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Abstract— The log-normal probability distribution is com-
monly used in wireless communications to model the shadowing
and more recently the small scale fading for indoor ultra wide-
band communications. In this paper, an accurate closed-form
approximation of the average probability of error over a log-
normal fading channel is derived for various constellation types
and sizes. This expression can be used to evaluate and compare
easily the symbol-error performance of communication systems
over a log-normal fading channel.

Index Terms— Log-normal distributions, communication chan-
nels, probability, error analysis, approximation methods, closed-
form expression, Lambert W function.

I. INTRODUCTION

H ISTORICALLY, the log-normal distribution has been

mainly used to model the effect of shadowing of the

signal due to large obstructions [1]. The effect of shadowing on

the performance of wireless communication systems has been

mostly studied jointly with the effect of small scale fading [2],

[3]. Lately, in 2003, the channel modelling subcommittee of

the IEEE 802.15.3a working group for wireless personal area

networks released a reference Ultra Wide-Band (UWB) indoor

channel, known as the IEEE 802.15.3a channel model [4],

based on numerous contributions and experimental results [5],

[6]. This channel model, designed for UWB communications

[7], encompasses the main features of the Saleh-Valenzuela

channel model [8], i.e., multipath rays arrive in clusters and

their amplitudes follow double-exponential decay, but the log-

normal distribution has been found the best match to represent

the amplitude distribution of the channel [5].

The average probability of error for different cellular com-

munication systems, where shadowing is involved on its own

or mixed with either Rayleigh or Rician fading, has been de-

rived in [2]. The resulting expression is a computable formula

of the average probability of error, obtained by using Hermite

polynomial approximation [9], that provides only numerical

results. Similarly in [3], an exact formula for determining

the outage probability of cellular systems over log-normal
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shadowed Rician channels has been presented that can be

evaluated by using numerical methods.

In this paper, we derive a closed-form approximation of the

average probability of error over a log-normal fading channel,

with adjustable accuracy, that proves to be highly accurate

for a typical mobile communication range of average error

probability, i.e., Pe ∈ [10−6, 10−1], and considering various

constellation sizes and types. This approximation is designed

using simple interpolation techniques, the Lambert’s function

[10] and other basic mathematical tools. It is given in terms of

the Signal-to-Noise-Ratio (SNR) of the system, the mean and

the standard deviation of any log-normally distributed Random

Variable (RV) and the symbol constellation parameters. Our

expression that is presented under a closed-form has been

used in [11] to establish the theoretical performance of single-

band UWB systems and to derive code design criteria for

multiple-antennae single-band UWB systems operating over

the IEEE 802.15.3a channel. It can also be useful to evaluate

the symbol-error performance of communication systems over

log-normal fading channels or to get an intuitive understanding

of the behaviour of this performance at high SNRs.

II. SYSTEM MODEL

In a mobile radio environment, shadowing is usually mod-

elled as a multiplicative and slowly time varying random

process. The received signal r(t) can be expressed in presence

of noise as follows [1]

r(t) =
√

ǫss(t)h(t) + n(t), (1)

where ǫs is the transmitted symbol energy, s(t) is the trans-

mitted signal, h(t) is the random process that characterizes the

shadowing effect, and n(t) is an additive zero-mean Gaussian

noise with variance N0/2. At any instant, the shadowing

is considered as log-normally distributed. Moreover, for a

slow-varying environment, h(t) can be considered constant

such that h(t) = β is a log-normally distributed RV. As far

as UWB communication systems are concerned, the channel

model released by the IEEE for indoor communications in

[4], namely the IEEE 802.15.3a channel model, exhibits a

log-normal distribution of its multipath attenuation factor. In

that case, the received signal r(t) can be expressed as in

(1) with h(t) =
∑

k Gkδ(t − τk), as shown in [12] and

[13], where Gk is the multipath attenuation factor, τk is its

corresponding time delay, and δ(t) is an impulse signal. Any

multipath attenuation factor Gk is such that Gk = βkejθk

with βk being a log-normally distributed RV and θk ∈ {0, π}
[4]. Assuming that s(t) is a signal modulated with one of

the following common constellations; a binary antipodal, a
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binary orthogonal, an M -ary Pulse Amplitude Modulation

(PAM), an M -ary Phase Shift Keying (PSK) modulation, or a

rectangular M -ary Quadrature Amplitude Modulation (QAM);

then the symbol-error probability obtained by using maximum

likelihood detection for these constellations is given by [1]

Pe = q(α) = ζ1Q
(√

ζ0γsα
)

, (2)

where Q(x) = 1√
2π

∫ ∞
x

e−t2/2dt, ζ0 and ζ1 are coefficients

related to the constellation shape [14], γs = ǫs/N0 is the

SNR per symbol, and α is a RV. In the shadowing case

α = β2 and in the UWB case, as shown in [12] and [13],

α ≈ ∑
k β2

k . Moreover, since β is log-normally distributed,

β2 is log-normally distributed as well, and then using the

results in [15]
∑

k β2
k can be considered as a log-normally

distributed RV [13]. Therefore, in both cases α is a log-

normally distributed RV. Averaging (2) over α, we obtain an

expression for the Average Symbol-Error Probability (ASEP)

as

Pe =

∫ +∞

0

p(α)q(α)dα, (3)

where p(α) is the pdf of a (mα, σα)-log-normally-distributed

RV α given by

p(α) =
1

α
√

2πσα

exp

(
−1

2

(
ln (α) − mα

σα

)2
)

, (4)

with ma and σa being the mean and standard deviation of

the log-normally distributed RV α, respectively. Usually in

wireless communications, parameters (my, σy) are introduced

to characterize a log-normal distribution, where my = Cmα,

σy = Cσα and C = 10/ ln (10) [15]. The parameter σy ,

known as the dB spread, is usually between 6 and 12 dB

for most of the wireless communication systems [15], and

between 2 and 5 dB for the UWB systems [4]. The function

Q(x) can be tightly-approximated or closely-upper bounded

by other simple and integrable functions as it has been shown

in [2] and [16]. For instance, in [16], Q(x) is said to be upper

bounded by
I∑

i=1

cie
− bi

2 x2

, (5)

where ci = ai/2, ai > 0 and bi ≥ 1 are defined in [16]. The

expression in (5) tends to be equal to Q(x) as I increases.

Moreover, for I = 1, c1 = b1 = 1, Q(x) ≤ e−x2/2 is the

Chernoff bound on Q(x). Therefore, using (5) in (2), then (2)

and (4) in (3), the ASEP can be re-expressed as

Pe ≃
I∑

i=1

∫ +∞

0

ζ1ci

α
√

2πσα

×

exp

(
−1

2

(
ζ0biγsα +

(
ln (α) − mα

σα

)2
))

dα,

(6)

for a large value of I . Then, using the change of variables

x =
(

ln (α)−mα√
2σα

)
in (6), Pe can be rewritten in a compact

form as

Pe≃
I∑

i=1

ζ1ci√
π

∫ +∞

−∞
e−νie

x
k e−x2

dx =

I∑

i=1

ζ1ci√
π

∫ +∞

−∞
f(x)dx,

(7)

where νi = ζ0bi

2 γse
mα ≥ 0, k = 1√

2σα
≥ 0, and f(x) is

expressed as follows

f(x) = e−νie
−

x
k e−x2

, x ∈ R. (8)

III. A TIGHT APPROXIMATION OF THE INTEGRAL OF f(x)

In this section, knowing that f(x) does not have a closed-

form integral, we use linear interpolation to design an ana-

lytically integrable function g(x), which tightly approximates

f(x) over its domain.

The function f(x) in (8) is always a positive and a differ-

entiable function of x and lim
x→−∞

f(x) = lim
x→+∞

f(x) = 0.

Differentiating f(x) with respect to x, we obtain

df(x)

dx
= e

−
�

νie
−

x
k + x

k
+x2

� [νi

k
− 2xe

x
k

]
. (9)

The first term of this expression is clearly always positive. Let

x̂f be a solution of the equation
df(x)

dx = 0. Then,
df(x)

dx ≥ 0

over (−∞, x̂f], and
df(x)

dx ≤ 0 over [x̂f,+∞). This implies that

f(x) increases over (−∞, x̂f] and decreases over [x̂f,+∞).
Therefore, f(x) has a unique maximum, which occurs at x =
x̂f, that can be obtained as follows

df(x = x̂f)

dx
= 0 ⇒ νi

2k2
=

x̂f

k
e
xf
k . (10)

The Lambert W function is the inverse function of f(w) =
wew where ew is the natural exponential function and w is any

complex number and thus, the Lambert W function satisfies

W (z)eW (z) = z, z ∈ C [10]. Moreover, the real branch of the

Lambert function denoted W0 is such that W0 : R+ → R+.

Then, in (10), we set W0(z) = �xf

k , z = νi

2k2 and obtain [17]

x̂f = kW0

( νi

2k2

)
. (11)

Since νi ∈ R+, k ∈ R+, and W0 : R+ → R+, therefore

x̂f ∈ R+.

For any interval [xn, xn+1], xn, xn+1 ∈ R, there exists,

an ≥ 0, bn ≤ 0 verifying the inequality

x2 ≥ an|x| + bn, (12)

and chosen such that x2 = an|x| + bn for x = xn+1+xn

2 .

Inserting the result (12) in (8) and defining the interval

[xn, xn+1] to be narrow, i.e., (xn+1 − xn) ≪ 1, we obtain a

very tight upper-bound of f(x) over each interval, as follows

gn(x) = e−νie
−

x
k e−(an|x|+bn). (13)

Then, g(x) is defined using gn(x) as

g(x) =
LN∑

n=−LN

gn(x), (14)

such that for any interval [xn, xn+1], gn−1(xn) = gn(xn) in

order to ensure that g(x) is a continuous function over its

domain. Therefore, if [xn, xn+1] is narrow enough, then g(x)
tightly upper-bounds f(x), and thus as f(x), is a positive

function of x with a unique maximum. Let us denote the

maximum of g(x), x̂g, and assume that this maximum occurs

for a x belonging to one of the 2LN intervals [xn, xn+1]
composing the domain of g(x). For instance, let the interval
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[x0, x1] contains x̂g, then using the first derivative of g0(x)
defined as

dg0(x)

dx
= e

−
�

νie
−

x
k + x

k
+a0|x|+b0

� [
νi

k
− a0x

|x| e
x
k

]
= 0, (15)

we can solve
dg0(x= �xg)

dx = 0 and obtain the value of x̂g. For

x̂g < 0, |x̂g| = −x̂g and it implies with (15) that νi

k = −a0e
xg
k .

This equation has no solution in R since νi, k, a0 and e
xg
k are

all positive numbers, thus x̂g is positive. Then, using (15) x̂g

can be expressed as

x̂g = k ln (νi/ka0) . (16)

At this point using relation (12), we propose rules to design the

intervals [xn, xn+1] and the parameters an and bn. Knowing

that both functions f(x) and g(x) are positive with a single

positive maximum, we set both maxima to occur at the same

abscissa value such that x̂f = x̂g. Consequently, using the def-

inition of x̂f and x̂g given in (11) and (16), respectively, it im-

plies kW0(νi/2k2) = k ln (νi/ka0) ⇔ exp (W0(νi/2k2)) =
νi/ka0 ⇔ (a0/2k) exp (W0(νi/2k2)) = νi/2k2 ≥ 0,

equivalently with the definition of the Lambert function

(a0/2k) exp (W0(νi/2k2)) = W0(νi/2k2) exp (W0(νi/2k2))
and finally gives

a0 = 2kW0

( νi

2k2

)
= 2x̂f. (17)

Moreover, we set both maxima to occur at the same ordinate

value such that f(x) = g0(x) for x = x̂f = x̂g. Consequently,

using the definition of f(x) in (8) and gn(x) in (13) with n =
0, for x = x̂f, it comes exp (−x̂f

2) = exp (−(a0|x̂f| + b0)) ⇔
x̂f

2 = a0|x̂f| + b0 ⇔ x̂f
2 = 2x̂f

2 + b0, and thus implies

b0 = −x̂f
2
. Finally, over the interval [x0, x1], x0 and x1

must satisfy simultaneously the inequality in (12), the equality

x2 = a0|x| + b0 for x = x1+x0

2 and (x1 − x0) ≪ 1. Thus,

we propose x1 = x̂f

(
1 + 1

2N

)
, x0 = x̂f

(
1 − 1

2N

)
, and the

length of [x0, x1] to be equal to x̂f/N , with N ≫ 1. Similarly

for the next interval of length x̂f/N adjacent to [x0, x1], i.e.,

[x1, x2] , using g0(x1) = g1(x1), i.e., the continuity of g(x)
is maintained at the border of any interval, and f

(
x2+x1

2

)
=

g1

(
x2+x1

2

)
, i.e., x2 = a1|x|+b1 for x = x2+x1

2 , the following

equations can be obtained
{

g0(x1) =g1(x1)⇒ x̂f
2 (1 + 1/N) = a1x̂f (1 + 1/2N) + b1,

f(x) =g1(x) ⇒ x̂f
2 (1 + 1/N)

2
=a1x̂f (1 + 1/N) + b1.

(18)

Solving (18) in terms of a1 and b1, one achieves after

simplification a1 = 2x̂f(1 + 1/N) and b1 = −x̂f
2(1 + 1/N)2.

Using the same approach on any other interval [xn, xn+1], we

obtain an, bn, xn, as follows,
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

an = 2x̂f (1 + n/N) , n ∈ {−N,LN} ,

an = −2x̂f (1 + n/N) , n ∈ {−LN,−N − 1} ,

bn = −x̂f
2 (1 + n/N)

2
, n ∈ {−LN,LN} ,

xn = x̂f (1 + (2n − 1)/2N) , n ∈ {−LN,LN} .
(19)

The value of x depends on n as follows,

• if n ≥ −N , then x ≥ 0 and an|x| = anx =
2x̂f (1 + n/N) x ≥ 0.
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Fig. 1. Comparison of the curves of f(x) and g(x) for k = 0.5 and various
values of νi, L, and N .

• if n < −N , then x < 0 and an|x| = −anx =
2x̂f (1 + n/N) x > 0.

Therefore, for any n ∈ {−LN,LN} and x ∈
[x−LN , xLN+1], an|x| = 2x̂f (1 + n/N) x ≥ 0. Inserting

an|x| = 2x̂f (1 + n/N) x and bn = −x̂f
2 (1 + n/N)

2

in (13), we can rewrite gn(x) over any interval[
x̂f

(
1 + 2n−1

2N

)
, x̂f

(
1 + 2n+1

2N

)]
as follows

gn(x) = e−νie
−

x
k e−�xf(1+ n

N )[2x−�xf(1+ n
N )], (20)

∀n ∈ {−LN,LN}, x ∈ R, and verify f(x) ≃ g(x) for a large

value of LN , as shown in Fig. 1 for k = 0.5 and different

values of νi, L and N . For instance in the case of L = 10
and N = 10, f(x) and g(x) differs on average by less than

0.001%. Next, according to the property of additivity with

respect to interval of integration [18], and using f(x) ≃ g(x),
(14), (19), and (20), one can write F (x) as follows

F (x) =

∫ +∞

−∞
f(x)dx ≃

LN∑

n=−LN

∫ �xf(1+ 2n+1
2N )

�xf(1+ 2n−1
2N )

e−νie
−

x
k

×e−�xf(1+ n
N )[2x−�xf(1+ n

N )]dx.
(21)

Using the change of variable ti = νie
− x

k in (21), this equation

can be re-expressed as, [17],

F (x) ≃ k

LN∑

n=−LN

ν
−2k�xf(1+ n

N )
i e(�xf(1+ n

N ))
2

×
∫ νie

−

xf
k (1+ 2n−1

2N )

νie
−

xf
k (1+ 2n+1

2N )
e−tit

2k�xf(1+ n
N )−1

i dti.

(22)

Defining a dummy variable ui = 2kx̂f =
W0(

ζ0bi

2 γbe
mασ2

α)/σ2
α, one can simplify F (x) as, [17],

F (x) ≃ 1√
2σα

LN∑

n=−LN

e−ui(1+ n
N )[ln (ui)+uiσ

2
α(N−n

2N )]

×
∫ uie

−σ2
α( 2n−1

2N )ui

uie
−σ2

α( 2n+1
2N )ui

e−tit
ui(1+ n

N )−1

i dti,

(23)
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Fig. 2. ASEP vs. SNR per symbol for a binary antipodal constellation,

σy = 6 dB, and various values of LN and I using
�

Pe, i.e., eq. (26), and Pe

relations.

where the integral part in (23) can be obtained as follows

G(ui, N, n) =

∫ uie
−σ2

α( 2n−1
2N )ui

uie
−σ2

α( 2n+1
2N )ui

e−tit
ui(1+ n

N )−1

i dti (24)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
(
−ui (1 + n/N) , U+

i,n,N

)
− λ (−ui (1 + n/N) ,

U−
i,n,N

)
, for n ∈ {−LN,−N − 1},

E1

(
U+

i,n,N

)
− E1

(
U−

i,n,N

)
, for n = −N,

γ
(
ui (1 + n/N) , U−

i,n,N

)
− γ

(
ui (1 + n/N) , U+

i,n,N

)
,

for n ∈ {−N + 1, LN}.

In (24), U+
i,n,N = uie

−σ2
α( 2n+1

2N )ui , U−
i,n,N = uie

−σ2
α( 2n−1

2N )ui ,

γ(c, d) =
∫ d

0
e−ttc−1dt denotes the incomplete Gamma

function, E1(x) =
∫ +∞

x
e−t/t dt is the Exponential integral

function, and λ(c, d) =
∫ +∞

d
e−tt−c−1dt, with c, d ∈ R+

excluding zero. Hence, F (x) is tightly approximated as

F (x) ≃ 1√
2σα

LN∑

n=−LN

G(ui, N, n)

×e−ui(N+n
N )[ln (ui)+uiσ

2
α(N−n

2N )].

(25)

Finally, by inserting (25) in (7), we derive an approximation

of the APSE as

Pe ≃ P̃e =

I∑

i=1

ζ1ci√
2πσα

LN∑

n=−LN

G(ui, N, n)

×e−ui(N+n
N )[ln (ui)+uiσ

2
α(N−n

2N )],

(26)

i.e., in terms of known mathematical functions, except for

λ(c, d) =
∫ +∞

d
e−tt−c−1dt.

IV. NUMERICAL ANALYSIS AND INTUITIVE

SIMPLIFICATION METHOD FOR P̃e

In Fig. 2, we plot Pe and P̃e against γs (dB), and compare

them considering a binary antipodal constellation, i.e., (ζ0 =

2, ζ1 = 1), a dB spread σy = 6 dB, my = 0 dB, various

values of I and different values of LN . As expected, the

results first show that the larger I , N , L are, the better the

approximation is. The results also indicate that if I decreases

then the approximation becomes looser, nevertheless P̃e keeps

a nearly parallel feature with the curve of Pe for large SNR

per symbol values. This parallel feature is observed for any

value of I . For I = 1, c1 = 1/2 and b1 = 1, [16], (26) can

be re-expressed as

P̃e =
ζ1

2
√

2πσα

LN∑

n=−LN

G(u,N, n)e−u(ln(u)+σ2
αu/2), (27)

where u = W0(
ζ0

2 γbe
mασ2

α)/σ2
α. Moreover, for a fixed I

value, the values of LN affect the curvature of P̃e at low

SNRs. Notice that the same results are obtained for other

constellations, different values of σy and my . Following these

observations, it becomes clear that at low SNRs, the slope

of P̃e is predominantly determined by the multiplicative term

G(u,N, n) in (27), and that at high SNRs, i.e., u ≫ 1, the

slope of P̃e is predominantly determined by the exponential

term in (27). Using this intuition, we modify P̃e in (26), which

is not convenient to use and is not actually a proper closed-

form expression, and introduce a new function P ′
e based on

(27) to closely approximate Pe as follows

Pe ≃ P ′
e =

ζ1√
2πσα

φ (u) e−u(ln(u)+σ2
αu/2), (28)

where

φ (u) = η0e
u ln(u)−η1uη2

(29)

has been found to be an excellent choice of a parametric

function, with η0, η1, η2 ∈ R. Notice that, contrary to P̃e in

(26), P ′
e is a closed-form expression given in terms of the

Lambert, logarithmic and exponential functions.

V. A HIGHLY ACCURATE CLOSED-FORM APPROXIMATION

OF THE ASEP

The tightness of our closed-form approximation of the

ASEP proposed in (28) can be adjusted using the parameters

η0, η1 and η2. Our method to find the best approximation of

Pe by P ′
e between any two probability of errors Pa and Pb

relies on the following criterion

1

N

N−1∑

n=0

∣∣∣Pe
−1

(
10∆n(n+ 1

2 )Pa, σy

)

−P ′
e

−1
(
10∆n(n+ 1

2 )Pa, σy, η0, η1, η2

)∣∣∣ < ε0.

(30)

In (30), Pe
−1

(.) and P ′
e

−1
(.) are the inverse functions of Pe

and P ′
e, respectively, ∆n = (log10 (Pb) − log10 (Pa))/N , N

is the number of discrete samples in the interval (Pa, Pb), and

ε0 ≪ 1. Using this criterion, we have obtained η0, η1, and

η2 for σy ∈ [2, 12] with increments of 0.5 dB for σy values,

Pa = 10−6, Pb = 10−1, N = 1000, ε0 = 0.01 dB, and then

interpolated the resulting values for each and every one of the

parameters, i.e., η0, η1 and η2, in the range of σy ∈ [2, 6) for

the UWB systems and in the range of σy ∈ [6, 12] for most

of other wireless systems. The results are as follows
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Fig. 3. ASEP vs. SNR per symbol for a binary antipodal constellation and
σy = 2, 4, 6, 9, 12 dB using P ′

e, i.e., eq. (31), and Pe, i.e., eq. (3), relations.

For σy ∈ [2, 6):
⎧
⎪⎨
⎪⎩

η0 = (0.06516(σy + 24.47))2 − 2.5959,

η1 = −(0.06708(σy − 18.7231))2 + 2.7904,

η2 = (0.03162(σy − 17.001))2 + 0.662,

and it implies η0 ∈ [0.379, 1.346), η1 ∈ [1.532, 2.062) and

η2 ∈ (0.783, 0.887].
For σy ∈ [6, 12]:

⎧
⎪⎨
⎪⎩

η0 = 0.258(σy − 6) + 1.345,

η1 = −(0.0592(σy − 21.5))2 + 2.9046,

η2 = (0.02646(σy − 20.07))2 + 0.6434,

and it implies η0 ∈ [1.345, 2.893), η1 ∈ [2.063, 2.588) and

η2 ∈ (0.689, 0.782]. Finally, inserting (29) in (28) and using

the values of η0, η1 and η2 obtained above, we derive a highly

tight closed-form approximation of Pe as follows

P ′
e =

ζ1η0√
2πσα

exp

(
−W0(ζ0γse

mασ2
α/2)

σ2
α

×
[
η1

(
W0(ζ0γse

mασ2
α/2)

σ2
α

)η2−1

+
W0(ζ0γse

mασ2
α/2)

2

])
,

(31)

which differs from the APSE Pe by less than 0.01 dB for any

ordinate values lying between Pe = 10−6 and Pe = 10−1. In

Figures 3, 4 and 5, we plot Pe in (3) and P ′
e in (31) vs. γs

(dB) for various dB spread values and for different types and

sizes of constellations. These graphs show a highly tight fitness

between Pe and P ′
e for any dB spread values and constellations

presented and, hence, indicate graphically the accuracy of our

proposed closed-form approximation in (31). Furthermore, the

accuracy of P ′
e can be improved for lower ε0 values by a

proper choice of the parameters η0, η1 and η2 in our design

formula (30).

VI. APPLICATIONS FOR P ′
e

The first application of our closed-form expression is to

compute easily and quickly the ASEP of communication
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Fig. 4. ASEP vs. SNR per symbol for both binary orthogonal and M -PSK
constellations and σy = 6 dB using P ′

e, i.e., eq. (31), and Pe, i.e., eq. (3),
relations.
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Fig. 5. ASEP vs. SNR per symbol for both M -PAM and M -QAM
constellations and σy = 6 dB using P ′

e, i.e., eq. (31), and Pe, i.e., eq.
(3), relations.

systems over log-normal fading for different types and sizes

of constellations, as shown previously in Figures 3, 4 and

5. Another application of this expression can be found in

[11], where it has been applied to establish the theoretical

performance of single-link and multiple-antennae single-band

UWB systems operating over the IEEE 802.15.3a channel for

various modulation schemes, detection methods and types of

environments. Also in [11], it has been used to derive new

code design criteria, through an upper-bound on the average

probability of error, for space-time trellis coding single-band

UWB systems operating over the IEEE 802.15.3a channel.

Finally, it can be used to get an intuitive understanding of

the behaviour of Pe at high SNRs and to obtain simple

parameters to compare the performance of communication

systems over log-normal fading. At high SNRs, γs ≫ 1,

the second term of the sum inside the exponential in (31)

becomes predominant since η2 < 0.9 and the first term can be

discarded. Furthermore, knowing that W0(x ln (x)) = ln (x)
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for x > 1/e [19] and that xd ≥ ln (x) for any x ≥ 0 and any

d ≥ 0.4 it implies that W0(x) ≥ ln (x)/(d+1) for x > (1/e)d,

since W0 is monotonically increasing over its domain. Thus,

an upper-bound of P ′
e can be obtained at high SNRs as

P ′
e≤

Cζ1η0√
2πσy

[
e(γs(dB)+µ)2

]− 1
2(1+d)2σ2

y =C0

[
e(γs(dB)+µ)2

]−C1

,

(32)

where µ = C ln
(
ζ0e

mασ2
y/2C2

)
and C0 and C1 are positive

constants. In comparison, assuming a transmission of data over

a Rayleigh or a Rician fading channel, the ASEP at high SNRs

can be formulated as follows

Pe ≤ D0

[
e(γs(dB))

]−D1

, (33)

where D0 and D1 are positive constants. Both of these bounds

in (32) and (33) are loose bounds that describe the asymptotic

behaviour of the ASEP at high SNRs. It is well-known that

over a Rayleigh fading channel, the ASEP at high SNRs is a

linear function of the SNR(dB) considering a semi-log scale

[1], as it is clearly proven by (33). Similarly, (32) shows that

the ASEP at high SNRs over a log-normal fading channel is

a quadratic function of the SNR(dB) considering a semi-log

scale.

VII. CONCLUSION

An accurate closed-form approximation of the ASEP over a

log-normal fading channel has been derived for any practical

dB spread values and various constellation sizes and types.

First, using the approximation of Q(x) in [16] and a simple

linear approximation for f(x), we have obtained an expression

P̃e that closely approximates Pe for large values of I , L,

and N . However, we have noticed that even for small values

of these parameters, the slopes of Pe and P̃e presented

parallel features at high SNRs. Then, using this intuition, we

have modified the simplest P̃e expression by introducing a

parametric function and a criterion with an adjustable accuracy

to obtain our accurate approximation, i.e., P ′
e, for Pe. The

great accuracy of P ′
e has been obtained for a typical range

of average error probability in mobile communications by

optimizing the values η0, η1 and η2 in our design formula, and

has been shown experimentally for practical dB spread values

and various constellation sizes and types. Some applications

of our closed-form approximation have also been presented,

for instance to establish the theoretical performance of single-

band UWB systems or to evaluate and compare quickly the

symbol-error performance of communication systems over

log-normal fading channels. Finally, an upper bound of P ′
e

has been found that provides an intuitive understanding of the

behaviour of Pe at high SNRs.
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