument ID and prefix in agreement with ESO
INS02	DOC001	Time critical synchronization via Time Reference System
	ICS001	
INS03	STD002	Naming conventions for Instrument LAN nodes
INS04	INS003	Instrument Software divided into the standard INS Modules
INS05	INS002	Facilities to build, install, startup and shutdown must be available
	STD006	
INS06	OS003	On-line data processing done within templates, if no real-time requirements
INS07	OS003	ESO approval required for on-line data processing
INS08	OS003	ESO approval required for the choice of on-line data processing tool
INS09	GUI001	All GUIs based on the VLT panel editor
	GUI002	
	GUI003	
	GUI004	
	GUI005	
INS10	all	Test Software part of the mandatory deliverables. Standard minimum set
		applicable
INS11	INS001	Use Template Instrument to build a new instrument from scratch
	INS002	
INS12	INS003	Use <i>cmm</i> for Software configuration control management (Archive)
INS13	INS003	Follow <i>cmm</i> modules naming conventions

Date

Req.	TEST	DESCRIPTION
INS14	STD001	VLT programming standards applicable to Instrumentation Software
INS15	STD006	Instrument configuration under Software configuration control
INS16	STD006	Instrument configuration files in one single <i>cmm</i> module belonging to MS
INS17	STD002	One CCS environment for each LAN node
INS18	STD002	Use CCS-lite
INS19	STD002	CCS environment name same as LAN node name
INS20	STD009	Two users for each instrument
INS21	STD003	Use CCD Software for Technical CCDs
INS22	STD003	Use IRACE Software for Infra-red scientific cameras
INS23	STD003	Use FIERA Software for optical scientific cameras
INS24	STD003	Use <i>dxf</i> for data transfer between nodes
INS25	STD003	Use <i>rtd</i> for Real-Time display
INS26	STD004	Use <i>icb</i> for ICS processes and <i>icbnan</i> for ICS GUIs
INS27	STD001	Use bass for OS processes
INS28	STD007	Use <i>tnl</i> for templates
INS29	STD003	Use osly for EITS keywords handling
11(02)	STD004	
	STD005	
INS30	INS002	Use <i>pkgin</i> for build and installation
	INS004	
INS31	STD004	Use <i>ctoo</i> for Instrument configuration files handling
	STD005	
	STD008	
INS32	STD006	Use stoo for startup and shutdown
	OS001	
INS33	ICS003	ICS controls all devices, except detectors
INS34	STD003	ICS, DCS and OS implement standard states
	STD004	
	STD005	
INS35	STD003	ICS, DCS and OS implement standard commands
	STD004	
D IGA (STD005	
INS36	STD008	ICS, DCS and OS configuration parameters values shall not be hard-coded
IN837	SID003	ICS and DCS LCU status stored in the database
	STD004	
INIC20	DCS002	ICC DCC and OC non-materia values shall not be showned with a new common d
118338	DCS001	requests for it
	05002	requests for it
INS30	DCS002	ICS DCS and OS set and actual values stored in separate database attributes
111035	ICS003	TCS, DCS and OS set and actual values stored in separate database attributes
	OS002	
INS40	ICS002	Status of ICS on-going and completed actions shall be accessible
INS41	DCS001	ICS_DCS and OS Set values shall be checked for validity
111011	ICS003	105, Deb und 05 bet vuldes shun be checked for vuldity
	OS002	
INS42	DCS001	ICS. DCS and OS keywords shall be syntactically checked against dictionary
	ICS003	
	OS002	
INS43	STD003	Use CCS scan system to transfer ICS and DCS parameters values from LCU to
	STD004	IWS database
INS44	DCS001	ICS and DCS part of FITS header shall contain full status information and some
	ICS003	statistics
INS45	VCM003	ICS and DCS part of FITS header shall be produced also in simulation

Date

Req.	TEST	DESCRIPTION
INS46	OS003	ICS, DCS and OS keywords in the FITS header should be syntactically checked
		against dictionary and comply with the rules defined in the Data Interface Control
		Document.
INS47	GUI001	ICS and DCS stand-alone GUI must be available
	GUI002	
INS48	DCS001	ICS and DCS complete logging: commands, errors, LCU boot, sensors values,
	ICS003	movements
INS49	VCM006	ICS and DCS simulation at WS level
INS50	VCM003	ICS devices simulation at LCU level
INS51	GUI001	ICS and DCS simulation shall not be hidden to the user
DIGCO	GU1002	
INS52	VCM003	ICS and DCS simulation shall be indicated in the FITS header
INS53	DOC001	Implementation of ICS special devices must be approved by ESU
INS54	INS003	ICS cmm modules follow the naming conventions
INSSS	DCS001	Use dline of EUTS has der size hattagen DCS and OS
IN530 IN657	US002	DCS DEE simulation at I CI loval
INS57 INIS59		DCS by simulation at DCU level
INS50	N/A VCM006	DCS now simulation at DFE level
INS59 INS60	\$TD003	DCS must support highest possible duty cycle
INS61	STD003	DCS DUMP command for image re-transmission
INS62	STD003	Save readout data also in case of failure
INS63	DCS001	DCS data saved in FITS format uncompressed
INS64	DCS001	DCS data saved in hinary format
INS65	0\$002	DCS data saved on dedicated disk not concurrently accessed by other applications
INS66	STD003	DCS must check for disk space availability before starting an exposure
INS67	DCS001	Windowed and binned readout supported
INS68	GUI001	DCS data optionally displayed with different orientation
INS69	STD003	DCS responsible for shutter time. If shutter controlled by ICS, use TRS for
		synchronization
INS70	STD003	Actual exposure time should take into account shutter opening and closing time
INS71	STD003	DCS <i>cmm</i> modules follow the naming conventions
INS72	OS002	OS Server responsible for coordination of single exposures
INS73	OS003	OS Server shall handle overlapping exposures
INS74	OS003	OS Server shall handle parallel exposures
INS75	OS002	Results of exposures shall always be archived (FITS format)
INS76	OS002	OS Archiver shall not affect the observing cycle. Archiving errors shall be
	OS003	reported to BOB
INS77	OS003	FITS files containing results of exposures shall follow naming conventions
INS78	OS003	OS includes templates
INS79	N/A	SOS responsible for coordination of exposures involving more than one
DIGOO	CLUOO2	instrument
INS80	GU1003	Mandatory OS parameters are available
INS81	05002	Use standard exposure types
118582	05005	Pollow rules for FITS files and keywords contained in the Data Interface Control
INS83	05003	Implement complex operations in Templates
INS84	DOC001	Implement complex operations in remplates
111007	OS003	process
INS85	MS001	All AIV and Commissioning activities supported by technical templates
INS86	GUI003	Implement OS Control panel
INS87	GUI004	Implement OS Status panel
INS88	OS004	Follow ICD between OS and OH
	VCM004	
INS89	VCM005	Follow ICS between OS and Archive
INS90	INS003	OS <i>cmm</i> modules follow the naming conventions

Date

Req.	TEST	DESCRIPTION
INS91	STD008	All Instrument configuration files in one <i>cmm</i> module belonging to MS
INS92	INS003	All dictionary files in one <i>cmm</i> module
INS93	INS003	Instrument configuration parameters protected from not authorized users
INS94	STD008	Use standard mechanism to control Instrument configuration changes
INS95	STD008	Instrument configuration changes shall be logged in FITS format
INS96	MS001	MS procedures implemented as technical templates. A Technical Instrument
	INS005	Package must exist
INS97	MS002	Results of technical templates logged in FITS format or in CCS sampling tool
		format
INS98	INS003	MS <i>cmm</i> modules follow the naming conventions
INS99	N/A	ESO authorization needed if <i>p2pp</i> complemented by a dedicated OSS tool for OB
	/ /	preparation tool
INS100	N/A	Special tool for target selection, if needed, part of OSS
INSI01	N/A	OSS <i>cmm</i> modules follow the naming conventions
INS102	DOC001	Alarms must be listed in ISFS document and detailed in ISDD document
INS103	ALM002	Alarms implementation compatible with the CCS Alarm System
INS104	ALM002	Alarms triggered only if the value of the related database attribute is up-to-date
INSI05	ALM002	Alarm database attributes associated to sensors must follow a standard naming
INIC106	CLU004	scheme
INS100 INS107	GU1004	Panala shall not non un and disannear automatically
INS107	GUI005	Static pleasment of penels
INS100	GUI005	A GUI shall not automatically close another panel
INS109 INS110	GUI005	User Station must follow standard configuration (2 screens) Extensions must be
110110	001005	agreed with ESO
INS111	OS003	Follow standard interface to TCS/VLTI
INS112	INS002	Installation module shall follow the standard naming convention
INS113	OS001	Instrument specific adds-on to <i>stoo</i> functionality must be in the installation module
INS114	DCS001	Restart one INS module without restarting the whole INS Software
	ICS003	č
INS115	DCS001	ICS and DCS must provide own startup/shutdown scripts for the stand-alone
	ICS003	mode
INS116	DOC001	Documentation in same electronic format used at ESO
INS117	DOC001	Instrument Software architecture must follow the scheme described in the INS
		Software Specs
INS118	STD001	Use VLT common software wherever possible
INS119	DOC001	Software activities included in the Instrument Software Management Plan
INSI20	N/A	Instrument Software User Requirements document reviewed before PDR
INSI21	N/A	Freeze Software User Requirements at PDR
INS122	N/A	iterations before
INS123	N/A	Before PDR run Template Instrument, build Instrument Software skeleton, check
INIC124	NI/A	performances Paviau Software Design document(a) at EDP. Performanded a few iterations
11\\\\5124	IN/A	before
INS125	N/Δ	Review Accentance Test Plan document at FDR
INS125	N/A	Before FDR Instrument skeleton according to actual configuration no code
1110120	11/21	except for prototypes
INS127	TAT001	Software test procedures automatic and reproducible, based on tat
	VCM006	
INS128	DOC001	Accept. Test Plan, User and Maintenance manual ready for PAE. Recommended
DIGIO	TPF	a few iterations before
INS129	TBD	Acceptance Test Report produced as result of PAE
INS130	DOC001	Agree with ESO intermediate check points between FDR and PAE
INS131	all	PAE at integration premises and in the VLT Control Model

Req.	TEST	DESCRIPTION
INS132	DOC001 INS003	Software and documentation under <i>cmm</i>
INS133	OS003	OS shall be able to handle secondary guiding TCCDs in parallel to science exposures.

