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ABSTRACT

Instrumentation of interfaces is a popular design pattern in
engineering. Academic and industrial projects are already
using instrumented OpenGL clients for various purposes. We
perceive instrumentation of proprietary OpenGL applications
as a basic technology to open up interactive three-dimensional
graphics as a potent interoperability platform for heteroge-
neous simulation software in engineering. Hence, we describe
and compare four instrumentation techniques on the MS
Windows platform: relink library, dynamic library replace-
ment, virtual display driver, and binary interception. We
qualitatively evaluate them for four capabilities: to instru-
ment proprietary simulation software; to instrument a subset
only of the OpenGL interface; to instrument multiple inter-
faces simultaneously; and to chain intermediaries. The relink
library technique is powerful, except that it cannot be used
with proprietary simulation software. Dynamic library re-
placement and virtual display drivers potentially support all
features, although some features are difficult to implement.
The binary interception technique inherently supports all
capabilities. We conclude with directions for future research.
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1. INTRODUCTION
The digital revolution has changed the domain of engi-

neering. Product values are determined increasingly by the
software they contain. Even more, almost every engineering
process is supported by computer simulations today. An
important issue in digital working environments is interop-
erability between heterogeneous software components. We
focus on interoperability between interactive simulations.
The naive way to couple components is to implement one
distinct adapter for each coupling wanted by the stakehold-
ers. If we consider a project’s size in number of components
or products used, in the long term the naive approach re-
sults in the development of O(n2) adapters. Thus, the naive
approach does not scale. Therefore, many projects define
an interoperability platform. The interoperability platform
captures a common concept, which is shared between com-
ponents. Couplings that are wanted by the stakeholders
are implemented by one adapter to the interoperability plat-
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Figure 1: The curse of interoperability: Does a project that
uses n applications implement O(n2) adapters; or is there a
common concept, which serves as interoperability platform
for O(n) adapters?

form for each component. Because adapters can ideally be
reused for different couplings, the interoperability platform
approach results in the development of O(n) adapters. Fig-
ure 1 illustrates the two strategies. The design of valuable
interoperability platforms has become a critical concern in
every bigger project.
The critical point when establishing an interoperability

platform is to identify a common concept of candidate com-
ponents. We want to improve interoperability of simulations
in engineering. The question for an interoperability plat-
form in industrial engineering software finds no answer since
decades, e.g., [17, 26, 27]. Moreover, we do not want to
establish yet another file based interoperability platform. We
want to enable qualitative higher levels of interoperability
through interactivity: components should exchange three-
dimensional data during runtime, so that users are able to
achieve information and gain knowledge in real time. Today,
interactive visualization of simulation data is an omnipresent
feature in simulation software. Often, simulation software
uses OpenGL for interactive visualization of simulation data.
We believe that the OpenGL industry standard serves very
well as a common concept for interoperability of distributed
virtual simulations [22].
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As a first step towards the envisioned, OpenGL based
interoperability platform we have to check, how to plug into
the OpenGL pipeline. We focus on the pattern of instru-
mentation. Instrumentation by now primarily is known in
performance analysis and debugging. But once the stream
of function calls is tapped, it is only a matter of technical
creativity which further applications can be implemented [6].
In the following sections, we describe a concrete application
scenario and provide a distilled problem statement. Based
upon component based system design, we work out an evalu-
ation scheme with attestable properties. The properties are:
capability to work with proprietary simulation software, to in-
strument interface subsets, to instrument multiple interfaces,
and to chain instrumentation software. Then, we examine
four instrumentation techniques for these properties. The
techniques are relink library, dynamic library replacement,
virtual display drivers, and binary interception. Finally, we
conclude and discuss future directions of our research.

1.1 Application Scenario
Our scenario takes place in an engineering office environ-

ment. The project uses a heterogeneous setup: Microsoft
Windows XP, Vista, and 7, which regarding our research
question behave quite similar. The reference development
platform for the operating systems is Microsoft Visual Studio.
Within the office environment, engineers use interactive

simulation software (e.g., Matlab/Simulink1) that renders
three-dimensional data based upon results of simulations.
In the engineering domain simulation software mostly is
proprietary or it is developed as a side project with scarce
resources. Thus, we consider the simulation software to
be proprietary. The visualization component communicates
with the OpenGL application programming interface. Note,
the visualization component is not necessarily a dominant
or permanent element of the user interface; we only require
it to be available. So far, the application scenario resembles
the state of the art as common in every engineering office.

The engineers in our scenario now bear a challenge, when
they want to modify the rendering behavior of the propri-
etary simulation software. We represent the modification of
the simulation software, as we introduce notional analysis
software, which profiles access on databases. For real-time
presentation of the profile data, OpenGL should be used
as pragmatic interoperability platform (see Figure 2). This
means, that the analysis software visualizes aggregate data
and embeds its visualization into the simulation’s visualiza-
tion. Therefore, the analysis software has to instrument the
simulation’s database interface, what we do not discuss in
detail. Furthermore, it has to instrument the simulation’s
OpenGL interface. More precisely, within the OpenGL in-
terface the analysis software instruments the SwapBuffers

function [19], which semantically indicates, that the simula-
tion has done its rendering work and the new window content
should appear on the screen. The instrumented variant of
the function renders the analysis software’s graphics, which
are a stream of OpenGL commands, into the simulation’s
graphics; finally, it invokes the original SwapBuffers function
to put the merged graphical content onto the screen.

1The Mathworks Inc. provides the Matlab/Simulink simula-
tion suite, which is very popular in the engineering domain.
Detailed product descriptions are provided at the vendor’s
website (http://www.mathworks.com/products).
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Figure 2: In our application scenario, we assume three-
dimensional graphics as interoperability platform. This paper
discusses instrumentation of proprietary OpenGL applica-
tions as basic technology.

1.2 Problem Statement
Based upon our application scenario with simulation soft-

ware that should be instrumented, we ask the following
questions:

• Which techniques are available for instrumentation of
OpenGL?

• Which techniques are applicable to proprietary simula-
tion software?

• Which technique is preferable, if a narrow subset of the
OpenGL interface should be instrumented?

• Which technique is preferable, if multiple independent
interfaces should be instrumented to implement inter-
leaved behavior?

• Which technique is preferable, if proprietary intermedi-
aries should be chained?

We do not discuss the inner functionality of the instrumen-
tation software. There is already a lot of research about
stylized rendering (e.g., [21]), distributed rendering (e.g., [3,
12, 14, 22]), and GPU debugging (e.g., [9, 24]) through in-
strumented OpenGL. In contrast to the literature that we
are aware of we focus on the mechanics, how instrumentation
software is attached to simulation software.

2. BACKGROUND
This section introduces terms and concepts, which are

necessary to evaluate techniques for the instrumentation of
proprietary OpenGL applications. Therefore, we declare a
component and interface oriented notation together with an
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Figure 3: Definition of a simple component diagram notation
based on UML 2

interoperability hierarchy. Building on that terminology, we
discuss the instrumentation pattern and which properties
are necessary, to cover our application scenario. We describe
relevant implementation details of OpenGL on the MS Win-
dows platform. Finally, we introduce four instrumentation
techniques, which we evaluate in Section 3.

2.1 Modular Systems and Interoperability
Engineers describe system architectures in terms of compo-

nents and interfaces. Depending on the engineer’s domain and
preferred method, what we call a component may be called an
object, device, service, module, or other too. We focus on the
domain of computer science. In our figures, we use a simplified
dialect of UML2’s component diagram notation [11], which
we present in Figure 3. A component is a definable software
artifact. A server component provides an interface. A client
component uses an interface. If a client’s required interface
and a server’s provided interface are compatible, they can be
connected. Then, the client uses the server.

Connections of components are differentiated between tight
couplings and loose couplings. Tight coupling exploits depen-
dencies and relations between the server and the client; the
connected components are not supposed to be exchanged. A
loose coupling minimizes dependencies and relations between
client and server to a well-defined specification of the inter-
face; loosely coupled components tend to be exchangeable.
In real life, couplings are not clearly the one or the other.
Rather, real couplings distribute in a continuum with ideal
loose coupling on one end and with ideal tight coupling on
the other end. The distinction is made, whether an instance
is more the one or the other.
Loose couplings are the subject of interoperability. Inter-

operability is a field of active research. The most exhaustive,
recent survey we know of was done by Manso et al. [17]. They
declare seven levels of interoperability: technical, syntactic,
semantic, pragmatic, dynamic, conceptual, and organiza-
tional. In our context it is sufficient to stick with a three
level hierarchy of interoperability [16], which we briefly in-
troduce as follows:

client intermediary

 interface A

server

 interface A

Figure 4: An instrumented connector has an intermediary
component in the connection between client and server.

Syntactic interoperability is data exchange with a com-
mon set of symbols to which a formal grammar applies.

Semantic interoperability is information exchange with
a shared, common vocabulary for interpretation of the
syntactic terms.

Pragmatic interoperability is contextual exploitation of
applications and services through shared knowledge.

An interface definition covers a subset of the interoperability
hierarchy. Most interface definitions in computer science, es-
pecially application programming interfaces’ documentations
focus on syntactic and semantic interoperability. Software
developers usually delegate technical interoperability to elec-
trical engineers, who design computer chips and network
links. The upper half of the interoperability hierarchy usu-
ally is in the responsibility of software project’s stakeholders.
The specification of OpenGL2 defines syntax through func-
tion signatures together with a finite state machine and it
defines semantics through human readable documentation
for modules and functions.

2.2 Instrumented Interfaces
Instrumented connectors are a popular design pattern in

engineering. For example in the domain of computer science,
the Decorator, Proxy, and Composite design patterns [7]
are object oriented interpretations of the instrumentation
pattern. Given a connected client and server, a component
commonly known as intermediary is inserted into the con-
nector. The intermediary is the client’s new server and the
server’s new client. Thus, an intermediary provides and re-
quires the interface that connects the client and the server.
Figure 4 depicts an instrumented connector. Instrumenta-
tion adds functionality to a given system. Thus, it can serve
many purposes: Most instrumented connectors inspect the
connector while the system is running; often, just like in our
application scenario, connectors are instrumented to modify
the behavior of the system [8].
Based upon the property that ideal loosely coupled com-

ponents are interchangeable, Grechanik et al. [10] state, that
an instrumented connector should be non-invasive and idem-
potent. They define an instrumented connector non-invasive,
if it is undetectable in a connector’s implementation. In to-
day’s complex world of software products with multi project
source code bases, embedded scripting languages, and the
“code is data” paradigm, Grechanik’s definition is hard to
decide for any real example. Therefore, we propose a prag-
matic definition: An instrumented connector is non-invasive,
if it works with proprietary client and server. Note that
a free simulation model and script interpreted by propri-
etary infrastructure still builds up a proprietary software

2The Khronos Group provides the specification of OpenGL
in a set of documents on their website (http://www.opengl.
org/documentation/specs/).
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Figure 5: If intermediaries are idempotent, then they can be
chained.
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Figure 6: When a subset of the interface is instrumented,
the remainder of the interface should be kept available to
preserve interoperability between client and server.

product. If intermediaries can be chained because they have
equal import and export interfaces and because they are
non-invasive, then they are called idempotent [10]. Figure 5
shows chained intermediaries. We stick with Grechanik’s
definition of idempotency together with our adapted under-
standing of non-invasiveness. In our opinion, idempotency
is the definite criterion whether a component matches the
instrumentation pattern.
Interfaces can be composed of interfaces and conversely

be part of other interfaces. OpenGL’s formal interface def-
inition indicates several decompositions. For example the
notorious OpenGL extensions are self-contained subsets of
the interface. In our application example in Section 1.1, we
outline the instrumentation of a minimal interface subset,
which consists of one function. Ideally, an instrumentation
technique should be able to put an intermediary into a rele-
vant subset of the interface while it keeps the remainder of
the interface available to preserve interoperability between
client and server. Figure 6 illustrates our requirement for
interface subset instrumentation.
An intermediary not necessarily restricts to a singular,

well defined interface. Sometimes, the intermediary should
implement behavior that is interleaved between multiple in-
terfaces. In our application scenario in Section 1.1, we want
to interleave the behavior of two interfaces: the database
application programming interface and the OpenGL applica-
tion programming interface. If one intermediary instruments
more than one connector, we call this multiple interface in-
strumentation. Figure 7 illustrates an intermediary, which
implements cross-cutting functionality on multiple interfaces.

2.3 OpenGL on Microsoft Windows
OpenGL is part of MS Windows’ software development en-

vironment. The OpenGL application programming interface
is provided for all languages of Microsoft Visual Studio (e.g.,
C/C++, C#, Java). Because .NET and other script lan-
guages are built on top of the C/C++ toolchain, we constrain
our discussion to the latter.
Developers and compilers access the syntactical interface

client intermediary

 interface A

server A

 interface A

Server B

 interface B interface B

Figure 7: If the behavior of multiple connectors should be
interleaved, they have to be instrumented with one interme-
diary.

definition of OpenGL through the gl/gl.h header file. The
source code of the simulation software contains requests of
OpenGL functions based upon the function definitions from
the header file. At the time of this writing the OpenGL
specification3 defines 2269 functions. The windowing sys-
tem interface to the Microsoft Windows implementation of
OpenGL (WGL4) adds 131 function definitions. Thus, an
OpenGL application on Windows has access to a repository
of 2400 functions. Microsoft Windows’ OpenGL implementa-
tion is determined to be compatible with OpenGL version 1.1.
Hence, the 2400 functions divide into three sets: 357 core
functions, 1671 extension functions, and 372 alias functions.
Core functions are directly accessible C/C++ routines. For
extension functions the signature only is declared. A client
has to request the procedure’s entry point via the wglGet-

ProcAddress function [20] before it can invoke the extension
function. The server is not obligated to provide all extension
functions; it might return the NULL value to indicate, that a
particular extension function is not supported. Alias func-
tions are identifiers that actually refer to one of the core or
extension functions.
Windows establishes several abstraction layers between

OpenGL client software and OpenGL server implementa-
tions (see Figure 8). During the compilation of the software,
the compiler translates source code symbols to library sym-
bols. In the linker step, the library symbols are resolved,
so that the final binary executable image contains binary
function code from opengl32.lib together with the simula-
tion’s binary code, which invokes the OpenGL functions. The
opengl32.lib is a stub that redirects core function calls to the
functions exported by the opengl32.dll dynamic library’s
symbol table during runtime. Extension functions are passed
through the wglGetProcAddress function as it is stubbed by
the static library likewise. While the linked functions of the
static library are integral part of the simulation software,
the dynamic library is searched, loaded and linked by the
LoadLibrary function [18] during the initialization phase of
the simulation’s runtime. The opengl32.dll dispatches the
application’s function calls to a matching display driver. The
concrete workings of this mechanism are an implementation
detail of Windows’ WGL facility. In our application scenario
it is sufficient to assume that there is one screen that is driven
by one graphics hardware with one display driver.

3We used the OpenGL specification as published on http:
//www.opengl.org/registry/api/gl.spec revision 12819
with the timestamp 2010-11-03 19:02:01.
4We used the WGL specification as published on http://www.
opengl.org/registry/api/wgl.spec revision 10796 with
the timestamp 2010-03-19 17:31:10 and http://www.opengl.
org/registry/api/wglext.spec revision 12183 with the
timestamp 2010-08-06 02:53:05.
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Figure 8: The OpenGL pipeline from a client, which re-
quests visualization routines, to the server, which actually
performs the rendering work, has several levels of indirection
on Microsoft Windows.

2.4 Instrumentation Techniques
In this section, we describe four techniques that plug an

intermediary into a simulation application: relink library, dy-
namic library replacement, virtual display drivers, and binary
interception. We decrease redundancy in the descriptions as
we anticipate an implementation detail that is common to
each of the four instrumentation techniques. Extension func-
tions are accessed through the wglGetProcAddress function.
Therefore, it is sufficient to instrument extension functions
by on-the-fly substitution of function addresses. One instru-
ments the wglGetProcAddress function with an implementa-
tion, which returns intermediary’s extension functions to the
client and stores server’s extension functions for later dele-
gation. The wglGetProcAddress function is a core function.
Thus, in the following it is sufficient to focus on instrumen-
tation of core functions.
An intermediary that uses the relink library technique

(e.g., [5]) is injected during compile time of the client soft-
ware. In its simplest form, which gave the technique its
name, a developer reconfigures the linker not to link the
original opengl32.lib but to link the intermediary static li-
brary instead. The intermediary provides all symbols that
the original library provided. With this simple approach, the
intermediary static library cannot directly utilize the original
static library, because otherwise there would be a name clash
in the linker step. Today, one avoids the name clash issue by
a modification of the relink library technique. A developer
reconfigures the compiler not to use the original header files
but to use intermediary’s header files. The intermediary’s
header files define the OpenGL API for the client’s source
code but link to distinct symbols for the intermediary’s static
library instead. The implementation of the intermediary uses
original header files, which link to the original static library.
Throughout this paper, the shorthand term “relink library”
refers to the latter, improved relink library technique.

An intermediary that uses the dynamic library replace-

ment technique (e.g., [9, 15, 21, 22, 24], esp. [12]) is injected
when the client software attempts to load the opengl32.dll

dynamic library. The execution environment of the client pro-
cess is configured, so that the call LoadLibrary("opengl32")
does not load the original dynamic library but loads the
intermediary dynamic library. For this, either the operating
system’s dynamic library is replaced on the file system; or
the intermediary’s dynamic library is in a place of LoadLi-

brary’s search sequence [18] prior to the original one. The
intermediary library has to keep a reference to the location of

the original dynamic library. If the library is replaced on the
file system, the intermediary dynamic library loads the origi-
nal library with the qualified path to the original library’s
backup. If the library has been put into LoadLibrary’s search
sequence, the intermediary library loads the original library
with the qualified path to the original dynamic library in the
operating system installation. The intermediary then uses
the symbols from the original dynamic library, which was
loaded by qualified path, to invoke the original server.
A virtual display driver (e.g., [1, 2, 23], esp. [25]) is

injected through the display driver framework of the operat-
ing system. The operating system maps displays to device
drivers. The virtual display driver mimics a display. Client
software that is executed on a virtual display is associated
with the underlying virtual display driver. The virtual display
driver invokes the original server through a proxy process,
which is spawned on the display that is associated with the
original display driver.
The technique of binary interception was designed by

Hunt and Brubacher [13] with the intention to instrument and
extend proprietary software. The intermediary manipulates
the software’s binary image during runtime. For each func-
tion that should be instrumented, the intermediary installs a
detour. The installation procedure for a function overwrites
the first bytes of the server’s function with bytecode, which
detours the execution path to the intermediary’s function.
When the client invokes an intercepted server’s function, the
overlaid detouring code is executed instead of the original
code. In effect, the client invokes the intermediary’s function.
The installation procedure produces a so-called trampoline,
which keeps the original server’s function available. The
trampoline contains a backup of the server function’s byte-
code that was overwritten during installation of the detour
and additional bytecode that repatriates the execution path
to the unmodified remainder of the server function’s byte-
code. In effect, invocations of the trampoline delegate calls
to the server.

3. EVALUATION
In this section, we evaluate the four instrumentation tech-

niques, which we introduced in Section 2.4, with the prop-
erties that we developed in Section 2.2. Because the instru-
mentation of extension functions is common to all of the four
techniques, we anticipate its evaluation. We assume that the
wglGetProcAddress core function is instrumented. If a subset
of the extension functions should be instrumented, the inter-
mediary substitutes the procedure addresses in the subset;
in the remainder, it passes through the original addresses.
The instrumentation of extension functions is not related to
the instrumentation of interfaces other than OpenGL. There-
fore, it has no effect for a technique’s ability to instrument
multiple interfaces. If a chained intermediary uses an instru-
mented wglGetProcAddress function, it substitutes and uses
the procedure addresses to instrumented extension functions,
which are provided by the preceding intermediary. Thus,
instrumentation of extension functions through procedure
address substitution does not break idempotency. Hence,
without loss of generality, we focus on the instrumentation
of core functions, when we evaluate the four techniques in
the following.

The relink library technique requires access to the client’s
code base. Thus, it is not possible to instrument proprietary
clients with this technique. For the instrumentation of an
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Figure 9: Dynamic library replacement and virtual display
drivers do not inherently support instrumentation of subset
interfaces. They need passthrough functions as workaround.

interface subset, the injected header file redefines the relevant
symbols only. Functions that should not be instrumented are
duplicated from the original OpenGL header file, which puts
the original server’s core functions into effect. Thus, it is
easy to instrument a subset. If multiple injected header files
point their symbols to the same software artifact, they instru-
ment multiple interfaces with one monolithic intermediary.
Thus, the relink library technique allows for instrumentation
of multiple interfaces. An intermediary’s implementation
generally uses the original OpenGL header file to delegate
calls to the original server. If one intermediary’s header file
is injected into another intermediary’s implementation, then
the latter one delegates its calls to the first one. Thus, the
relink library technique is idempotent.

Dynamic library replacement does not require access
to the client’s code base. Hence, it is suited for proprietary
simulation software. The intermediary has to provide all func-
tions of the OpenGL API to preserve interoperability with the
client. For core functions that should not be instrumented,
the intermediary has to export symbols for passthrough func-
tions. Figure 9 illustrates how passthrough functions are
used to pad the interface. Thus, instrumentation of an in-
terface’s subset is possible. The interface provided by a
dynamic library is well defined. Therefore, instrumentation
of multiple interfaces with dynamic library replacement re-
quires injecting distinct dynamic libraries for each of the
multiple interfaces. These separate dynamic libraries, which
are loaded into the process, frame a distributed system as
depicted in Figure 10, which produces its own additional
interoperability issues. Thus, we notice that instrumentation
of multiple interfaces through dynamic library replacement
is possible but elaborate and error prone. The chaining of
proprietary intermediaries is limited by the way, how the
library loader works. First, the intermediary only can be
applied if the client does not reference the OpenGL dynamic
library through a fully qualified path. Then, the intermediary
references the original server through its fully qualified path.
If we apply more than one intermediary, then one of them
comes into effect first. This prioritized intermediary directly
loads the original server through the fully qualified path,
which effectively skips the other intermediaries. Figure 11
illustrates how one intermediary disables other intermediaries
through a short circuit to the original server. Thus, dynamic
library replacement is not idempotent.

Virtual display drivers do not require access to the
client’s code base. Thus, virtual display drivers work with
proprietary OpenGL clients and are non-invasive. If a virtual
display driver instruments a subset of the interface, it still has
to provide all other functions of the interface, because other-
wise interoperability with the client would break. Therefore,

simulation 

software
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profiler

DB API

database

DB API

graphics 

pipeline

OpenGLOpenGL profiler‘s 
visualization

?

Figure 10: Dynamic library replacement and virtual dis-
play drivers do not inherently support instrumentation of
multiple interfaces. They need distributed intermediaries
as workaround, which produces additional interoperability
issues.
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Figure 11: If dynamic library replacement is not done care-
fully, chained intermediaries break with a short circuit to the
original dynamic library.

it has to implement passthrough functions for the remainder
of the core interface as depicted in Figure 9. Thus, interface
subset instrumentation is not inherently supported but possi-
ble. Whether virtual or not, a display driver provides display
functionality. If multiple interfaces should be instrumented,
each function that is not related to display drivers has to
be handled by another intermediary than the virtual display
driver. Comparable to multiple interface instrumentation
with dynamic library replacement, this introduces a dis-
tributed system of intermediaries, which produces additional
interoperability issues (see Figure 10). Thus, virtual display
drivers are not suited for multiple interface instrumentation.
An intermediary virtual display driver spawns a proxy client
application on another server’s display. Whether the server is
the original server or a chained intermediary virtual display
driver makes no difference. Thus, virtual display drivers are
idempotent.

The binary interception technique does not require ac-
cess to the client’s code base. Therefore, it can be used
with proprietary simulation software. The instrumentation
of an interface’s subset is easy. One installs detours for every
function that should be instrumented. The other functions,
which should not be instrumented, remain untouched. A
detour can be installed for every function that is provided by
any server. One monolithic intermediary can install detours
into an arbitrary interface inside the running process. Thus,
the instrumentation of multiple interfaces is easy, too. In
Section 2.4 we describe instrumentation through binary in-
terception for the first intermediary. We show idempotency,
as we assume, that there are already detours installed. The
installation of yet another detour exactly overwrites the old
detouring code with new detouring code. The new trampo-
line contains the detouring code of the previous intermediary



56

International Workshop on Digital Engineering 2011

technique proprietary client interface subset multiple interfaces idempotency

Relink Library – – ++ ++ ++

Dynamic Library Replacement ++ + – –

Virtual Display Driver ++ + – ++

Binary Interception ++ ++ ++ ++

Table 1: The instrumentation techniques’ strengths and weaknesses in a shorthand comparison. The symbols are used as
follows: (++) the technique inherently supports the feature; (+) the technique needs a workaround to support the feature;
(–) the technique basically supports the feature with severe restrictions; (– –) the feature is inherently not supported by the
technique.

in its bytecode backup. In effect, a client’s call gets detoured
to the last installed intermediary. An intermediary’s trampo-
line function invokes the detouring code of the intermediary
that was installed previously. This pattern continues until
the execution path arrives at the first installed intermedi-
ary. The first installed intermediary’s trampoline contains
the original server’s function. Thus, binary interception is
idempotent.

We recapitulate our results in Table 1. The relink library
technique does not work with proprietary simulation software
as OpenGL client. With dynamic library replacement it is
hard to instrument multiple interfaces. Moreover, it is nearly
impossible to achieve idempotency for proprietary interme-
diaries with dynamic library replacement. Virtual display
drivers do not support instrumentation of interfaces that
are not related to display functionality. Binary interception
fulfills all declared requirements.

4. CONCLUSION AND OUTLOOK
In this paper, we define an application scenario, which we

believe resembles the near future of pragmatically interoper-
able, distributed interactive simulations. Instrumentation of
the OpenGL API is a basic technology in this application sce-
nario. We identify requirements, which an instrumentation
technique should fulfill to be useful in a proprietary software
environment and to scale for various purposes. We describe
four techniques for instrumentation of OpenGL: relink li-
brary, dynamic library replacement, virtual device drivers
and binary interception. We argue that binary interception
is the best available technology.
Today, binary interception is primarily used in malicious

software and for game cheating. The experiments and prod-
ucts for instrumented OpenGL that we know of use the other
three techniques that we outlined. The shortcomings of these
three techniques, as documented in Section 3, restrict exist-
ing products to niches. We argue that binary interception is
useful for the instrumentation of OpenGL. The next step is
to provide an experiment, where binary interception is used
for a complete computer graphics application with useful be-
havior in the intermediary. The following paragraphs outline
our preliminary plans in doing so.
Based upon the research presented in this paper, we will

implement a prototypical software using the Generative Pro-
gramming Paradigm [4]. The OpenGL API’s formal specifi-
cation5 will be input to a generative build process. Therefore,

5The Khronos Group provides a formal specification of
OpenGL in their registry at
http://www.opengl.org/registry/.

it will be easy to generate new versions of the software when
new OpenGL versions are released. We already encapsu-
lated Microsoft Research’s C-based Detours library6 into
typesafe C++ classes. This keeps implementation efforts
for additional detours low. The low implementation effort
is accompanied by the fact, that debugging the intermedi-
ary is hassle-free. An intermediary’s runtime performance
is dominated by its inner functionality. Our preliminary
experience shows, that the cardinal bottleneck is bandwidth
consumption when the OpenGL command and data stream
is transmitted between processes.

On our way to pragmatical interoperability, as exemplified
in the application scenario, the main research question is
interoperability between OpenGL streams from different ap-
plications. In preliminary experiments we instrumented appli-
cations from the NeHe OpenGL tutorials7, the KUKA.Sim8

robotics simulation suite, and Bitmanagement’s BS Contact9

generic VR-platform. With these applications, which use tra-
ditional, geometry-based rendering techniques, we adjusted
camera parameters and excavated background graphics. We
are curious, how it will work out with shader-based render-
ing techniques. We will discuss interoperability of OpenGL
command streams in our future work. Then, we will be
able to show, whether OpenGL opens up interactive three-
dimensional graphics as pragmatic interoperability platform.
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Technologies for E-Learning and Digital Entertainment,

volume 3942 of Lecture Notes in Computer Science,
pages 797–800. Springer Berlin / Heidelberg, 2006.
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