
L

Control Language

Advanced Process

Manager

Reference Manual

AP27-410

L

Implementation

Advanced Process Manager - 2

Control Language
Advanced Process Manager

Reference Manual

AP27-410

7/93

Copyright, Trademarks, and Notices

Printed in U.S.A. — © Copyright 1992 by Honeywell Inc.

Revision 02 - July 23, 1993

While this information is presented in good faith and believed to be accurate,
Honeywell disclaims the implied warranties of merchantability and fitness for a
particular purpose and makes no express warranties except as may be stated in its
written agreement with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or consequential
damages. The information and specifications in this document are subject to
change without notice.

CL/APM Reference 7 / 9 3

About This Publication

This publication provides reference information about the Honeywell Control Language for
the Advanced Process Manager (CL/APM).

This publication supports TDC 3000 software releases 400 through 410.

Change bars are used to indicate paragraphs, tables, or illustrations containing changes
that have been made by Document Change Notices or an update. Pages revised only to
correct minor typographical errors contain no change bars. All changes made by
previous Document Change Notices have been incorporated in this update.

CL/APM Reference 7 / 9 3

Table of Contents

CL/APM Reference i 7 / 9 3

1 INTRODUCTION

1.1 Purpose
1.2 References
1.2.1 General CL/APM Information
1.2.2 Publications with CL-Specific Information
1.3 CL/APM Overview

2 RULES AND ELEMENTS OF CL/APM

2.1 Introduction to CL/APM Rules and Elements
2.2 CL/APM Rules and Elements
2.2.1 Character Set Definition
2.2.2 Spacing
2.2.3 Lines
2.2.4 Syntax (Summary is in Appendix A)
2.2.5 CL/APM Restrictions
2.2.6 Comments
2.2.7 Identifiers
2.2.8 Numbers
2.2.9 Strings
2.2.10 Special Symbols
2.3 CL/APM Data Types
2.3.1 Number Data Type
2.3.2 Time Data Type
2.3.3 Discrete Data Types
2.3.4 Arrays Data Type
2.3.5 String Data Type
2.3.6 Data Points Data Type
2.4 APM Data Points
2.4.1 Process Module Data Point
2.4.2 Box Data Point
2.5 Accessing APM Parameters
2.5.1 Local Variable Parameter Access
2.5.2 Bound Data Point/External Data Point Parameter Access
2.5.3 Hardware Addressing Name Form Parameter Access
2.5.4 Box Data Point Parameter Access
2.5.5 I/O Module Prefetch Limits
2.5.6 I/O Module Poststore
2.6 Variables and Declarations
2.6.1 Variables and Declarations Syntax
2.6.2 Local Variables
2.6.3 Local Constants
2.6.4 External Data Points
2.7 Expressions and Conditions
2.7.1 Expressions
2.7.2 Arithmetic and Logical Expressions
2.7.3 Time Expressions
2.7.4 Conditions

Table of Contents

CL/APM Reference ii 7 / 9 3

3 CL STATEMENTS

3.1 Introduction
3.2 Program Statements Definition
3.2.1 Program Statements Syntax
3.2.2 Statement Labels
3.2.3 SET Statement
3.2.4 READ and WRITE Statements
3.2.5 STATE CHANGE Statement
3.2.6 ENB Statement
3.2.7 GOTO Statement
3.2.8 IF, THEN, ELSE Statement
3.2.9 LOOP Statement
3.2.10 REPEAT Statement
3.2.11 PAUSE Statement
3.2.12 WAIT Statement
3.2.13 CALL Statement
3.2.14 SEND Statement
3.2.15 INITIATE Statement
3.2.16 FAIL Statement
3.2.17 RESUME Statement
3.2.18 EXIT Statement
3.2.19 ABORT Statement
3.2.20 END Statement
3.3 Embedded Compiler Directives
3.3.1 Embedded Compiler Directives Syntax
3.3.2 %PAGE Directive
3.3.3 %DEBUG Directive
3.3.4 %INCLUDE_EQUIPMENT_LIST Directive
3.3.5 %INCLUDE_SOURCE Directive

4 CL/APM STRUCTURES

4.1 Sequence Program Definition
4.1.1 Sequence Program Syntax
4.1.2 Sequence Program Description
4.1.3 SEQUENCE Heading
4.1.4 PHASE Heading
4.1.5 STEP Heading
4.2 Abnormal Condition Handlers Definition
4.2.1 HANDLER Heading
4.3 Restart Routines Definition
4.3.1 RESTART Heading
4.4 User-Written Subroutines
4.4.1 SUBROUTINE Heading
4.5 Built-In Functions and Subroutines
4.5.1 Built-In Arithmetic Functions
4.5.2 Other Built-In Functions
4.5.3 Built-In Subroutines

Table of Contents

CL/APM Reference iii 7 / 9 3

APPENDIX A CL/APM SYNTAX SUMMARY

A.1 Syntax (Grammar) Summary
A.2 Syntax Diagram Summary
A.3 Notation Used for Syntax Production Rules
A.4 CL/APM Syntax Production Rules

APPENDIX B CL SOFTWARE ENVIRONMENT

B.1 References to Control Functions Publications
B.2 CL/APM Capacities
B.3 CL/APM Differences from CL/PM
B.4 Items Affecting Object Code Size

INDEX

CL/APM Reference iv 7 / 9 3

CL/APM Reference 1 - 1 7 / 9 3

1

INTRODUCTION
Section 1

This section tells you what this manual is about and refers you to other TDC 3000 publications for
information related to CL.

1.1 PURPOSE

This publication provides reference information about Honeywell's Control Language for
the Advanced Process Manager (CL/APM). CL/APM is used to build custom-control
strategies that cannot be accommodated by standard TDC 3000 PV/Control Algorithms.
CL/APM contains many similarities to the other TDC 3000 control languages—especially
to CL/PM—but it also contains much that is unique to the construction of sequences for the
Advanced Process Manager. See Appendix B.3 for a summary of CL/APM differences
from CL/PM.

This manual does not provide instruction on how to transform a particular control strategy
into a CL/APM structure; rather, it outlines the rules and describes all the components that
can be used to build a CL/APM structure that will execute your control strategy.

This manual assumes that you are a practicing control engineer with knowledge of
TDC 3000 product capabilities—specifically, the Advanced Process Manager (APM) and
the data points that reside in it. You should also have an operational knowledge of the
Universal Station's TEXT EDITOR and the COMMAND PROCESSOR and DATA
ENTITY BUILDER functions available through the Engineer's Main Menu.

Sometimes, in order to make a concept more easily understood, an analogous concept in
another programming language (such as Pascal or FORTRAN) is used. If you are not
familiar with either of these languages, you can ignore the comments relating to them
without eliminating any substance related to CL/APM.

1.2 REFERENCES

Because this manual primarily describes the elements and rules with which CL/APM
structures are built, other publications are necessary to gain a complete knowledge of how
CL/APM relates to the rest of TDC 3000 (in other words, how to implement a CL/APM
structure once it is written). It is recommended that you read the following publications (at
least the material under heading 1.2.2) before using this manual.

1.2.1 General CL/APM Information

Information Directory, SW01-400, in the System Summary binder—Tells which
publications contain information on CL/APM.

Control Language/Advanced Process Manager Data Entry, AP11-400, in the
Implementation/Advanced Process Manager - 2 binder—Tells how a CL/APM structure is
configured into the TDC 3000 System.

CL/APM Reference 1 - 2 7 / 9 3

1.2.2

Configuration Data Collection Guide, SW12-400, in the Implementation/Startup &
Reconfiguration - 2 binder—Information in this publication ensures that you have collected
the required data for implementing a CL/APM structure.

1.2.2 Publications with CL-Specific Information

Advanced Process Manager Control Functions and Algorithms, AP09-400, in the
Implementation/Advanced Process Manager - 2 binder—Describes the TDC 3000 On-Line
Control Software and strategies that may include CL/APM structures. Includes discussions
of data points that contain CL structures and run time information, such as parameters the
operator interacts with to monitor/control CL execution.

Process Operations Manual, SW11-401, in the Operation/Process Operations binder—
Section 6 describes the procedure to load a compiled CL/APM Sequence program to a
Process Module Data Point residing in an Advanced Process Manager.

Data Entity Builder Manual, SW11-411, in the Implementation/Engineering Operations - 1
binder—Describes how to use the Data Entity Builder to configure data points including
Process Module Data Points in an APM.

Text Editor Operation, SW11-406, in the Implementation/Engineering Operations - 1
binder—Describes how to use the Text Editor to enter CL structures (CL source files).

1.3 CL/APM OVERVIEW

CL/APM structures can be used to build a custom-control strategy to augment or replace
standard TDC 3000 algorithms. The CL/APM structures are the Sequence Program,
Abnormal Condition Handlers, and Subroutines.

NOTE

Structures can be independently compiled and sometimes are referred to as compilation
units.

The following are the general steps required to build and implement a CL/APM structure
(refer to heading 1.2, REFERENCES, for publications associated with the BOLD-
FACED functions in the following steps). A complete description of these steps is given
in the Control Language/Advanced Process Manager Data Entry, AP11-400.

1. Use the DATA ENTITY BUILDER (DEB) to configure (build) all APM data
points associated with the CL/APM structure(s).

2. Use the Universal Station's TEXT EDITOR to create the CL/APM source file(s).

3. Use CL in the Command Processor on the US to compile the CL/APM structure.
Compiling your source code turns it into an object file that can be executed in an APM.

4. Use the Process Operations Personality (Process Module Detail Display) to load the
Sequence program to a Process Module Data Point in an APM.

CL/APM Reference 2 - 1 7 / 9 3

2

RULES AND ELEMENTS OF CL/APM
Section 2

This section introduces you to the fundamental building blocks of CL/APM.

2.1 INTRODUCTION TO CL/APM RULES AND ELEMENTS

CL/APM, like any language, has certain characteristics that allow you to do certain things,
while not allowing other things. For instance, comparing the characteristics of the English
language with analogous characteristics in CL/APM, one arrives (roughly) at the following:

ENGLISH CL/APM

grammar syntax, rules

characters characters

words, phrases data types, variables, declarations,

clauses expressions, conditions

sentences statements (simple command or instruction
to manipulate an element)

paragraph step or phase

story, essay sequence program

Heading 2.2 describes the basic rules (grammar) and elements (words) of CL/APM. The
remainder of this section (headings 2.3, 2.4, and 2.5) describe more complex elements of
CL/APM (that is, the "phrases" and "clauses" of CL/APM). After reading this section, you
will be able to go to Section 3 and construct statements (sentences) using the building
blocks from this section and the syntax governing statement construction.

In general, the description of each element (this section), statement (Section 3), and
structure (Section 4) is presented in a 4-part format, as follows:

Definition—a brief "what is it" discussion.

Syntax—elements, statements, and structures are built following the specific form
specified by the syntax. Another word for syntax is grammar, as previously mentioned.
The form of anything you want to build in CL/APM must exactly follow the syntax, so
that its structure can be compiled without syntax errors. Heading 2.2.4 in this section
discusses the way in which the syntax for an element, statement or structure is presented.
Appendix A contains a syntax summary for all elements, statements, and structures
covered in this manual.

CL/APM Reference 2 - 2 7 / 9 3

2 .2

Description—applies to most, but not all elements, statements, or structures; a
description explains less obvious attributes in more detail; for example, complex syntax
or any restrictions that may apply.

Examples—contains typical uses of the element, statement, or structure, with incorrect
uses included for contrast.

2.2 CL/APM RULES AND ELEMENTS

This subsection explains the rules and basic elements (or building blocks) that are used
when building complex elements (Data Types, Variables and Declarations, Expressions and
Conditions), or CL/APM Statements and Structures.

2.2.1 Character Set Definition

The CL/APM character set is composed of the 95 printable characters (including blank) of
ASCII.

Compatibility with the ISO 646 standard is discussed in heading 2.2.5.2.

Characters can be combined to generate the following basic elements:

• Comments

• Identifiers (including reserved words; see heading 2.2.7.4—Reserved Words
Definition)

• Numbers

• Quotes

Basic elements are further combined to produce complex elements such as data types,
variables and declarations, and expressions and conditions. The complex elements are then
used within statements (Section 3) and the statements are combined to build structures
(Section 4).

2.2.2 Spacing

Adjacent elements can be separated by any number of spaces. Spaces are required between
elements to prevent confusion; that is, at least one space must separate adjacent identifiers
or numbers. Spaces cannot appear within an element other than in quotes and comments.

CL/APM Reference 2 - 3 7 / 9 3

2.2.3

2.2.3 Lines

Your structure, whether you write it out on paper first or enter it into a file at the Universal
Station using the Text Editor, consists of a sequence of lines. (Lines are also called
source lines; the source code is what the compiler uses to create executable object code.)
The following applies to the construction of source lines.

No basic element can overlap the end of a source line. Complex elements can continue
onto succeeding source lines.

A statement (Section 3) can be continued onto successive lines. Each continuation line
must have the ampersand character (&) in its first column. The end of the preceding line
and the continuation character are treated as spaces.

A statement can start at any column on a line, subject to the restrictions stated in this
section. Indentation is optional; refer to the sample structures in Section 4 for an idea of
what good indentation techniques can do for the readability of a structure.

Each statement must begin on a new line, unless it is embedded in another statement (such
as IF, ELSE, or a WHEN ERROR clause).

Lines may be blank. Blank lines and comment lines cannot appear between continuation
lines.

Continuation Line Examples—The following examples show valid use of
continuation lines:

 SEQUENCE good (APM;

& POINT

& APM01S01)

 PHASE

& one

 IF NN(01) > 10.0 THEN (SET NN(01) = 10;

& SET NN(02) = 9.5)

 ELSE set FL(01) = on --NOTE: no continuation for ELSE

 label1:

& EXIT

 END good

The following examples are all invalid:

 SEQUENCE bad (APM; POINT APM01

& S01) --identifier can't span lines

 PHASE one

 SEND "str

& ing one" -- String can't span lines

 label1:

exit -- must use continuation here

 IF NN(01) > 10.0 THEN (SET NN(01) = 10;

 SET NN(02) = 9.5) -- must use continuation here

 END bad

CL/APM Reference 2 - 4 7 / 9 3

2.2.4

2.2.4 Syntax

Because the syntax definition is part of the discussion of most elements, statements, and
structures, you should become familiar with how the syntax is presented.

The syntax for each element, statement, and structure is presented along with its discussion
in diagram form. The syntax diagram is entered on the left side with the name of the item
shown in reverse-video/bold lettering. Follow the arrows to build the item, looping back
optionally, or when necessary (for example, to build an ID, you must loop back through
letter or digit for as many times as required to produce the ID String), until you exit the
diagram on the right.

Syntax diagrams have three different symbols with text in them: rectangles, rectangles with
curved ends, and circles. Items in rectangles refer to a syntax diagram in another part of
the manual. Rectangles with curved ends are reserved words in CL/APM and must be
written EXACTLY as shown. Items in circles are usually arithmetic operators and
delimiters that must be included EXACTLY as shown when building a complex item such
as an expression or a CL/APM Statement.

A summary of CL/APM syntax for all elements, statements, and structures in both syntax
diagram form and in BNF is found in Appendix A.

2.2.5 CL/APM Restrictions

This section lists the restrictions placed on the language by either the CL compiler or some
other element of the TDC 3000 System.

2.2.5.1 Lengths of Identifiers and Messages

The following restrictions are imposed by the TDC 3000 Universal Station:

• These types of identifiers (see heading 2.2.7) can be no longer than eight characters.

– Parameter identifiers
– Sequence program identifiers
– Phase, Step, Subroutine, and Handler identifiers
– Enumeration-state identifiers

• The length of a data point identifier depends on the tagname size option selected under
the the TAG NAME OPTIONS menu, which is accessed from the SYSTEM WIDE
VALUES menu.

- SHORT tagname size = 8-character maximum for data point identifiers
- LONG tagname size = 16-character maximum for data point identifiers.

• Messages sent to the Operator Station can be no longer than 60 characters.

• Local enumeration states can be up to 64 characters long.

CL/APM Reference 2 - 5 7 / 9 3

2.2.5

2.2.5.2 ISO 646 Compatibility

The CL/APM character set is compatible with the international standard ISO 646 character
set, of which ASCII is a variant. Certain character positions in the ISO 646 character set
are permitted to vary for national use (see Table 2-1). Of these, CL/APM uses only the
dollar sign.

Characters can be identified by their position (column/row) in the ISO 646 Basic Code
Table (similar to an ASCII code chart). Several national variants of ISO 646 use character
positions 4/0, 5/11 through 5/14, 6/0 and 7/11 through 7/14 as alphabet extensions such as
accented or umlauted characters. Such characters cannot be used as alphabetics in
CL/APM. (They can be used in Strings and comments.)

When the characters comma (,), quotation mark ("), apostrophe ('), grave accent (`), or
upward arrowhead (^) are preceded or followed by a backspace, ISO 646 prescribes that
they be treated as diacritical signs (for example, accents); however, CL/APM does not
respect this use. The grave accent and upward-arrowhead characters are not permitted
outside of Strings and comments.

Table 2-1 — Variable Characters in ISO 646

Position (col/row) ASCII Comments

2/3 # also pound-sterling sign

2/4 $ also currency sign

4/0 @ varies

5/11 [varies

5/12 \ varies

5/13] varies

5/14 ^ varies sometimes

6/0 ` varies sometimes

7/11 { varies

7/12 | varies

7/13 } varies

7/14 ~ varies sometimes,
also: overline

CL/APM Reference 2 - 6 7 / 9 3

2.2.6

2.2.6 Comments

A comment begins with a double hyphen (--) and is terminated by the end of the source
line. Comments can be seen in examples throughout this manual. A comment is not
continued onto a continuation line, but a new comment can appear on each of several
continuation lines.

2.2.6.1 Correct Examples of Comments

-- A long introductory comment should be written like

-- this, with a separate "--" on each line.

LOCAL numarr: -- Individual comments

& NUMBER array (1..3) -- may be placed on each

& AT NN(01) -- continuation line

2.2.6.2 Incorrect Examples of Comments

-- This is a long comment such as you might use

& to prefix a subroutine. It is faulty because

LOCAL num at NN(01) -- a comment cannot

& span source lines

2.2.7 Identifiers

Identifiers are used as the names of all kinds of objects in CL/APM: variables and
constants, data types, program labels, data point names, etc. The keywords of CL/APM
are also identifiers.

2.2.7.1 Identifiers Syntax

letter

digit

digit

'

_

$

$

letter

digitid

3756

CL/APM Reference 2 - 7 7 / 9 3

2.2.7

2.2.7.2 Identifiers Description

Identifiers are composed of the dollar sign ($), alphabetic characters (A to Z, and a to z),
numeric characters (0 to 9), and the break character (underscore or underbar (_)). Special
identifiers (see heading 2.2.7.5—Special Identifiers Definition) are prefixed with an
apostrophe ('), but the apostrophe is not part of the identifier. An identifier (except for
special identifiers) cannot be a single-digit numeric; a single letter or $ is acceptable but not
recommended.

NOTE

Identifiers beginning with an exclamation mark (!) represent either digital input hardware points
in the APM or a generic representation of the box data point, and have a more restrictive
syntax than described here. Refer to headings 2.4.2.3 and 2.5.3 for further discussion of
these points.

Break characters are used to divide a long identifier so that it can be more easily read. A
break character cannot be the first or last character of an identifier. An identifier cannot
contain two adjacent break characters.

Uppercase and lowercase characters can be used in identifiers, but the distinction between
cases is not significant; that is, each lowercase character is considered the same as its
uppercase counterpart. Within the restriction that no basic element may overlap the end of a
source line, an identifier can be of any length (except as noted in heading 2.2.5.1).

An identifier can begin with or contain dollar signs. This permits references to Honeywell-
supplied standard identifiers (such as Box data point identifiers—see heading 2.4.2), and
other objects whose names begin with or contain dollar signs. Within a CL/APM program,
there is no restriction on using identifiers that begin with dollar signs; however, such
identifiers cannot be used to define any new object that is visible outside the program. Use
of the dollar sign in system-visible object names is reserved to Honeywell.

2.2.7.3 Identifier Examples

VALVE -- a valid identifier

valve -- the same as VALVE

Valve -- same as VALVE and valve

hot_pot -- a valid identifier

hotpot -- NOT the same as hot_pot

hot__pot -- NOT VALID (adjacent breaks)

hot_pot_ -- NOT VALID (trailing break)

_hot_pot -- NOT VALID (leading break)

pump2 -- a valid identifier

2N1401 -- also a valid identifier

14_34_6 -- also valid

14346 -- ok

$abc -- valid identifier, restricted use

$4995 -- also valid, restricted use

!DI02S02 -- digital input module 2, slot 2

!DI0202 -- NOT VALID (missing "s")

!BOX -- box data point of the bound data point

CL/APM Reference 2 - 8 7 / 9 3

2.2.7

2.2.7.4 Reserved Words

Table 2-2 lists the CL reserved (identifiers) words that cannot be redefined by any
structure.

Table 2-2 — CL Reserved Words*

ABORT ENUMERATION KEEPENB READ
ACCESS ERROR LOCAL REPEAT
ALARM EU LOOP RESTART
AND EXIT MINS RESUME
ARRAY EXTERNAL MOD SECS
AT FAIL NOT SEND
BLD_VISIBLE FOR OR SEQUENCE
BLOCK FROM OTHERS SET
CALL GENERIC OUT SHUTDOWN
CUSTOM GOTO PACKAGE STEP
CLASS HANDLER PARALLEL SUBROUTINE
DAYS HELP PARAMETER THEN
DEFINE HOLD PARAM_LIST VALUE
ELSE HOURS PAUSE WAIT
EMERGENCY IF PHASE WHEN
ENB IN POINT WRITE
END INITIATE RANGE XOR

There are also a number of predefined identifiers in CL/APM. These identifiers are not
reserved and can be redefined in a program.

We recommend that you avoid redefining any predefined identifiers, except when the result
would not be confusing.

Predefined identifiers are type names, state names of predefined discrete types, and built-in
function and subroutine names.

Predefined Discrete Types—The following type and its states is predefined:

Logical = Off/On

Alphabetical List—The following is a list of all the predefined identifiers in alphabetical
order.

Abs -- Built-in Function
APM -- Sequence Program Type
Atan -- Built-in Function
Avg -- Built-in Function
Badval -- Built-in Predicate
Cos -- Built-in Function

* Those reserved words listed in Table 2-2 that are used by only CL/AM (e.g., BLOCK) are treated as
reserved for CL/APM compilations as well.

CL/APM Reference 2 - 9 7 / 9 3

2.2.7

Date_Time -- Built-in Function
Equal_String -- Built-in Function
Exp -- Built-in Function
Finite -- Built-in Predicate
Int -- Built-in Function
Len -- Built-in Function
Ln -- Built-in Function
Log10 -- Built-in Function
Logical -- Type name
Max -- Built-in Function
MC -- Sequence Program Type
Min -- Built-in Function
Modify_String -- Built-in Subroutine
Now -- Built-in Function
Number -- Type name and Built-in Function
Number_To_String -- Built-in Subroutine
Off -- Logical state name
On -- Logical state name
PM -- Sequence Program Type
Round -- Built-in Function
Set_Bad -- Built-in Subroutine
Sin -- Built-in Function
Sqrt -- Built-in Function
String -- Type name
Sum -- Built-in Function
Time -- Type name
Tan -- Built-in Function

2.2.7.5 Special Identifiers Definition

If an identifier is directly preceded by an apostrophe ('), that identifier is treated as an
identifier, even though it may be spelled the same as a reserved word or is all numeric.
There must be no spaces between the apostrophe and the identifier.

Except for conflict with reserved words or numbers, a special identifier must follow all the
usual rules. The apostrophe cannot make a bad identifier good. Exception: A single-digit
numeric identifier preceded by an apostrophe (for example, '9) passes the compiler, but is
of questionable use or value.

2.2.7.6 Special Identifiers Examples

LOCAL foo: set/reset at FL(01) -- invalid, SET is reserved

LOCAL bar: 'set/reset at FL(02) -- OK, set is an identifier

EXTERNAL 7 -- invalid

EXTERNAL '7 -- OK

LOCAL ' xyz at NN(01) -- invalid, space follows '

LOCAL 'xyz_ at NN(02) -- invalid, break character, "_",

-- cannot be the last character

-- of an identifier

CL/APM Reference 2 - 1 0 7 / 9 3

2.2.7

2.2.7.7 Conflicts Between Identifiers

Under some circumstances, the same identifier can be used to name more than one thing
without conflict. Under other circumstances, an attempt to reuse an identifier can cause a
compile-time error.

The rules under which an identifier can safely name more than one thing are as follows:

1. There are three groups of identifiers that can be named: data types, objects, and
program units. Two identifiers from the same group cannot have the same name if
they are visible in the same scope. (See rule 2. for a discussion of scopes.) The
identifier group can always be distinguished by the compiler, so a data type name and
a program-unit name (for example) can never cause a conflict, even if they use the
same identifier.

Data Types are
Number
Time
Logical
Enumerations
String

Objects are
Local variables
Local constants
Built in Functions
Arguments
Data Points
Parameters
Enumeration states

Program Units are
Phases
Steps
Labels
Sequence Programs
Abnormal Condition Handlers
Subroutines

Note that Subroutines are program units, but Functions are objects. This means that
a Subroutine can have the same name as a local variable, but a Function cannot.

Note also that data type names do not conflict with object names. This means, for
example, that a parameter can have the same name as its data type. In fact, the names
of TDC 3000 System-defined enumeration types are often the same as the data point
parameters that possess those types. The MODE parameter of the Regulatory Control
Data Point is an example. The MODE parameter is of type MODE enumeration.
Pascal programmers should be aware of this to avoid confusion.

CL/APM Reference 2 - 1 1 7 / 9 3

2.2.8

2. Identifiers do not cause conflict if they are declared in different scopes.

Scopes are
Sequence Programs Abnormal Condition Handlers
Phases Steps
Subroutines

Most things can be declared in only a few of these scopes. For example, a Step can
contain only Label declarations and a Subroutine can contain only Steps and/or Label
declarations.

Scopes can sometimes be nested. A Step can be within a Phase, and a Phase within a
Sequence Program. Local Subroutines of a Sequence Program are considered to be
nested within the Sequence Program; a Subroutine can, in turn, contain Steps.

When two scopes are nested, an identifier in an inner scope hides anything in an outer
scope that has the same identifier and the same class (Program Unit, Data Type, or
Object). For example, a Subroutine argument called X hides any local variable called
X in the main program.

3. The only exception to rule 2 deals with parameters of the bound data point (the
Process Module Data Point specified in the Sequence Heading). Bound data point
parameters appear in every scope, exactly as local variables declared in that scope;
therefore, no object can be declared in any scope that conflicts with the name of any
bound data point parameters.

2.2.8 Numbers

A Number (or Numeric Literal) is an ordinary decimal number, with or without decimal
point, and with an optional exponent.

2.2.8.1 Numbers Syntax

integer integer integer. E

+

-
unsigned

numbers

digitinteger

CL/APM Reference 2 - 1 2 7 / 9 3

2.2.9

2.2.8.2 Numbers Description

Numbers that contain a decimal point must have at least one digit both to the left and to the
right of the decimal point.

A Number that contains a decimal point can also have an exponent. An exponent consists
of the letter E (either upper case or lower case), optionally followed by a plus or minus
sign, followed by one or more digits.

A Number cannot contain spaces or break characters. In particular, spaces between a
numeric literal and its exponent are not permitted.

2.2.8.3 Numbers Examples

1000 -- valid

1000. -- NOT VALID; no trailing digit

1000.0 -- valid; same as 1000

0.5 -- valid

.5 -- NOT VALID; no leading digit

10.02E1 -- valid

10.02e1 -- valid; same as 10.02E1

10.02 e1 -- NOT VALID; embedded space

1234.0E-2 -- valid

1234E-2 -- NOT VALID; no decimal point & trailing digit

1234.0E -2 -- NOT VALID; embedded space

1234.0E+2 -- valid

2.2.9 Strings

A String (or String Literal) is a sequence of zero or more characters enclosed at each end by
quotation marks (").

2.2.9.1 String Syntax

 string

"

Any ASCII Character

Except Quote

" "
"

2.2.9.2 String Description

Any printable character (see heading 2.2.5.2) can appear in a String Literal. If a quotation
mark appears in a String Literal, it must be written twice.

A String Literal can contain a maximum of 64 characters. Literals longer than 64 characters
are truncated to 64 characters by the compiler (with an appropriate user warning).

CL/APM Reference 2 - 1 3 7 / 9 3

2.2.9

2.2.9.3 String Examples

"This is a String" -- a String Literal

"&@$?*! system" -- can contain any printable characters

"" -- the empty String

"He said ""hello""" -- he said "hello"

"A" " " -- two Strings of length 1

"""" -- a string of length 1 (containing only a

-- quotation mark)

2.2.10 Special Symbols

The characters and combinations of characters in Table 2-3 are special symbols:

Table 2-3 — Special Symbols

Symbols Meaning

+ – * / ** Arithmetic operators
< <= > >= <> Relational operators
= Equality, assignment operator
.. Range separator
() Parentheses
: ; . , Punctuation
" String separator
– – Comment separator
& Line continuation
' Special identifier prefix
! First character of special point name form
$ First character of Honeywell reserved names

CL/APM Reference 2 - 1 4 7 / 9 3

2 .3

2.3 CL/APM DATA TYPES

This subsection describes the types of data that CL/APM can manipulate. In CL/APM, all
data types are built into the language. There are two kinds of data types: scalar and
composite.

• Scalar types have no components. They are the built-in types: Number, Time, and
Discrete types (Logical and Enumeration types).

• Composite types are data points (because a data point can have lots of
parameters/components), arrays (again, lots of components), and the built-in type
String.

2.3.1 Number Data Type

All numeric values in CL/APM are of the single type, Number. This type is conceptually a
subset of the real numbers and is internally implemented in single-precision floating point.

There is no separate Integer type in CL/APM; numbers may, of course, have integer
values, and CL/APM built-in functions support truncation and rounding of non-integer
values. In CL, the MOD operator, usually used to obtain the fractional remainder from an
integer division, also can be applied to non-integer values. (In CL, the MOD value is
calculated by subtracting the INT value of a divide result from the divide result.)

When a Standard Parameter of type integer is fetched, CL/APM converts it to a real number
(single-precision floating point). When a number is stored to an integer parameter, the real
number is rounded to an integer before it is stored.

2.3.1.1 Bad Values

In TDC 3000, a number may not always have a well-defined finite value. A numeric value
may instead be Bad, Infinite, or Uncertain.

A bad value is represented by a special bit pattern that does not represent any number. (In
the IEEE floating-point format, a bad value is represented by a NaN.)

A bad value can arise

• when a variable was never initialized or

• as the result of an invalid arithmetic operation; for example,

– magnitude subtraction of infinities
– zero multiplied by infinity
– zero divided by zero
– infinity divided by infinity
– infinity MOD any number
– any number MOD zero
– square root of a negative number

CL/APM Reference 2 - 1 5 7 / 9 3

2.3.1

• because a value read from an external data point was inaccessible (perhaps temporarily)

• or, because an operator or program explicitly chose to store a bad value.

CL supports bad values through the use of

• the predicate Badval(x), which tests the value x to determine whether it is bad

• the subroutine Set_Bad(x), which stores a bad value into the variable x

• the automatic propagation of bad values that take part in any arithmetic operation, such
that if any operation is bad, the result is Bad.

On an attempted store of a bad value to a parameter (by either the SET statement, the
READ/WRITE statement or the SET_BAD subroutine), if a bad value is not a legal value
for the parameter being written to, the sequence program fails with "illegal value error."

Bad value comparisons work as follows in the APM:

• comparison of two values where one is a bad value and the other is a good value
always returns false. For example, if x is a good value and y is a bad value, the
following statements return false:

IF x = y THEN

IF x > y THEN

IF x <= y THEN

etc.

• comparison of two values where both are bad always returns false.

2.3.1.2 Infinite Values

The TDC 3000 numeric-representation format (IEEE floating point) allows for properly
signed infinities, as well as ordinary finite numbers. Infinities are Normal values in TDC
3000 and can participate in arithmetic and be stored in parameters of data points with no
alarms, warnings, or adverse effects on the CL program.

Infinities are propagated through arithmetic, except as described under Bad Values.

New infinities arise

• through division of a nonzero number by zero

• as the result of arithmetic overflow

• or, because a program or operator chose to store an infinite value.

There is no special representation of infinity in CL; rather, any Number whose magnitude
is too large to be expressed as a standard floating-point number (e.g., 1.0e9999) is
represented as a properly signed infinity.

The built-in predicate, Finite(x), is provided to test for infinities; it is defined under heading
2.7.4.5.

CL/APM Reference 2 - 1 6 7 / 9 3

2.3.2

2.3.1.3 Uncertain Values

The PV parameter of an Regulatory Control Data Point can have an uncertain value. Unlike
a bad value, an uncertain value has an actual numeric value and can be arithmetically
manipulated. The status of a PV is maintained in the parameter PVSTS.

PVSTS has three states: NORMAL, UNCERTN, and BAD. It always tracks the value of
the PV. Whenever a bad value is stored into a regulatory point's PV, the accompanying
PVSTS parameter is automatically set BAD.

CL does not automatically propagate uncertain values.

2.3.2 Time Data Type

The Time data type represents an interval of time in the TDC 3000 format. Time values
can be expressed in seconds, minutes, hours, days, or in any combination of these. Time
values less than 1000 days are presented as a duration. Time values of 1000 days or
greater are presented as an absolute time.

The minimum resolution of time is one tenth of a millisecond. However, the minimum
resolution of a CL Time Literal is one second, and the minimum amount of time
addressable with a CL statement is one second. The range of a time value is from -2**31
seconds (in the past) to +2**31 seconds (in the future). (2**31 seconds is approximately
68 years.)

Some other characteristics of time data are:

• Time values are computed by time expressions (see subsection 2.7.3) which are like
arithmetic expressions.

• Tenths of milliseconds are maintained throughout time expressions.
• Values of type number are converted to values of type time by designating the number

as an operand in a Time Literal (see subsection 2.7.3.5).
• Values of type Time are converted to values of type number by using the NUMBER

built in function (see subsection 4.5.2.5).

NOTE

Do not confuse the TIME data type with either the Process Module, Box, or Array Data Point
parameter named TIME. The compiler understands which is which by examination of
(correct) use context.

CL/APM Reference 2 - 1 7 7 / 9 3

2.3.3

2.3.3 Discrete Data Types

Real-world values are either continuous or discrete. Continuous values are often called
analog and discrete values digital, because of the type of electronic circuitry used to
bring these values into and out of a computer, but they are all represented in digital form in
the computer.

In CL continuous values have the type Number. Discrete values have the type Logical or
are Enumeration types.

A discrete type has two or more states. Each state has a name and is distinct from all other
states. The order in which the states are named in the type declaration is significant. This
means that two discrete types that have the same state names can be different types, because
the order in which the states were declared differed. For example, red/green/blue is
different from blue/green/red.

Variables of discrete types can be compared or assigned to only variables or values of the
same type.

2.3.3.1 Shared State Names

A state name can be used in more than one discrete type. For instance, there might be a
discrete type whose states are open and close and another whose states are open and
shut. Although the respective open states in this example have the same name, they are
not the same state. They cannot be compared, and a value of one type cannot be stored into
a variable of the other type.

2.3.3.2 Enumeration Data Types

All discrete types, except Logical, are called Enumeration types. The only operations
defined on Enumeration types are assignment and comparison for equality and inequality.

Many Enumeration types are predefined in a TDC 3000 System. These appear just as if
those types had been defined in CL and compiled into the system database at some earlier
time.

You cannot create enumerations with CL/APM (with the tightly limited exception of state
lists used in LOCAL statements and SUBROUTINE argument definitions); however,
variables of Enumeration Types can be declared in CL programs. Like all variables, these
can be assigned only values of their type; thus, a variable of Enumeration type Red/Blue
can be assigned only one of the values, Red, and Blue. The value Green cannot be
assigned to such a variable.

CL/APM Reference 2 - 1 8 7 / 9 3

2.3.3

2.3.3.3 Logical Data Type

Logical is a predefined discrete type that has two states: on and off. Unlike Enumeration
Types, the following operations are defined on Logical values: AND, OR, XOR, and
NOT.

Logical should not be considered the same as Pascal's Boolean type, or FORTRAN's
LOGICAL type, because it is intended to represent only the state of a discrete variable. It
does not represent truth or falsity. In CL, truth values are found in only conditional tests
and cannot be stored in variables.

If you are familiar with Pascal, the comparison of program fragments in Figure 2-1 should
show this difference.

Language: Pascal CL

VAR flag: Boolean; LOCAL flag: LOGICAL at FL(01)
x: real; LOCAL x: NUMBER at NN(04)

Method

A flag := x < 5; SET flag = (WHEN x < 5: On;
& WHEN x >= 5: Off)

B IF x < 5 IF x < 5 THEN SET flag = On
THEN flag := true ELSE SET flag = Off
ELSE flag := false

Figure 2-1 — Pascal Boolean vs. CL Logical

In Pascal method A, the result of the comparison x < 5 is considered to be a value and is
stored in the variable flag. Engineers with limited programming expertise find this is hard
to read and understand. CL method A is just as efficient as Pascal method A and is easier
to read.

Pascal method B and CL method B are the same. They are both easy to read, but each is a
little less efficient than method A (assuming everything else is equal).

CL/APM Reference 2 - 1 9 7 / 9 3

2.3.4

2.3.4 Arrays Data Type

In the APM, local arrays can be of type Flag, Numeric, String, or Time, and can have only
one dimension. The index type must be Number. CL/APM can access array parameters
such as the timer set point of the APM box data point or logic data point inputs.

All array parameters can be accessed with a variable or calculated subscript in any CL
statement except CALLs to user-written subroutines and parameters/variables in READ or
WRITE statements. If the result of the index expression is not an integer, it is rounded to
the nearest integer. Array parameters cannot contain an off-node reference in the subscript.
Note that with the parameters NN and FL, a calculated subscript has a severe performance
impact—about five times longer than mapping these parameters to LOCAL variables and
using a calculated subscript.

Whole array parameters are valid arguments to user-written subroutines. This includes the
parameters NN, FL, TIME, STR8, STR16, STR32, and STR64 as well as any other array
parameters, such as the L parameter on a Logic point.

2.3.4.1 Arrays Examples

EXTERNAL log1 -- a logic point

EXTERNAL APM02S02 -- a process module point in this node

EXTERNAL !BOX -- this APM's box data point

EXTERNAL reg1 -- a regulatory point in another APM

EXTERNAL $NM10N02 -- another APM's box data point

LOCAL i AT NN(9)

 . . .

SET log1.L(NN(1)/2) = 25.2 -- a valid subscript

SET log1.L(i) = 35.4 -- a valid subscript

SEND : APM02S02.NN(APM02S02.NN(3)+7) -- a valid subscript

SET APM02S02.NN(1), !BOX.NN(17*NN(8)) = 45.6 -- valid subscripts

CALL sub1 (APM02S02.NN) -- entire array to a subroutine

CALL sub2 (APM02S02.NN(3)) -- single element of array to a subroutine

READ !BOX.NN(13) FROM $NM10N02.NN(reg1.PV)

-- ERROR, off-node variable in subscript

CALL sub3 (APM02S02.NN(i)) -- ERROR, variable subscript sent to a

-- user-written subroutine

CALL argsub1 (!BOX.NN, !BOX.FL) -- valid arguments (whole arrays)

CALL argsub2 (NN, FL) -- valid arguments (whole arrays)

CALL argsub3 (!BOX.TMSP) -- valid argument

CALL argsub4 (log1.L) -- valid argument

CL/APM Reference 2 - 2 0 7 / 9 3

2.3.5

2.3.5 String Data Type

This CL/APM type consists of variable length strings of up to 64 printable ASCII
characters. CL/APM support for the String data type is limited to the following.

• String parameters of APM data points can be read and written.
• Strings (and String Literals) can be assigned.
• Two strings can be compared for equality.
• String lengths can be tested with the built-in function Len.
• Strings can be modified and concatenated with the built-in subroutine Modify_String.
• Numbers can be converted to strings with the built-in subroutine Number_To_String.

Two strings are equal if the contents of the shorter string match contents of the longer
string and the remainder of the longer string contains only blanks. For example, "fred" is
equal to "fred ", but is not equal to " fred".

Two types of string comparisons are provided, the equal (=) and not equal (<>) operators,
and the built in function Equal_String.

• The equal and not equal operators are upper/lower case sensitive. For example,
"fred" <> "Fred" <> "FRED".

• Equal_String (see subsection 4.5.2.2) is upper/lower case insensitive. For example,
"fred" = "Fred" = "FRED".

When a string value is stored to a string parameter, it will be truncated if necessary to make
it fit within the space allocated to the parameter when the point was built. Truncation is
performed without any warning. Therefore, you cannot safely assume that a string read
from a data point parameter is equal to the string that was stored into that parameter.

When string values are assigned from a constant or variable to another string variable, only
"countable" characters are transferred. Nonspaces are always countable. Spaces are
countable only when a non-space character follows before the end of the string.

When a string variable is assigned, it loses all traces of its former value, even when the
new value has fewer countable characters than the old value. For example, if the following
statements were executed

SET STR8(1) = "ABCDEFGH"

SET STR8(1) = "A"

then the final value of STR8(1) would be an A followed by seven blanks. This treatment
applies for assignments between string variables of different maximum lengths. Thus, the
statements

SET STR8(1) = "ABCDEFGH"

SET STR16(2) = "IJKLMNOPQRSTUVWX"

SET STR16(2) = STR8(1)

result in STR16(2) holding the value ABCDEFGH followed by eight blanks. When a
larger string is assigned into a smaller one, then the value is truncated to fit. Note that the
Sequence name, Phase name, Step name, Subroutine name, and Handler name strings are
each limited to no more than eight characters. Examples are:

PHASE one -- valid example

STEP A12345678 -- invalid example

CL/APM Reference 2 - 2 1 7 / 9 3

2.3.6

2.3.6 Data Points Data Type

Data points are named composite structures that have named components called
parameters. Data points are defined by the Data Entity Builder, rather than by CL. A
data point is like a Pascal RECORD. Parameters of data points are identified by dot
notation; that is, the point name is followed by a dot, which is then followed by the
parameter name.

2.3.6.1 Data Points Example

A100.PV -- parameter PV of data point A100

DV_CTRL1.SVTV -- parameter SVTV of device control point DV_CTRL1

2.4 APM DATA POINTS

In addition to the process-connected data points used to monitor and manipulate the
process, CL/APM uses two data point types that are related to APM operation. These point
types are the Process Module Data Point and the Box Data Point.

2.4.1 Process Module Data Point

A Process Module data point is a data point in the APM that is used as the platform for
sequence execution. Each sequence program must name a process module data point in the
program header. At download time, the sequence program is bound (loaded) to that
Process Module. The Process Module data point is also called the Bound Data Point of
a sequence program.

Each Process Module Data Point (PMDP) contains flag data points, numeric data points,
time variables, and string variables that are local to that PMDP (not to be confused with
local variables that are declared in a sequence program). CL/APM programs can reference
the local flags, numerics, time variables, and string variables of other PMDPs in the same
APM when they are declared in EXTERNAL declarations. These local data points and
variables in other nodes on the same UCN can also be referenced, but only by use of
READ, WRITE, or INITIATE statements (see headings 3.2.4 and 3.2.15).

Parameters of external points are accessed by dot notation, as previously described.
Parameters of the sequence program's bound data point are directly referred to without dot
notation. It is an error to reference parameters of the bound data point by dot notation.

The name of the bound data point cannot be used in EXTERNAL declarations.

CL/APM Reference 2 - 2 2 7 / 9 3

2.4.2

2.4.2 Box Data Point

A Box Data Point is a data point associated with a process-connected box, such as the PM
or APM. It represents box parameters that are visible to TDC 3000 components, including
CL/APM programs running in that APM or to CL programs running in PMs or APMs on
the same UCN. These parameters include internal variables of the box such as flag and
numeric data points, and time and string variables.

A program's view of box data-point parameters varies, depending on whether the program
executes inside the box (APM or PM sequence program) or outside the box (BLOCK in an
AM). For example, APM box numerics over 4095 are not visible to LCN devices as
parameters of the box point, while APM or PM sequence programs have access to all box
numerics as box parameters.

A general rule of thumb is that CL/APM can access all PM and APM parameters on the
UCN, but cannot access any NIM-resident box parameters. For example, the parameter
NODFSTAT (node functional state) is visible to LCN devices but not to CL/PM or
CL/APM. See the Advanced Process Manager Parameter Reference Dictionary for physical
location of the various parameters.

2.4.2.1 Box Data Point Identifier

APM box data-point identifiers follow a naming convention that establishes a set of names
of the format

$NMxxNyy

where xx is the UCN number and yy is the APM number. Note that use of the box
data-point identifier must follow its EXTERNAL declaration.

2.4.2.2 Box Data Point Identifier Example

$NM10N03.NN(1) -- box numeric #1

$NM10N03.FL(12) -- box flag #12

$NM10N03.TMSP(3) -- box timer 3 setpoint

2.4.2.3 !BOX Box Data Point Identifier

The box data point of the bound data point also can be addressed by the special name form
!BOX. This name can be used instead of the reserved name form of the box data point of
the bound data point ($NMxxNyy), but if used, !BOX must appear in an EXTERNAL
statement.

2.4.2.4 !BOX Box Data Point Identifier Example

EXTERNAL !BOX

EXTERNAL REACT102 -- another process module in the same APM

...

SET REACT102.NN(12) = !BOX.NN(33)

SET !BOX.FL(03) = off

CL/APM Reference 2 - 2 3 7 / 9 3

2 .5

2.5 ACCESSING APM PARAMETERS

A CL/APM sequence program can access parameters in the APM of the bound data point.
It can also access parameters of points resident in other nodes on the same UCN with
READ and WRITE statements, and initiate sequences in the same APM or in another APM
or PM on the same UCN with the INITIATE statement. Only PM, APM, and LM
parameters can be accessed. Attempting to access NIM-resident parameters causes a
compile time error. See heading 1.7, CL Access, in the Advanced Process Manager
Parameter Reference Dictionary for a list of PM parameters with access restrictions.

Parameters can be referenced (accessed) in four ways:

• as a local variable
• as a parameter of the bound data point or an EXTERNAL data point
• as a parameter of a digital input point named with the hardware addressing name form
• as a parameter of a box data point, either named explicitly or using the !BOX name

form

In each of the above cases, the parameter must always be named explicitly; default
parameters are not supported.

2.5.1 Local Variable Parameter Access

Number, Logical, String, and Time variables can be declared as LOCAL variables by using
the AT clause to equate them with Numeric, Flag, STR8, STR16, STR32, STR64, or
Time variables of the bound data point, or of another process module in the same APM, or
of the box data point, or of Array points. Refer to subsection 2.6.2.3 for examples.

2.5.2 Bound Data Point/External Data Point Parameter Access

All APM-resident point parameters can be referenced by declaring the point either as the
bound data point in the sequence header, or by using the EXTERNAL statement. All
points referenced in the program must appear in one of those two places. Points in other
nodes on the same UCN can be referenced only by using the READ/WRITE and
INITIATE statements.

Note that if a Box Numeric or Flag is defined as an external data point, it is given an
artificial .PV parameter that contains its value. See points E100 and F100 in the example
that follows.

Parameters of the bound data point must be referenced using only the parameter name. It is
a compile time error to reference the bound data point parameters naming the bound data
point.

Points referenced in the program must first have been built using the Data Entity Builder.
Referencing a point not yet built results in a compile time error.

Example:

SEQUENCE filler (APM; POINT REACT101)

EXTERNAL A100, D100 -- points in this APM

EXTERNAL B100, C100 -- points in another APM

EXTERNAL E100 -- numeric point in this APM

CL/APM Reference 2 - 2 4 7 / 9 3

2.5.3

EXTERNAL F100 -- numeric point in another APM

EXTERNAL Valve1, Valve2 -- digital composites in this APM

EXTERNAL DV_CTRL1 -- device control point in this APM

EXTERNAL REACT102 -- process module in this APM

EXTERNAL !BOX -- own box data point

EXTERNAL $NM10N03 -- another box data point

...

LOCAL num AT NN(01)

...

SET A100.SP = D100.SP -- this APM

READ num, NN(02) FROM B100.SP, C100.SP -- read from another APM

-- into this APM

WRITE $NM10N03.FL(13) FROM !BOX.FL(13) -- write to another APM from

-- this APM

OPEN Valve1, Valve2 -- this APM

INITIATE REACT102 : HOLD -- initiate hold of another

-- sequence in this APM

SET FL(02) = REACT102.FL(02) -- this APM

SET REACT101.NN(4) = 14.4 -- INVALID, bound data point

-- named

SET B100.SP = 10 -- INVALID, another APM,

-- use WRITE

WRITE F100.PV from E100.PV -- write to another APM

 & (when error GOTO lab2) -- from this APM

OFF DV_CTRL1 -- state change for device

-- control point

2.5.3 Hardware Addressing Name Form Parameter Access

Digital input hardware in the APM of the bound data point can be referenced without
building points to represent those slots. This special name form is valid for only CL/APM
and the Data Entity Builder and follows the convention

!DImmSss

where mm represents the module number of the digital input (01-40) and ss represents
the slot number (01-32). These name forms can be used in place of standard point
names in executable statements but, if used, the name must appear in the EXTERNAL
statement.

Example:

EXTERNAL !DI01S01 -- module 1, slot 1

EXTERNAL !DI01S02, !DI01S03 -- module 1, slots 2 and 3

EXTERNAL REACT101 -- another process module in

-- this APM

...

SET !DI01S02.PVFL, !DI01S03.PVFL = !DI01S01.PVFL

SET FL(01), REACT101.FL(10) = !DI02S03.PVFL

IF !DI01S02.PVFL <> REACT101.FL(11) THEN GOTO label1

The only parameter valid for this name form is PVFL. This is a logical parameter
representing the state of the PV.

CL/APM Reference 2 - 2 5 7 / 9 3

2.5.4

2.5.4 Box Data Point Parameter Access

APM-resident parameters (flags, numerics, and timers) of the box data point in which the
bound data point resides can be referenced as long as the box data point is named in an
EXTERNAL statement. This can be accomplished either by using the reserved point name
form (for example, $NMxxNyy) or by using the !BOX name form.

In addition, node-resident parameters of box data points in other nodes on the same UCN
can also be referenced, as long as the box data point is named in an EXTERNAL statement.
In this case, only the reserved point name form is valid. (These parameters can be
referenced in only READ/WRITE statements.)

Example:

EXTERNAL !BOX -- own box data point

EXTERNAL $NM10N03, $NM10N05 -- box data points of other APMs on the

-- same UCN as the bound data point

 ...

SET !BOX.NN(3), !BOX.NN(4), !BOX.NN(5) = 0

CALL Set_Bad (!BOX.nn(10))

IF Badval (!BOX.NN(11)) THEN GOTO label3

READ !BOX.NN(02) FROM $NM10N03.NN(13)

WRITE $NM10N03.FL(9), $NM10N05.FL(9)

& FROM !BOX.FL(10), !BOX.FL(11)

2.5.5 I/O Module Prefetch Limits

Except for PVs of digital input points, all I/O module parameters of the local APM that are
accessed (read) by a sequence program within a step are prefetched just before the
execution of the process module. This includes any prefetches that may be required for
evaluation of the processing conditions for currently enabled abnormal condition handlers.

There is a compile time limit of 12 prefetches per step, or per WHEN condition on an
abnormal condition handler. That's the easy case. There is also a run time limit of 12
prefetches per step, including the WHEN conditions of all currently enabled abnormal
condition handlers. If this limit is exceeded, a run time error (Error 109) is reported and
the slot goes to failed state. It is important to note that if the same I/O module parameter is
needed more than once (for example, used by both the step and one or more of the
handlers, or just used by multiple handlers), each use counts as one prefetch for the run
time count. Depending on the mix of prefetches between the step and the enabled abnormal
condition handlers, the step can fail either before execution or after partial execution. Once
the sequence has been failed, it must be turned off before another sequence can be loaded.

If the first step of a subroutine or abnormal condition handler does not require prefetches,
the subroutine/handler is NOT a preemption point. If the step that called the subroutine did
not require prefetches, the return from the subroutine is NOT a preemption point. A return
from a handler requires a RESUME statement that is a preemption point because it returns
to a phase.

CL/APM Reference 2 - 2 6 7 / 9 3

2.5.6

2.5.6 I/O Module Poststore

Value stores by CL/APM to I/O module parameters are not performed until the next
preemption point is reached. This is known as poststore. See subsection 6.3 of the
Control Language/Advanced Process Manager Data Entry manual for an explanation of
how to locate the source of a runtime error when poststore is involved.

2.6 VARIABLES AND DECLARATIONS

This section describes the declaration, use, and scope of local variables, local constants,
and external variables (data points).

Local variables and local constants are owned by a CL program and are defined (declared)
at the beginning of the CL program through the LOCAL statement. External variables (data
points) are defined outside CL and must be declared at the beginning of the sequence
program through the EXTERNAL statement.

All declarations must precede any executable statements in the program.

2.6.1 Variables and Declarations Syntax

local
variable

local
constant

external
declaration

declaration

CL/APM Reference 2 - 2 7 7 / 9 3

2.6.2

2.6.2 Local Variables

Local variables are declared at the beginning of the sequence program. All CL/APM local
variables are mapped to parameters of Process Module Data Points, or of APM Box Data
Points. This mapping, and the amount of space available for each variable type, is
summarized in Table 2-4.

Local variables declared in a program are visible only to the program they are declared in
and to any local subroutines belonging to that program; however, the values assigned to
these variables are visible outside the program because each such variable is mapped to a
parameter of either a Process Module Data Point, a Box Data Point, or an Array point.

Table 2-4 — Mapping of Local Variables
Data Type Parameter

name
Maximum per

PMDP
Maximum per

Box
Maximum per
Array Point

Numeric NN 80 16384 240
Logical or
State_List

FL 127 16384 1023

Time TIME 4 4096 240
String STRn varies by

string length
(see below)

 16384
(STR8 only)

240

Each Box string is restricted to 8-characters or less (STR8). Strings in the PMDP also can
have the longer lengths (STR16, STR32, STR64). However, the total space for strings in
each PMDP is limited to 128 characters mapped as follows:

STR8(1) STR8(2) STR8(3) STR8(4) STR8(5) STR8(6) STR8(7) STR8(8)
STR16(1) STR16(2) STR16(3) STR16(4)
STR32(1) STR32(2)
STR64(1)

STR8(9) STR8(10) STR8(11) STR8(12) STR8(13) STR8(14) STR8(15) STR8(16)
STR16(5) STR16(6) STR16(7) STR16(8)
STR32(3) STR32(4)
STR64(2)

Note that the longer strings are not separately allocated within the PMDP database. Instead
they are created through the concatenation of a set of 8-character strings. Thus, if you
change the contents of STR8(10), you also are changing the contents of STR16(5),
STR32(3), and STR64(2).

Array Point strings can be referenced by string lengths other than the configured length so
long as they fall within the configured total number of characters. For example, if an Array
Point named ARRAYPT1 is configured to have an array of 10 string elements of string
length 64 (thus 640 characters), each of the following is valid:

LOCAL str_ary : STRING ARRAY (1..80) AT ARRAYPT1.STR8(1)

LOCAL str_ary : STRING ARRAY (1..40) AT ARRAYPT1.STR16(1)

LOCAL str_ary : STRING ARRAY (1..20) AT ARRAYPT1.STR32(1)

LOCAL str_ary : STRING ARRAY (1..10) AT ARRAYPT1.STR64(1)

Statements that exceed the configured string length result in compile-time errors or string
truncation.

CL/APM Reference 2 - 2 8 7 / 9 3

2.6.2

2.6.2.1 Local Variables Syntax

)(indexARRAY

state_list

local_type

LOGICAL

NUMBER

state_list state_id state_id/

integer . . integerindex

LOCAL id : local_type

AT

local_var

!BOX

()integer.

id
N N

F L

TIME

STRING

TIME

STRn

NOTE

In LOCAL Variable declarations, any state_list clause is restricted to only two states.

CL/APM Reference 2 - 2 9 7 / 9 3

2.6.2

2.6.2.2 Local Variables Description

LOCAL variables can be of type Number (default if no data type is specified), Logical,
Time, String or a 2-state Enumeration. The Enumeration is specified by listing the two
states separated by a slash (/). Note that a variable of 2-state Enumeration type is not
equivalent to a logical, even though its hardware location is a flag location. When the
variable is used in a SEND statement, the values are displayed in terms of the two state
names.

One-dimensional arrays of LOCAL variables can be specified. The array index must be a
number declared by naming lower and upper bounds (e.g., 1..5). The lower bound is the
left-most integer in the index. The upper bound is the right-most integer in the index. The
value of the lower bound must be less than the value of the upper bound.

If a point id is not specified in the required AT clause, the local variable maps to the Bound
Data Point's variable. If a point id is specified, it must name either another Process Module
Data Point in the same APM as the Bound Data Point, the local box data point (as specified
by either !BOX or $NMnnNmm), or an Array Point. Any other point type is a compile-
time error. LOCAL declarations of variables outside the bound data point must follow the
EXTERNAL declaration of the data point that contains the variable (see subsection 2.6.4).

If the local variable is a scalar, the compiler places the local variable at the named numeric,
flag, string, or time location. If the local variable is an array, its first element is placed at
the named location and the remaining elements occupy contiguous variables in ascending
order from the named location.

Array points allow you to fetch and store arrays of numeric, flag, string, or time variables
from an APM. Array points also can be used to access arrays of numeric, flag or string
variables (but not time variables) from a different device through a Serial Interface IOP
connection. The connection is initially set up in the Data Entity Builder when the Array
Point parameter External Data Option (EXTDATA) is set to either IO_NN, IO_FL, or
IO_STR. As in an example shown below, CL prints a warning message when a local
variable is mapped to a Serial Interface IOP parameter.

2.6.2.3 Local Variables Examples

EXTERNAL REACT102, REACT103, REACT1O4, REACT105 !BOX

EXTERNAL arraypt1, arraypt2

LOCAL num AT NN(01) -- bound data point numeric

LOCAL log: LOGICAL AT FL(03) -- bound data point flag

LOCAL num1: NUMBER AT REACT102.NN(10)

-- numeric of another process

-- module data point in this APM

LOCAL log1: LOGICAL AT !BOX.FL(25) -- this box's flag 25

LOCAL log2: LOGICAL AT !BOX.FL(26) -- next flag in this box

LOCAL numarr: ARRAY(3..5) AT NN(10) -- array using bound data point

-- numerics

LOCAL pm3logarr: LOGICAL ARRAY (1..2) AT REACT102.FL(15)

-- logical array using flags of

-- another process module data pt

LOCAL boxnmarr: NUMBER ARRAY (5..10) AT !BOX.NN(25)

-- number array of this box's

-- numerics

LOCAL var1: one/two AT FL(1) -- state name list using a flag

CL/APM Reference 2 - 3 0 7 / 9 3

2.6.2

LOCAL var2: three/four ARRAY (1..2) AT !BOX.FL(2) -- state name

-- list array

LOCAL var3:open/close ARRAY (5..10) AT REACT102.FL(7)

LOCAL arr_time : TIME ARRAY (1..3) AT arraypt1.TIME(1)

-- array of times from an APM array point

LOCAL arr_str : STRING ARRAY (2..5) AT arraypt1.STR64(2)

-- array of strings from an APM array point

LOCAL arr_flag : FLAG ARRAY (1..10) AT arraypt1.FL(1)

 ^P

WARNING This LOCAL variable is mapped to a Serial Interface IOP

parameter

-- array of flags from an SIO array point

LOCAL elapsed_time : TIME AT REACT103.TIME(4)

LOCAL time_arr : TIME ARRAY (1..3) AT REACT104.TIME(2)

LOCAL message_string : STRING AT APMS22.STR16(2)

LOCAL str_arr : STRING ARRAY (3..4) AT !BOX.STR8(1)

SET arr_time(1) = NOW

IF var2(2) = four THEN SET arr_str(3) = "ABORT"

SET arr_flag(2) = OFF

SET var1 = two

SET var3(8) = open

IF var2(2) = four THEN ABORT

SEND : var1, var3(8), var2(2)

Be careful when naming LOCAL variables. Do not use the same name for a LOCAL
variable that already exists as a parameter on any APM point referenced by the program.
Note that if you do make this error, the APM tagname.parameter, not the LOCAL variable,
gets flagged with the compile error making your mistake difficult to track down. For
example:

LOCAL start: TIME AT TIME(01)

.

.

.

SET FY21000.COMMAND = START -- FY21000 is a REG PV totalizer

-- with START as a valid parameter

The LOCAL definition will compile without comment, but the statement
SET FY21000.COMAND = START will be flagged with a "TYPE MISMATCH" compile
time error.

CL/APM Reference 2 - 3 1 7 / 9 3

2.6.3

2.6.3 Local Constants

Local constants of type Number, Time or String can be declared.

2.6.3.1 Local Constants Syntax

LOCAL constant_id =local_const
const_

expression

2.6.3.2 Local Constants Description

Local constants cannot be modified.

Constant expressions of Number type must be composed of arithmetic operators, the built-
in function ABS, numeric literals, and identifiers that have been previously declared as
LOCAL numeric constants. No other functions are permitted. The local constant
expression cannot contain divide (/) or remainder (MOD) operators.

Time constants can contain any mixture of days, hours, minutes, and seconds and can be
used in any CL/APM statement where time variables can appear. See subsection 2.7.3 for
a description of possible Time Expressions. A time constant defined with a value larger
than the supported maximum time value defaults to the maximum time value.

The constant expression for String type consists of a string literal. A string constant can be
used in any CL/APM statement where a string variable can appear.

2.6.3.3 Local Constants Examples

LOCAL pi = 3.14159265 -- a numeric constant

LOCAL ten_K = 1.0e4 -- another

LOCAL 2_pi = pi * 2 -- a constant expression

LOCAL pi_2 = pi/2 -- illegal: divide operator

LOCAL const1 = 3.0 -- a numeric constant

LOCAL const2 = ABS(const1 * const1 - 4.0)

-- numeric constant using ABS

LOCAL time_const1 = 3 MINS 10 SECS

LOCAL time_const2 = 12 HOURS 44 MINS 2 SECS

LOCAL string_const1 = "problem"

LOCAL cascade_string = "cascade"

EXTERNAL a100

 . . .

WAIT time_const1

IF TIME(3) > time_const2 THEN GOTO PHASE time_up

 . . .

SEND : string_const1

IF a100.MODE = CAS THEN SEND : cascade_string

CL/APM Reference 2 - 3 2 7 / 9 3

2.6.4

2.6.4 External Data Points

Data points other than the bound data point can be accessed by a CL program only if they
are named in an EXTERNAL declaration.

2.6.4.1 External Data Points Syntax

external_decl

digital_input_i

EXTERNAL id

digital_input_id

!BOX

,

! DI digit digit S digit digit

3759

2.6.4.2 External Data Points Description

The EXTERNAL declaration introduces the name of one or more data points. None of
these can be the bound data point. Each external data point must already exist in the system
at the time the program is compiled; otherwise, the compiler reports an error. External data
points can be declared in sequence programs, but NOT in Subroutines.

EXTERNAL declarations can name only data points in nodes on the same UCN as the
Bound Data Point. Data points in the NIM and other LCN modules cannot be referenced.
Refer to heading 2.5 for more information.

Data points must have been previously built by the Data Entity Builder to be used in an
EXTERNAL statement; otherwise, the compiler reports an error. The only exceptions to
this rule are the two special name forms !DImmSss (see heading 2.5.3) and !BOX (see
heading 2.4.3.3).

2.6.4.3 External Data Points Examples

EXTERNAL anp049hx, AX_001

EXTERNAL APM01S03, !BOX

EXTERNAL !DI01S02, !DI02S03, A100

EXTERNAL DV_CTRL1

CL/APM Reference 2 - 3 3 7 / 9 3

2 .7

2.7 EXPRESSIONS AND CONDITIONS

This section describes the formation of arithmetic expressions, logical expressions, and
time expressions available in CL/APM. It also introduces the use of conditions to test
relations (equality, relative magnitude, etc.) of expression values.

2.7.1 Expressions

An expression is a formula that defines the computation of a value. The components of an
expression are operands and operators.

2.7.1.1 Expressions Syntax

arith_expr

logical_expr

expression

time_expr

2.7.2 Arithmetic and Logical Expressions

2.7.2.1 Arithmetic and Logical Expressions Syntax

logical_term

logical_term

logical_term

AND

OR

XOR

logical_term

logical_term

logical_term

NOT logical_operand

addop factor

mulop

logical_expr

logical_term

arith_expr

CL/APM Reference 2 - 3 4 7 / 9 3

2.7.2

operand

operand* *

factor

2.7.2.2 Operand Definition

An operand can be a variable, a parameter of a data point, an array element, a number, a
quoted String, a discrete-state identifier, a function call, or an expression enclosed in
parentheses.

2.7.2.3 Operand Syntax

logical_operan

variable

funct_id

logical_expr

expression

()

()

,
OFF

ON

variable

funct_id

arith_expr

expression

()

()

,

unsigned
number

constant_id

operand

name

.

variable

name

3760

CL/APM Reference 2 - 3 5 7 / 9 3

2.7.2

id

array_id arith_expr()

name

2.7.2.4 Operators Definition

Operators operate on one or two operands and produce a value that can itself be operated
on. Operators can be monadic (take a single operand) or dyadic (take two operands).
Operators bind according to the priority order given in Table 2-5. Higher priority means
closer binding.

For example, in the expression a + b * c, b * c is evaluated first because the * operator has
a higher priority. Operators with the same priority are evaluated left to right.

Table 2-5 — Operator Priorities

Priority Operator Meaning

3 ** Exponentiation

2 * Multiplication
/ Division
MOD Remainder (see heading 2.3.1)
NOT Logical complement

1 + Sum
- Difference, Negation
AND Logical And
OR Logical Or
XOR Logical Exclusive Or

Arithmetic Operators Definition—The arithmetic operators are +, -, *, /, MOD and
**; their usual meanings are as listed in Table 2-5. Arithmetic operators can take only
operands with data type NUMBER (also see heading 2.7.3.7).

Arithmetic Operators Syntax

+

-

*

/

MOD

addop

mulop

CL/APM Reference 2 - 3 6 7 / 9 3

2.7.2

Arithmetic Operators Description—The minus sign can be used to indicate
subtraction (e.g., x-y), or to indicate negation (e.g., -x). As a negation operator, the minus
sign cannot appear twice in a row.

The exponential operator is not associative; a ** b ** c is invalid and must be rewritten
as a**(b ** c) or (a **b) **c.

Logical Operators Definition—The Logical operators are NOT, AND, OR, and XOR
(exclusive or), with their usual meanings, as shown in Table 2-6. Logical operators can
take operands of only type LOGICAL (also see Section 2.7.4.6).

Table 2-6 — Logical Operators Truth Table

a b NOT a a AND b a OR b a XOR b

On On Off On On Off
On Off Off Off On On
Off On On Off On On
Off Off On Off Off Off

When different Logical operators are used in the same expression, parentheses must be
used to show grouping. In other words, the phrase a AND b AND c is valid, but a
AND b OR c is not, and must be rewritten as a AND (b OR c) or (a AND b) OR c.

If the condition in an IF (condition) THEN (consequent) statement involves both OR and
XOR, an incorrect error message may be given. For example,

IF (x = 1 OR y = 1) XOR z = 1 THEN gives the error message
 ^

 Type logical expected

A work-around can be used; write the XOR in terms of AND and OR. For example, the
above statement could be rewritten as follows:

IF ((x = 1 OR y = 1) OR z = 1) AND NOT

& ((x = 1 OR y = 1) AND z = 1) THEN

CL/APM Reference 2 - 3 7 7 / 9 3

2.7.3

2.7.3 Time Expressions

A time expression is a special form of expression—composed of time operands and time
operators—that produces a result of the Time data type. It is used to express either a
duration or an absolute time.

A negative result from a time expression is displayed as an unpredictable absolute date. If
you need to see the actual value of a negative result, use the NUMBER function to convert
the value to a Number data type, and send that result to the Universal Station.

2.7.3.1 Time Expression Syntax

-

time_expr

time_
literal

time_operand

time_operator

2.7.3.2 Time Operands Definition

A time_operand can be a

• variable,
• parameter,
• constant,
• array element,
• literal, or
• function call with a Time data type result.

2.7.3.3 Time Operators Definition

The Time operators are a subset of the arithmetic operators, and they have the same
priority. The types of operands required for these operators are shown in Table 2-7.

Table 2-7 — Time Operators

Operator
Left Hand

Side
Right Hand

Side Result

+ Time Time Time

- Time Time (or none) Time

* Time Number Time

* Number Time Time

CL/APM Reference 2 - 3 8 7 / 9 3

2.7.3

2.7.3.4 Time Expression Examples

EXTERNAL arraypt3

LOCAL n at NN(18)

LOCAL t1 : TIME AT Time(1) -- TIME defines the data type, and

LOCAL t2 : TIME AT Time(2) -- Time(n) specifies an APM parameter

LOCAL sked : TIME AT arraypt3.Time(2)

...

SET t1 = 1 DAYS 2 MINS -- set a time variable

SET sked = 20 SECS -- set another time variable

SET t1 = n SECS + sked

SET t1 = n * t2

2.7.3.5 Time Literal Definition

A Time Literal represents a defined amount of time.

2.7.3.5.1 Time Literal Syntax

operand DAYS

operand HOURS

operand MINS

operand SECS

ttiimmee__lliitteerraall

2.7.3.5.2 Time Literal Description

The operands in a time literal must be of data-type Number but do not need to have integer
values. The value of any operand can be positive, negative, or zero. The whole time literal
can have a positive, negative, or zero value; however, negative time values can have
unexpected results.

Using the multiplier appropriate to its suffix, each operand in the time literal is computed as
required and converted into an integer number of seconds (see Table 2-8). Rounding takes
place after multiplication. The results of these conversions are then added to obtain the
final time literal.

Table 2-8 — Time Literal Multipliers

Suffix Multiplier

DAYS 86,400
HOURS 3,600
MINS 60
SECS 1

CL/APM Reference 2 - 3 9 7 / 9 3

2.7.3

Time has a greater precision than Number. Values of data-type Time from -2,147,483,648
to +2,147,483,647 can be represented exactly. Values of data-type Number from
-16,777,215 to +16,777,215 can be represented exactly. Values of data-type Number,
which are of magnitude greater than 16,777,215, are approximately represented; therefore,
if the arithmetic operand requires any calculation, or involves any variables of Number
type, round-off can cause the precision to be less than if the same calculation were done
with Time variables. All numeric literals are carried to the full precision necessary to
accurately represent Time values.

Although each component of a time literal is optional, at least one component must be
present.

Note that time is maintained on the APM down to tenths of milliseconds. Consequently, a
comparison of two time parameters may fail—because of differences in tenths of
milliseconds—even though a display of the two parameters shows identical values.

The tenths of milliseconds value for time literals defined in CL/APM is always zero.

2.7.3.5.3 Time Literal Examples

5 MINS -- five minutes

300 SECS -- five minutes

(1/12) HOURS -- five minutes

4 MINS 60 SECS -- five minutes

6 MINS (-60) SECS -- five minutes

2 MINS 3 MINS -- NOT VALID (MINS twice)

10 SECS 5 MINS -- NOT VALID (out of order)

1 DAYS 6.5 HOURS -- valid

(x * y + z) SECS -- valid

h HOURS m MINS s SECS -- valid

Max (x,y) DAYS -- valid

In the third example, (1/12) HOURS is precisely equal to 300 seconds because the round-
off error was not large enough to cause problems. In the last three examples, however,
round-off error may cause some inaccuracy if the evaluated arithmetic expression creates a
value greater than + or - 16,777,215.

CL/APM Reference 2 - 4 0 7 / 9 3

2.7.4

2.7.4 Conditions

A condition is a formula that expresses a truth or falsehood. It is an enhanced form of
expression, used where a truth value is to be tested, as in an IF statement or in a WHEN
clause. A predicate is an expression that returns a truth value. Its result cannot be stored.

2.7.4.1 Conditions Syntax

conditio

predicate

AND

()

<

predicat

predicate

predicate

logical_expr

predicate

OR predicate

expression

NOTpredicate

condition

range

BAD_VAL arith_expr

relop expression

IN

NOT

FINITE

NOT ()

=

>

<=

<>

>=

relop

CL/APM Reference 2 - 4 1 7 / 9 3

2.7.4

2.7.4.2 Conditions Description

A condition can be a logical expression, a relation between two expressions (including time
expressions), a range test, an application of a predicate, two conditions joined by AND or
OR, or any condition prefixed by NOT.

When a condition is a logical expression, it is implicitly tested for equality to On. For
example,

IF x AND y AND NOT z THEN ...

is equivalent to

IF (x = On) AND (y = On) AND NOT (z = On) THEN ...

2.7.4.3 Relations Definition

The relational operators are shown in Table 2-9.

Table 2-9 — Relational Operators

Operator Meaning

< Less than
= Equal to
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to

Not all relations are defined on every data type. The full set of six relations is defined for
expressions of types Number and Time. Only the relations of equality and inequality are
defined for discrete types and for Strings. No relations are defined for arrays taken as a
whole.

2.7.4.4 Range Tests Definition

Range tests (x IN y..z, a NOT IN b..x) are defined on only Number data type, not on
Enumeration types. The test is inclusive; for example, 5 IN 5..10 is true. The value of
the left-most expression in the range must be less than the value in the right-most
expression.

CL/APM Reference 2 - 4 2 7 / 9 3

2.7.4

2.7.4.5 Testing for Bad Values and Finite Values

A predicate is a property of a subject that can be affirmed or denied. The built-in predicates
Badval and Finite can be applied to expressions of type Number (the subject). Badval(X)
returns ON if, and only if, X is a bad value.

Example:

IF Badval (NN(03) * NN(02) - NN(01) + 14.4) THEN

Finite(x) returns ON if, and only if, x is Finite; that is, neither a bad value nor an infinite
value.

See heading 2.3.1.1 for more information on Bad Values and heading 2.3.1.2 for
information on creation and propagation of infinities.

NOTE

Badval and Finite, which can appear in the same contexts as Logical functions, are predicates
returning truth values, not functions returning Logical values. Their results can be used in
conditions within IF statements and WHEN clauses, but cannot be stored, compared, returned
as the results of functions, used as array indices, passed to subroutines or functions, or sent
by a SEND statement.

2.7.4.6 Connecting Conditions with OR and AND

The Logical operators AND and OR, but not XOR, can be used to connect conditions.

When both AND and OR are used in a compound condition, parentheses must be used to
show grouping, just as when AND and OR are used as Logical operators. For example,

a < 5 AND b = 6 OR c > 7

is ambiguous and must be rewritten as one of the following:

(a < 5 AND b = 6) OR c > 7

a < 5 AND (b = 6 OR c > 7)

CL/APM Reference 3 - 1 7 / 9 3

3

CL STATEMENTS
Section 3

This section describes the statements that you can use when building CL structures.

3.1 INTRODUCTION

This section describes CL statements. A statement defines a single, simple action to be
performed within a CL structure. CL statements can be grouped into two major categories,
according to function: PROGRAM STATEMENTS, and EMBEDDED COMPILER
DIRECTIVES.

3.2 PROGRAM STATEMENTS DEFINITION

CL Program statements can be categorized as follows:

• Assignment statements, whose purpose is to change the value of one or more variables:
SET, READ, WRITE, and STATE CHANGE.

• Control statements, which establish program conditions or direct the flow within a
program: GOTO, IF/THEN/ELSE, LOOP/REPEAT, CALL, ENB, INITIATE, and
RESUME.

• Delaying statements, which cause the program to wait for some event to occur or for a
time delay: PAUSE and WAIT.

• Termination statements, which signify the termination of the program or a part of it:
FAIL, EXIT, ABORT, and END.

• Communication statements, which communicate with an operator or a Computing
Module: SEND.

:statement label_id

end_stmt

loop_
statement

:label_id if_stmt

non_if_
stmt

CL/APM Reference 3 - 2 7 / 9 3

3.2.1

3.2.1 Program Statements Syntax

non_if abort_stmt

call_stmt

enb_stmt

exit_stmt

fail_stmt

goto_stmt

initiate_stmt

pause_stmt

read_stmt

repeat_stmt

resume_stmt

send_stmt

set_stmt

state_
change_stmt

wait_stmt

write_stmt

3.2.2 Statement Labels

Labels are used as the targets of GOTO and REPEAT statements. GOTO and REPEAT are
used to transfer control to another part of a program, which is identified by the label
referred to in the GOTO and REPEAT statements. A label is an identifier followed by a
colon. A label can precede any executable statement but cannot appear on a continuation
line; therefore, a statement that is embedded within another statement cannot have a label.
A LOOP statement must have a label; therefore, a LOOP statement cannot be embedded
within another statement.

3.2.2.1 Statement Labels Examples

lab_01: CALL test (x, y, z)

IF x > y THEN (SET x = z;

& badlabel: SET z = y) -- NOT VALID

In this example, badlabel appears on a continuation line; therefore, it is invalid.

3.2.3 SET Statement

This statement modifies the value of one or more variables, possibly depending on the
result of one or more conditions.

CL/APM Reference 3 - 3 7 / 9 3

3.2.3

3.2.3.1 SET Syntax

SET variable assignment=

,

expression

(WHEN condition : expression

;

OTHERSWHEN : expression)

set_stmt

assignment

3.2.3.2 SET Description

A SET statement with a simple expression on the right-hand side of the equal sign
unconditionally assigns the value of that expression to each of the variables on the left-hand
side of the equal sign. The assignments are executed in reverse order from the order in
which the variables are declared.

A SET statement whose right-hand side begins with WHEN... is called a conditional SET
statement. When this statement is executed, its WHEN conditions are successively
evaluated, until a true condition is found. The expression corresponding to the true
condition is then evaluated and its value is assigned to the variables on the left-hand side of
the equal sign. After one true condition is found, no other conditions are evaluated.
Execution proceeds with the next statement. The data type of the assignment on the right-
hand side must match the data type of the variable(s) on the left-hand side.

A conditional SET statement can have any number of WHEN clauses. The last WHEN
clause can name the special condition OTHERS, which is always true.

A conditional SET statement that does not name WHEN OTHERS can fail; that is, none of
the conditions may be true. If this occurs, it is a run time error with results as if a FAIL
statement had been coded. A maximum of 16 parameters or local variables can be
referenced with one SET statement.

A SET statement cannot reference parameters of points in other nodes. Use READ/WRITE
statements (Section 3.2.4) if you need to reference parameters in nodes on the same UCN.

3.2.3.3 SET Examples

SET x = x + 1 -- simple SET

SET x, y, z = 0 -- multiple SET

-- (first z is set to 0,

-- then y is set to 0

-- then x is set to zero last)

SET NN(03) = (WHEN NN(04) = 10.0 : 10.0; -- conditional SET

& WHEN NN(04) > 10.0 : 100.0;

& WHEN OTHERS : 1.0)

CL/APM Reference 3 - 4 7 / 9 3

3.2.4

3.2.4 READ and WRITE Statements

These statements are used to access variables in other nodes on the same UCN and to test
whether the access was correctly performed.

3.2.4.1 READ and WRITE Syntax

READ

variable

WRITE ,

FROM variable

WHEN(ERROR non_if)

read_stmt

write_stmt ,

3.2.4.2 READ and WRITE Description

The READ statement reads into variables in this APM from remote variables in other nodes
on the same UCN. The WRITE statement writes to remote variables in other nodes on the
same UCN from variables—and/or numeric constants—in this APM. The number of items
on the left-hand and right-hand sides of the FROM must be equal. These statements are
preemption points.

Any local variable or APM-resident point.parameter can appear in the source of a WRITE
statement, including the APM-resident box data-point parameters and the PVFL parameter
of the digital input hardware-addressing name form.

I/O points cannot be the destination parameters in a READ statement (the variable or
variables appearing before FROM). This restriction applies to AO, AI, DO, and DI points
as well as digital input PVs. In order to transfer data from a remote node to local I/O
points, you must first READ the data to local flags or numerics, then transfer the data to I/O
point parameters by the SET statement.

The program is suspended until the system confirms transmission of all variables. If all are
correctly transmitted, the program proceeds to the next sequential statement. If there is any
communication error or Data Owner error such that any store or fetch could not be
completed, the statement in the error clause (if any) is executed.

The number of variables allowed in a READ or WRITE statement is 16.

Whole array fetches and stores are not allowed in a READ or WRITE statement. If an
array parameter appears in a READ or WRITE statement, its index must be a constant or a
computed subscript.

3.2.4.3 READ and WRITE Examples

EXTERNAL REACT101 -- process module in this APM

EXTERNAL $NM01N01 -- box data point of another APM

EXTERNAL device2 -- device control point in another APM

EXTERNAL !BOX

EXTERNAL A100, B100, C100, D100, E100 -- points in another APM

EXTERNAL arraypt1 -- an Array Point in another APM

CL/APM Reference 3 - 5 7 / 9 3

3.2.4

LOCAL a AT NN(01)

LOCAL b : NUMBER ARRAY (1..5) at NN(10)

LOCAL c : ARRAY (1..10) AT REACT101.NN(20)

LOCAL temp1 : LOGICAL AT !BOX.FL(18)

LOCAL temp2 : running/stopped AT FL(10)

--

READ NN(1), FL(1) FROM A100.PV, $NM10N01.FL(3)

READ a, b(3) FROM A100.PV, B100.PV

READ c(10) FROM C100.PV (WHEN ERROR GOTO labl)

READ temp1 FROM $NM01N01.FL(02)

READ a FROM arraypt1.NN(6)

WRITE E100.PV FROM temp2

WRITE D100.PV FROM !BOX.NN(3)

WRITE B100.PV FROM 27.2

--

READ c(a) FROM D100.PV

READ A100.OP FROM $NM01N01.NN(04) -- INVALID, destination parameter

-- resides in an I/O point

WRITE device2.NN(1) FROM a

3.2.4.4 READ and WRITE Error Handling

An error on a READ or WRITE indicates that one or more of the variables could not be
stored into its destination variable. It is not possible to identify which or how many
variables are affected; therefore, the use of single-variable READs and WRITEs is
recommended for more flexible determination and handling of error conditions.

The READ/WRITE can fail for a number of reasons. For example, a READ statement may
attempt to fetch a numeric from another APM, which has failed; or, a WRITE to a setpoint
of a PID will fail if the PID is not in the correct mode. There is no explicit way to tell the
difference between the two possible types of errors (communication or Data Owner) after
the fact; therefore, before-the-fact checks (such as reading the mode before doing a store to
a setpoint for example) may be good procedure.

The WHEN ERROR clause specifies an error path to be executed if the READ/WRITE
statement cannot be completed. All failures cause the error path to be taken. (The compiler
no longer allows READ of IOL poststore parameters.)

When a READ/WRITE statement without an error path fails for other than a poststore
error, the sequence fails with Failure Code F170 (Communication error detected in
READ/WRITE statement).

CL/APM Reference 3 - 6 7 / 9 3

3.2.5
3.2.5 STATE CHANGE Statement

This statement sets the state of the Output (OP) parameter of one or more Digital Output,
Digital Composite, or Device Control data points that have two or more discrete output
states, and optionally verifies that the state has been properly set. This is the only CL/APM
statement that does not begin with a reserved word.

3.2.5.1 STATE CHANGE Syntax

state_id variable

,

(WHEN ERROR non_if)

state_change_stmt

3.2.5.2 STATE CHANGE Description

The variables must identify Digital Output, Digital Composite, or Device Control data
points that have an OP parameter of a discrete type. The state IDs of the OP can be of any
name, or the OP can be of type Logical, but if more than one data point is named, each OP
must be of the same type.

This statement sets the data points' OP parameters equal to the named state; therefore,
close A100 is the same as SET A100.OP = close.

One State Change statement can reference the OP parameter of a maximum of 16 points.
All data points must reside in the same node as the bound data point.

3.2.5.3 STATE CHANGE With WHEN ERROR Clause

The WHEN ERROR clause applies to only Digital Composite and Device Control points
and when Command Disagree alarming is enabled. For other point types and when
Command Disagree alarming is not enabled, the WHEN ERROR clause is ignored.

The WHEN ERROR clause is executed for any type of state change command failure.

The following table describes the sequence program action on various conditions of the
STATE CHANGE statement:

Command Disagree Is Configured Command Disagree NOT Configured
 WHEN ERROR WHEN ERROR WHEN ERROR WHEN ERROR
 path is coded path not coded path is coded path not coded

Normal Seq. continues to Seq. continues to Seq. continues to Seq. continues to
Execution next statement next statement next statement next statement

Command WHEN ERROR Seq. continues to Not applicable Not applicable
Disagree path is executed next statement
Timeout

Command WHEN ERROR Sequence Fails WHEN ERROR Sequence fails
Failure path is executed path is executed

A STATE CHANGE statement with an error clause is a preemption point.

CL/APM Reference 3 - 7 7 / 9 3

3.2.6

3.2.5.4 STATE CHANGE Examples

Suppose: Motor1's output states are start/stop;
Valve2 and Valve3's output states are open/close;
37SW's output states are low/high.
A device control point , DEV_CTL, has output states of up/down

Then, stop motor1

open valve2, valve3

high 37SW (WHEN ERROR GOTO STEP retry)

down DEV_CTL

are valid STATE CHANGE statements.

3.2.6 ENB Statement

This statement enables a new set of abnormal condition handlers, or disables all currently
enabled abnormal condition handlers.

When this statement is executed, all abnormal condition handlers that are currently enabled
are disabled and only the specified handlers are enabled. The same handler type (e.g.,
HOLD handler) cannot appear twice in the same ENB statement. If no handler names are
specified, all handlers are disabled.

This statement is a preemption point.

3.2.6.1 ENB Syntax

HOLD

SHUTDOWN

EMERGENCY

ENB

abnormal_id handler_id

enb_statement

abnormal_id

,

3.2.6.2 ENB Examples

ENB HOLD fillhold, EMERGENCY ovenstop

ENB SHUTDOWN tankck

IF !BOX.NN(3) > 55.0 THEN ENB HOLD hold1, EMERGENCY emer2

ELSE ENB HOLD hold2, EMERGENCY emer2

ENB

CL/APM Reference 3 - 8 7 / 9 3

3.2.7

3.2.7 GOTO Statement

This statement unconditionally branches to another place in the program.

3.2.7.1 GOTO Syntax

GOTO STEP

PHASE

goto_stmt
label_id

step_id

phase_id

3.2.7.2 GOTO Description

The target of a GOTO statement can be any label in the present step, the heading of any step
in the current phase, or the heading of any phase in the program. A GOTO cannot be used
to branch from the main body of a handler into the RESTART section, nor can it be used to
branch from the RESTART section to the main body of the handler. These are detected as
compile time errors.

A GOTO statement cannot be used to exit a subroutine; use EXIT instead.

NOTE

A backward-branching GOTO causes preemption. Although a forward GOTO statement is not
a preemption point, a GOTO STEP or GOTO PHASE statement always causes preemption,
because STEP and PHASE headings are preemption points.

CL/APM Reference 3 - 9 7 / 9 3

3.2.8

3.2.8 IF, THEN, ELSE Statement

These statements cause the conditional execution of another statement or statements.

3.2.8.1 IF, THEN, ELSE Syntax

IF condition THEN consequent

ELSE

consequent

if_stmt

consequent

non_if

(non_if)

;

3.2.8.2 IF, THEN, ELSE Description

Any ELSE or ELSE IF statement that does not directly follow an IF or ELSE IF statement
is an error.

The consequent gives the statement(s) to be conditionally executed. The first form of the
consequent indicates the conditional execution of a single statement; the second form
indicates conditional execution of multiple statements. Consequents are considered one
statement for syntax checking; therefore, if consequents are on a separate line from the IF,
a continuation character is required for each line.

A sequence of IF ... ELSE IF statements is evaluated until one of the IF conditions is true.
If this occurs, the consequent of the statement that has the true condition is executed. Any
succeeding ELSE IF or ELSE statements in the sequence are ignored.

If none of the conditions in the IF and ELSE IF statements are true, the consequent of the
ELSE statement (if any) is executed.

An IF, ELSE IF, or ELSE statement is not a preemption point of itself; however, the
consequent of an IF, ELSE IF, or ELSE can contain one or more preemption points.

An IF or ELSE statement must always appear on a new line (you need an & for a THEN...
that appears on a new line but not for ELSE...). It can be indented like any non-IF
statement. It can never appear in the consequent of an IF or ELSE statement, in a WAIT
statement's WHEN clause, or in the error clause of a READ, WRITE, state change, or
INITIATE statement.

An attempt to insert comment statements between consecutive non_if statements in the
consequent clause will force a compiler syntax error.

CL/APM Reference 3 - 1 0 7 / 9 3

3.2.8

3.2.8.3 IF, THEN, ELSE Examples

IF 2b OR NOT 2b <> the_question THEN FAIL

IF x < y THEN SET x = y

IF x NOT IN 1..10 THEN (SEND: "range error", x;

& GOTO retry)

IF a > b THEN SET a = sin (theta)

ELSE IF errflag THEN (SET a = 0;

& SET errflag = Off;

& SET theta = 2 * pi)

ELSE SET a = cos (theta)

The second example above corresponds to the flowchart in Figure 3-1.

0

yes

yes

n o

n o

SET a =
cos (theta)

SET a =
sin (theta)

errflag
= On ?

a > b ?

SET a = 0,
errflag =

Of f ,
theta =
2* pi

Figure 3-1 — If Statement Flowchart 1528

CL/APM Reference 3 - 1 1 7 / 9 3

3.2.9

3.2.9 LOOP Statement

This statement provides loop control within a step, subroutine, or abnormal condition
handler or in a phase without steps.

3.2.9.1 LOOP Syntax

LOOP

FOR counter_id

expression. .expressionIN

loop_stmt

3.2.9.2 LOOP Description

The LOOP statement's FOR clause names a counter variable. This variable must be a
scalar local variable or scalar subroutine argument of type Number. The upper and lower
bounds of the range are evaluated. If their values are not integers, they are rounded to the
nearest integer.

The counter variable is initialized to the value of the lower bound. Each time that loop's
REPEAT statement is executed, the counter variable is incremented by 1. If that value does
not exceed the range's upper bound (previously computed), the loop is repeated; otherwise
the loop terminates. On normal exit from the loop, the counter variable is equal to the final
expression plus 1.

The upper bound of the range is dynamically re-evaluated each time the REPEAT statement
is executed. Each backward branch on the REPEAT statement causes preemption. Lack of
a REPEAT statement following a LOOP forces a compile-time warning.

If the LOOP statement does not contain a FOR clause, it never normally terminates. It can
be exited by a GOTO or EXIT statement, or by the occurrence of an abnormal condition.

A LOOP statement must have a label.

3.2.9.3 LOOP Examples

label: LOOP

label: LOOP FOR count IN 10..20

label: LOOP FOR count IN 20..10 -- invalid (decrement not supported)

label2: LOOP for index IN x * y .. z+3

Label3: LOOP for i IN NN(2) * 3..NN(4) - 5

CL/APM Reference 3 - 1 2 7 / 9 3

3.2.10

3.2.10 REPEAT Statement

This statement causes a loop to be repeated.

3.2.10.1 REPEAT Syntax

REPEAT label_idrepeat_stmt

3.2.10.2 REPEAT Description

The target of a REPEAT statement must be a label:

• in the current phase if the phase has no steps
• in the current step in a subroutine or abnormal condition handler
• in the current subroutine or abnormal condition handler if it has no steps

The label_ID must define a loop; that is, the label referred to must have a LOOP statement
attached to it.

A loop can have only one REPEAT statement.

The REPEAT statement causes the loop's counter variable (if any) to be incremented by 1.
If the counter variable is then less than or equal to its final value, the program branches
back to the first statement in the loop. If the counter variable exceeds its final value, the
branch is not taken and execution proceeds sequentially, following the REPEAT statement.

If the loop does not define a counter variable, the REPEAT statement causes an
unconditional branch to the first statement in the loop. A loop need not be executed the
maximum number of times. Instead, it can be exited by a GOTO or by embedding the
REPEAT in a conditional statement and failing to execute it.

Loops can be nested to any depth. Whenever a loop is entered through its heading (or its
beginning), its loop counter is reset, and it again begins counting towards its maximum.

NOTE

A REPEAT statement is a preemption point.

CL/APM Reference 3 - 1 3 7 / 9 3

3.2.10

3.2.10.3 REPEAT Examples

The following example demonstrates conditional execution of a REPEAT statement.

setx: LOOP FOR i IN 1..5

SET x.SP = 2

WAIT 30 SECS

IF x.PV <> 2 THEN (REPEAT setx;

& SEND: "x.PV bad";

& FAIL)

In this example, the REPEAT statement is executed if x.PV is unequal to 2. The first five
times it is executed, the loop is repeated; the program again stores into x.SP and waits
thirty seconds. The sixth time, however, the REPEAT statement does not cause a
reinvocation of the Repeat loop, and the SEND and FAIL statements are executed.

The following example demonstrates nested loops:

outer: LOOP FOR i IN 1 .. 10

inner: LOOP FOR j IN 1 .. i

SET a(i*j) = -1.0

REPEAT inner

REPEAT outer

3.2.11 PAUSE Statement

If a sequence program is in semiautomatic mode, this statement causes it to pause until it is
resumed by the operator. In fully automatic mode, the PAUSE statement is ignored.

This statement is a preemption point when the sequence is executed in the semiautomatic
mode.

3.2.11.1 PAUSE Syntax

PAUSEpause_stmt

CL/APM Reference 3 - 1 4 7 / 9 3

3.2.12

3.2.12 WAIT Statement

This statement causes the program to wait until some condition is fulfilled, or until a time-
out occurs. This statement is a preemption point unless the time expression evaluates to
zero (0).

3.2.12.1 WAIT Syntax

time_expr

condition

time_expr

WAIT

WHEN

wait_stmt

(: non_if)

3.2.12.2 WAIT Description

The "WAIT time_expr" form of the WAIT statement defines a timed delay of any duration.
See subsection 2.7.3 for the definition of time expressions.

For the "WAIT condition" form of the WAIT statement, the program is suspended until the
named condition becomes true. If the "WAIT condition" statement contains a "WHEN
time_expression" clause, and the time expires while the WAIT condition is still false, the
non-if statement following the colon is executed.

To wait until a particular date, use the conditional wait (comparing two dates) as shown in
the examples below. If you use a time expression that resolves to a date (for example,
using the built in function Date_Time) in a WAIT, it is interpreted as a very large value
which causes an indefinite delay that the operator will need to step past.

Negative time values in a WAIT statement do not cause delays; instead, the program "falls
through" to the next statement.

3.2.12.3 WAIT Examples

LOCAL elapsed_time : TIME AT APM02S03.TIME(4) -- Time variable

LOCAL x : TIME AT pm03.TIME(2) -- another Time variable

LOCAL time_const = 3 MINS 10 SECS -- Time constant

LOCAL j AT NN(3) -- Number variable

WAIT elapsed_time

WAIT time_const

WAIT TIME(1)

WAIT 2 HOURS j MINS 3 SECS

WAIT 1 DAYS 10 MINS

WAIT 24 HOURS -- wait until 24 hours from now

WAIT Now > 8 HOURS -- wait until 8:00 a.m.today

SET X = Date_Time + 5 DAYS

WAIT Date_Time > x -- wait until 5 days from now

WAIT arraypt1.TIME(2) -- wait value from an Array Point

WAIT A100.PV > 50.0 (WHEN 5 MINS: GOTO stop) -- wait for PV to exceed

-- 50; if it takes more

-- than 5 mins goto stop

CL/APM Reference 3 - 1 5 7 / 9 3

3.2.13

3.2.13 CALL Statement

This statement invokes (calls) a subroutine.

3.2.13.1 CALL Syntax

subr_idCALL

variable or
constant

(

call_stmt

)

,

3.2.13.2 CALL Description

The arguments of the CALL statement must match the arguments of the subroutine
declaration in both data type and mode (IN, OUT, or IN OUT). A variable must appear in
each place where the SUBROUTINE heading names an OUT or IN OUT argument; a
variable or constant can be used in the place of an IN argument.

Arguments passed in the CALL statement to a subroutine can be only the following:

• scalar local variables
• entire array local variables and entire array parameters
• scalar parameters (Limitation: IOL parameters requiring prefetch are not permitted with

the exception of DO parameters SO and INITREQ.)
• digital input PVs (PV or PVFL parameter)
• array parameters indexed by a constant
• element of a local array indexed by a constant
• numeric literals
• enumeration state identifiers
• expressions (with built-in subroutines only)

A maximum of 32 arguments can be passed to a subroutine. When an expression is passed
to a built-in subroutine, it can contain a computed index; however, off-node references
cannot appear either in a subscript or as an argument itself.

An entire array can be passed into a subroutine, and in turn passed to another subroutine.
However, a subroutine cannot pass an individual element of an array argument to another
subroutine. An example of an attempt to do this is included in the examples at heading
3.2.13.2.

A CALL statement can appear anywhere in the sequence program, including within a
HANDLER or SUBROUTINE; however it is a run time error to nest subroutine calls more
than one level deep. That is, subroutine A can call subroutine B, but subroutine B cannot
in turn call subroutine C.

If the first step of the subroutine does not require prefetches, the subroutine call is NOT a
preemption point. If the step that called the subroutine did not require prefetches, the return
from the subroutine is NOT a preemption point.

CL/APM Reference 3 - 1 6 7 / 9 3

3.2.13

3.2.13.3 CALL Examples

The following CALL examples match the subroutine header definitions at heading 4.4.1.5,
Subroutine Arguments Examples.

EXTERNAL !DI01S02, A200 -- digital input points

EXTERNAL D300 -- regulatory PV point

EXTERNAL DOPT -- digital output point

LOCAL num AT NN(3)

LOCAL flagarr : LOGICAL ARRAY (1..3) AT FL(10)

...

CALL sub1 (!DI01S02.PVFL, A200.PV) -- digital input PVs

CALL sub2 (num, flagarr) -- scalar local variable, entire

-- array local variable

CALL sub3 (flagarr(2), 5.5, NN(19)) -- element of local array, numeric

-- literal, array parameter

-- indexed by a constant

CALL sub4 (D300.C) -- scalar parameter

CALL sub5 (flagarr(num)) -- ILLEGAL the local array is not

-- indexed by a constant

CALL sub6 (DOPT.SO) -- scalar parameter not requiring

-- prefetch

CALL sub7 (open) -- enumeration state identifier

The following example shows an improper CALL statement.

SUBROUTINE suba (arr1: IN LOGICAL ARRAY (1..3))

CALL subb (arr1(2)) -- ILLEGAL—you cannot pass an

-- element of an incoming array

-- argument to another subroutine

END suba

The following examples illustrate the use of expressions in CALLs to the built-in
subroutine Modify_String.

EXTERNAL APM02S01 -- a process module data point in this node

EXTERNAL APM03S01 -- a process module data point in another node

LOCAL a AT NN(18)

LOCAL b AT NN(19)

LOCAL c AT NN(20)

 . . .

CALL Modify_String (NN(a+1), STR8(2), NN(b)+NN(c), APM02S01.NN(1),

& STR8(1), NN(8)) -- valid call

CALL Modify_String (NN(a+1), STR8(2), NN(b)+NN(c), NN(APM03S01.NN(1)),

& STR8(1), NN(8))

-- invalid call, off-node reference in subscript

CALL Modify_String (APM03S01.NN(1), STR8(2), NN(b)+NN(c),

& APM02S01.NN(1), STR8(1), NN(8))

-- invalid call, off-node ref. passed as argument

CL/APM Reference 3 - 1 7 7 / 9 3

3.2.14

3.2.14 SEND Statement

This statement sends a message to the operator or to another data point. It can optionally
wait for operator confirmation.

3.2.14.1 SEND Syntax

send_stmt SEND (WAIT)

expression:

,

LOG_ONLY

CRT_ONLY

ACP

3.2.14.2 SEND Description

The WAIT option suspends the program until the message is confirmed by the operator. If
WAIT is specified, the SEND statement is a preemption point (refer to heading 3.2.14.4).
The WAIT option can be selected for only the default destination (CRT and LOG) or
CRT_ONLY. Note that there is no timeout of a SEND with WAIT.

If included, the destination specified at the left of the colon is one of the special destinations
CRT_ONLY, LOG_ONLY, or ACP.

• If the destination is CRT_ONLY, the message goes to the operator CRT of the bound
data point's Unit.

• If the destination is LOG_ONLY, the message goes to the operator's printing (log)
device.

• If the destination is omitted, the message goes to both the operator's CRT and Log
device.

• If the destination is ACP, the message goes to an Advanced Control Interface Data
Point (ACIDP) in a CG. (ACP is a parameter of the process module data point that is
configured to specify the name of an ACIDP that is to receive sequence messages.)

The "expressions" in the SEND statement are the items to be sent. Each item can have a
value of any of the types: Number, Logical, or self-defined enumeration, plus String and
Time variables, constants, literals or parameters. Point names cannot be sent in the SEND
statement. An array cannot be sent as a whole, but its elements can be individually sent.

All printable characters are valid in SEND strings. Note that the maximum number of
characters that can be displayed on a CRT is 60, and the maximum number of characters
that the LOG can print is 71. Messages longer than these limits are truncated without
warning.

CL/APM Reference 3 - 1 8 7 / 9 3

3.2.14

SENDing only a null or blank string is not allowed; a SEND that sends other items in
addition to a null or blank string is allowed.

The external (human readable) format used for time values in SEND messages depends on
the duration.

• When the duration is less than one day, the format is HH:MM:SS.

• When the duration is > 1 and < 1000 days, the format is DDD HH:MM:SS.

• When the duration is >= 1000 days, the format is DDMMMYY HH:MM:SS.

3.2.14.3 SEND Examples

SEND : "Begin cleanup"

SEND (WAIT): "Error ", A100.PV, "out of range"

SEND Log_Only: "values are", a, b, "and", c

SEND (WAIT) CRT_Only: "This is a CRT message"

SEND ACP: 1, 37, A101.PV

SEND : "Mode value is ", B2002.mode

SEND : arraypt1.STR64(1) -- arraypt1 is an Array Point

LOCAL elapsed_time : TIME AT pm03.TIME(4) -- Time variable

LOCAL time_const = 3 MINS 10 SECS -- Time constant

LOCAL string1 : STRING AT STR8(3) -- String variable

LOCAL error_message = "Error has occurred" -- String constant

 . . .

SEND : "Elapsed time is ", elapsed_time -- String literal and

-- a Time variable

SEND : "Constant value is ", time_const -- String literal and

-- a Time constant

SEND : "Program will wait ", 15 MINS 10 SECS -- String literal and

-- a Time literal

SEND : "Time value is ", TIME(2) -- String literal and

-- a Bound Data Point

-- Time parameter

SEND : "String values are ", STR8(3), STR8(4) -- String literal and

-- Bound Data Point

-- String parameters

SEND : string1 -- String variable

SEND : error_message -- String constant

3.2.14.4 Preemption of SEND Statement

When an abnormal condition occurs and a handler is entered, the main sequence might have
been waiting for operator response on an outstanding SEND statement with the WAIT
option. The message is still available for confirmation, but the handler proceeds. The
handler itself may execute a SEND with WAIT, and at that point the operator can confirm
either of the outstanding SENDS (both can be confirmed, one at a time).

CL/APM Reference 3 - 1 9 7 / 9 3

3.2.14

3.2.14.5 Event Initiated Reports from CL

Two types of Event Initiated Reports can be invoked by specially formatted CL/APM
messages:

• Logs, reports, journals, and trends configured in the Area Database.
• Event History reports.

Details of message requirements are given in Section 30 of the Engineer's Reference
Manual located in the Implementation/Startup & Reconfiguration - 2 binder.

NOTE

If the report name is not found in the Area Database, no error is reported.

CL/APM Reference 3 - 2 0 7 / 9 3

3.2.15

3.2.15 INITIATE Statement

This statement causes the initiation of an abnormal sequence (an Abnormal Condition
Handler) of the sequence program executing the INITIATE statement; or it can start a
separate sequence program, or an abnormal sequence of a separate sequence program.

It can optionally wait for confirmation that the requested action has occurred and take action
on errors.

3.2.15.1 INITIATE Syntax

INITIATE module_id

abnormal_id

: abnormal_id

error_clause

SHUTDOWN

HOLD

EMERGENCY

WHEN ERROR non_if()

initiate_stmt

abnormal_id

error_clause

3.2.15.2 INITIATE Description: Initiating Programs

INITIATE module_id starts the sequence program that is loaded into the process module
data point identified by "module_id" by changing its PROCMOD parameter value. This
form of the INITIATE statement can be used to initiate a sequence in this APM or in
another APM or PM on the same UCN.

If the INITIATE statement is initiating a sequence in another APM or PM, it is a
preemption point.

CL/APM Reference 3 - 2 1 7 / 9 3

3.2.15

3.2.15.3 INITIATE Description: Initiating Abnormal Condition Handlers

"INITIATE module_id : abnormal_id" starts the named Abnormal Condition Handler of the
sequence program executing in the named module, as soon as the sequence reaches its next
preemption point.

"INITIATE abnormal_id" starts the named handler of the present sequence program. That
handler must be higher in priority than the one executing this statement. Control is directly
transferred to the head of the handler; no further statements are executed by the present
sequence program. It is a run time error to initiate a handler that is not enabled.

An INITIATE statement that starts an Abnormal Condition Handler of the same sequence
program, while not a preemption point itself, transfers control to a preemption point, thus
causing preemption.

3.2.15.4 INITIATE Description: WHEN ERROR Clause

The INITIATE request can result in an error condition for several reasons, including the
target process module is in the wrong state; the target process module is not loaded; the
requested handler is not enabled; or there is a communications failure between nodes. If
the INITIATE statement has an error clause and an error condition occurs, the statement in
the error clause is executed; however, in the event of an error, if the INITIATE statement
has no error clause the requesting sequence is failed.

It is a compile-time error to use a WHEN ERROR clause on an INITIATE of your own
abnormal condition handler.

An INITIATE statement with a WHEN ERROR clause is a preemption point.

3.2.15.5 INITIATE Examples

EXTERNAL !BOX -- Box data point of this APM

EXTERNAL mixer, reactor -- Process module data points in this APM

EXTERNAL boiler, oven -- Process module data points in another APM

EXTERNAL $NM02N10 -- Box data point identifier of another APM

INITIATE mixer -- Starts another sequence in this APM

INITIATE mixer:hold -- Starts handler of another sequence in this APM

INITIATE EMERGENCY -- Starts handler of this sequence in this APM

INITIATE reactor (WHEN ERROR FAIL) -- Starts another sequence in this

-- APM with fail action when error

INITIATE boiler:HOLD (WHEN ERROR GOTO retry) -- Starts a handler of

-- another sequence in

-- another APM with goto

-- action when error

INITIATE oven (WHEN ERROR INITIATE SHUTDOWN) -- Starts another sequence

-- in another APM with

-- handler of this sequence

-- to start when error

CL/APM Reference 3 - 2 2 7 / 9 3

3.2.16

3.2.16 FAIL Statement

This statement causes the program to be suspended and enter a soft failure state (error code
112). The operator is informed and can take recovery action. The recovery actions
available are system-defined; they include, but are not limited to, resuming execution of the
program at the next sequential statement (presumably after having made some changes).

This statement is a preemption point.

3.2.16.1 FAIL Syntax

FAILfail_stmt

3.2.16.2 FAIL Examples

close switch_2 (WHEN ERROR FAIL)

IF val > 10 THEN (FAIL; GOTO recover)

3.2.17 RESUME Statement

This statement can be executed only by the Restart routine of an Abnormal Condition
Handler. It causes resumption of the normal sequence at the beginning of a specified
phase.

3.2.17.1 RESUME Syntax

RESUMEresume_stm PHASE phase_id

3.2.17.2 RESUME Description

The named phase is resumed at its head.

This statement is a preemption point, because it returns to a phase.

CL/APM Reference 3 - 2 3 7 / 9 3

3.2.18

3.2.18 EXIT Statement

When this statement is executed in a subroutine, it returns control to the subroutine's caller;
when executed in a main program or Abnormal Condition Handler, it terminates the
program.

3.2.18.1 EXIT Syntax

EXITexit_stmt

3.2.19 ABORT Statement

This statement causes program termination. Its action is identical to the EXIT statement
with the exception that, when executed in a subroutine, an ABORT statement terminates
both the subroutine and the program.

3.2.19.1 ABORT Syntax

ABORTabort_stmt

3.2.20 END Statement

This must be the last statement of a main program, subroutine or handler. Execution of this
statement is identical to the EXIT statement.

3.2.20.1 END Syntax

ENDend_stmt

seq_id

handler_id

subr_id

3.2.20.2 END Description

The END statement is counted as an executable statement even though it is not assigned a
statement number on program listings.

The ID in each END statement must match the ID in the corresponding sequence or handler
or subroutine heading.

CL/APM Reference 3 - 2 4 7 / 9 3

3 .3

3.3 EMBEDDED COMPILER DIRECTIVES

This section describes compiler directives that can be directly embedded in a CL structure.

3.3.1 Embedded Compiler Directives Syntax

All compiler directives begin with a percent sign (%) and must begin in the first column of
a source line. Alphabetic characters can be either upper-case or lower-case.

3.3.2 %PAGE Directive

This compiler directive causes a page break when you print your CL listing. It has no
further effect. Any characters between %PAGE and the end of the source line are ignored.

3.3.3 %DEBUG Directive

This compiler directive is used to indicate source lines that are subject to conditional
compilation.

The Compile command option "-D" (or "-DEBUG") controls how source lines beginning
with %DEBUG are to be processed. See heading 5.3.1.2 in the Control Language/Advanced
Process Manager Data Entry manual for information on the full set of Compile command
options.

• When compile option "-D" is specified, each source line that begins with %DEBUG is
treated as an ordinary source line with the %DEBUG stripped off.

• When compile option "-D" is not specified, any source line that begins with %DEBUG
is ignored.

3.3.3.1 %DEBUG Example

SET x.PV = 4

%DEBUG SEND: "x.PV has been set"

In this example, the SEND statement is executed only if the compiler command option is
selected when the program is compiled.

CL/APM Reference 3 - 2 5 7 / 9 3

3.3.4

3.3.4 %INCLUDE_EQUIPMENT_LIST Directive

This compiler directive is used to indicate a single Equipment List object file to be read
during compilation of this program. The %INCLUDE_EQUIPMENT_LIST directive must
be the first line in the CL Source Program, excluding comment lines. The syntax for this
directive is:

%INCLUDE_EQUIPMENT_LIST el_object_pathname

Where "el_object_pathname" represents the name of the Equipment List object file. This
can be either the full pathname or the object file name only (if the object name only is
specified, the user default path is used). The file name requires a .QO suffix. The device
name and volume portion of the pathname specified here can be overwritten by use of the
"-OEP" command when compiling the program.

Note that separate object files are generated by the compiler for each unit instance found
within the equipment list.

3.3.5 %INCLUDE_SOURCE Directive

The %INCLUDE_SOURCE compiler directive allows you to include information from
another ASCII text file in a CL source file. Conceptually, the statements from the included
file replace the %INCLUDE_SOURCE directive. The %INCLUDE_SOURCE directive
names a single filename or file pathname. Include Source files must be named with a .CL
suffix; however, the .CL is optional when naming the file in the directive. If only the
filename is used in the directive, the CL SOURCE/OBJECT path is used to locate the file.
Include Source files can be located anywhere on the local LCN.

Include Source files can contain CL statements, data declarations, compiler directives, and
comments. In addition, an Include Source file can contain an unlimited number of other
Include Source directives. Nesting is limited to five levels deep.

The CL Compiler checks date/time stamps of the main source file and each Include Source
file to ensure that none of these files change during a compilation. If any file changes, the
compile is deemed invalid, an error message is generated, and the compilation is
terminated.

The listings contain a FILE column if a %INCLUDE_SOURCE directive is present in the
main source. Each Include Source directive is assigned a unique number. The FILE
column displays that unique number next to each line of that particular Include Source file.
The main CL source file is not assigned a file number.

The COMPILATION RESULTS section (located before the cross-reference section) shows
the full pathname for the main source and each Include Source file.

CL/APM Reference 3 - 2 6 7 / 9 3

3.3.5

The COMPILATION RESULTS section also shows the total amount of heap memory
used. This indicates the total amount of memory that was required to compile the CL
program.

If the %INCLUDE_EQUIPMENT_LIST directive is used, it must be the first noncomment
statement in the file. The %INCLUDE_SOURCE directive may appear anywhere
afterward.

3.3.5.1 %INCLUDE_SOURCE CL/APM Source Example

SEQUENCE testapm(apm;point apm01)

%INCLUDE_SOURCE phase1

%INCLUDE_SOURCE phase2

%INCLUDE_SOURCE step3

END testapm

%INCLUDE_SOURCE pmsubrtn

3.3.5.2 %INCLUDE_SOURCE CL/APM Listings Example

CL V41.00 TESTAPM 12/10/91 10:17:37:1962 Page 1

File Line Loc Text

1 SEQUENCE testapm(apm;point apm01)

2 %INCLUDE_SOURCE phase1

1 3 PHASE one

^

**NOTE ** All enabled abnormal handlers are disabled

1 4 STEP one

1 5 1 SEND:”hi”

1 6 STEP two

1 7 1 SEND:”bye”

8 %INCLUDE_SOURCE phase2

2 9 PHASE two

^

**NOTE ** All enabled abnormal handlers are disabled

2 10 STEP one

2 11 1 SEND:”phase two, step one”

2 12 STEP two

2 13 1 SEND:”phase two, step two”

14 %INCLUDE_SOURCE step3

3 15 STEP three

3 16 1 CALL pmsubrtn

17 END testapm

18 %INCLUDE_SOURCE pmsubrtn

4 19 SUBROUTINE PMSubrtn

4 20 1 SEND:”PMSubrtn”

4 21 END PMSubrtn

*******No errors detected

CL/APM Reference 3 - 2 7 7 / 9 3

3.3.5

-------COMPILATION RESULTS-------

*** 3 BLOCKs of object code out of a maximum of 392 blocks

New APM object file:

 File A0701966.NO created

Compilation was on a UP. Memory limit in words = 320,000

Words of heap memory used: 25,599

Options Selected: -NoXRef -UpdateLib

The following source file(s) were referenced:

File File Path

----- ----------------------

NET>DO>TESTAPM.CL (Main Source File)

1 NET>DO>PHASE1.CL

2 NET>DO>PHASE2.CL

3 NET>DO>STEP3.CL

4 NET>DO>PMSUBRTN.CL

CL/APM Reference 3 - 2 8 7 / 9 3

CL/APM Reference 4 - 1 7 / 9 3

4

CL/APM STRUCTURES
Section 4

This section describes the structure and components of a Sequence Program written in CL/APM.
It also describes data addressing options and explains the available built-in functions and other
support features .

4.1 SEQUENCE PROGRAM DEFINITION

A Sequence Program is a set of instructions that details a complete sequence of events in
the production of some product. After compiling without errors, a sequence program is
loaded into a process module, which is a named data point in the Advanced Process
Manager. Sequence programs are loaded from the Process Module Detail Display using the
US Operator's Personality. Heading 3.2.2 in the Control Language/Advanced Process
Manager Data Entry manual specifies which volume your program's object file (.NO file)
must be in, so that loading the program to an APM can be carried out successfully. Refer
also to the following headings in the Control Language/Advanced Process Manager Data
Entry manual: 2.3 (Table 2-1), 2.4, and all of heading 3.2, for information on the
relationship of sequence programs, process modules and user volumes.

Sequence programs are constructed by combining statements to form steps, combining
steps to form phases, then combining phases to form the sequence of tasks you want to
perform. Subroutines can exist within sequence programs.

Abnormal Condition Handlers are CL/APM structures that can be used to take control from
the sequence program if a certain "abnormal condition" occurs, usually some sort of
process upset.

A sequence program's execution can be interleaved with that of other sequence programs
running in the same APM.

The suspension of a sequence program to allow another program to run is called
preemption.

A sequence program can be preempted only at specific points, which are as follows:

• Any statement that causes a delay (individually described in Chapter 3)

• Any backward GOTO or REPEAT statement

• The crossing of any STEP, PHASE, or RESTART heading

The statements between two adjacent preemption points are guaranteed to execute without
being interrupted by other sequence programs. You can use this guarantee to avoid the
need for synchronization on variables shared between separate sequence programs.

CL/APM Reference 4 - 2 7 / 9 3

4.1.1

4.1.1 Sequence Program Syntax

main_
sequence handler subroutine

sequence
heading

declaration phase END
sequence

id

handler_
heading

routine
restart_
heading

END handler_id

subr_
heading

routine END subr_id

phase_
heading routine

step

statement

statement
step_

heading
step

routine

phase

subroutine

handler

main sequence

sequence program

routine

4.1.2 Sequence Program Description

A sequence program consists of a main sequence, optionally followed by abnormal
condition handlers and subroutines.

The main sequence is made up of phases; a phase or subroutine consists of one routine.
An Abnormal Condition Handler consists of one or two routines, the second (if present)
being its Restart routine. Routines (phases, handlers, and subroutines) are made up of
steps; however, if a routine consists of only one step, the STEP heading can be omitted.

The sequence ID (handler ID, subroutine ID) in each END statement must match that in its
respective heading.

CL/APM Reference 4 - 3 7 / 9 3

4.1.3

4.1.3 SEQUENCE Heading

The SEQUENCE heading identifies the sequence program, the program destination, and
the bound data point.

4.1.3.1 SEQUENCE-Heading Syntax

SEQUENCE sequence_id (point_
description

)

sequence_heading

APM ; POINT module_id

point_descriptio

4.1.3.2 SEQUENCE-Heading Description

The sequence ID is an identifier by which the program is to be externally known. This ID
is displayed on the Process Module Detail Display when the sequence is loaded into the
module.

The point description identifies that this sequence is destined for an Advanced Process
Manager, not a Process Manager or a Multifunction Controller. "Module_ID" is the name
of the Process Module Data Point where the sequence program is loaded.

4.1.3.3 SEQUENCE-Heading Example

SEQUENCE fred (APM; POINT REACT101)

CL/APM Reference 4 - 4 7 / 9 3

4.1.4

4.1.4 PHASE Heading

A phase is a major process milestone. Phase boundaries are key synchronization points in
the sequence program. The PHASE heading identifies the beginning of a new phase and
sets up the operating conditions for the execution of its routines.

During a phase, a check is made at each preemption point for the occurrence of abnormal
conditions. When such a condition occurs, all activities cease and an abnormal condition
handler is activated.

A phase-alarm timer, if active, checks the total execution time of a phase.

At the end of a phase, all activities, including abnormal condition detection, cease. The
phase-alarm timer is stopped. The sequence program is momentarily quiescent, and a new
phase can begin. When the heading of the next phase is crossed, a phase change is marked
for the sequence. This can be displayed by the Universal Station. In the new phase
heading, the phase-alarm timer can be restarted at a newly specified setting. Existing
enabled abnormal condition handlers can be retained, or a new set of abnormal condition
handlers can be activated, including a null set (no handlers enabled).

4.1.4.1 PHASE-Heading Syntax

PHASE phase_id

(head_clause)

;

ALARM time_expr

;

abnormal_id handler_id

;

KEEPENB

phase_heading

head_clause

CL/APM Reference 4 - 5 7 / 9 3

4.1.4

4.1.4.2 PHASE-Heading Description

The ALARM-heading clause sets the phase-alarm timer to the value of the time expression.
If this clause is omitted, the phase-alarm timer is not started for this phase.

NOTE

The time expression in the ALARM Clause cannot contain a variable requiring prefetch. That
is, parameters of Analog Input, Analog Output, Digital Input (except for DI PVs), and Digital
Output points cannot be used in the ALARM Clause. The ALARM Clause also cannot contain
a reference to an off-node parameter.

If the ALARM time is a TIME variable (e.g., TIME(3)), the value of the time variable is
snapshot at the phase boundary. That value then is used for time count down during the
phase. Therefore, changing the value of the time variable during the phase execution has
no effect on the phase time alarm.

The HOLD-heading, SHUTDOWN-heading, and EMERGENCY-heading clauses enable
handlers for their respective abnormal conditions. Activation conditions for these handlers
are defined in the handlers' own headings. The same Abnormal Condition Handler-
heading clause cannot appear twice in one PHASE heading. If a PHASE heading contains
no clause that activates a given handler, that condition is disabled.

The KEEPENB clause specifies that the current set of enabled handlers should not be
disabled and should be retained (see heading 4.2.1.2). A PHASE heading can contain
either the KEEPENB clause or named handlers, but not both.

Note that based on program flow, you cannot be sure which handlers are enabled when a
PHASE heading is encountered. If you need to be certain, name the required handlers in
the PHASE heading.

If no handlers and no KEEPENB clause are specified in the PHASE heading, all handlers
are disabled. A compiler note is issued for this condition.

A PHASE heading not followed by a STEP heading is a preemption point.

4.1.4.3 PHASE-Heading Examples

PHASE mix_up (ALARM 2 MINS)

PHASE fill_up (ALARM TIME(3); SHUTDOWN cleanup)

PHASE hold_up (ALARM NN(17) SECS; HOLD hold1)

PHASE shut_up (ALARM APM02S03.NN(02) SECS; KEEPENB)

CL/APM Reference 4 - 6 7 / 9 3

4.1.5

4.1.5 STEP Heading

A step is a named minor milestone of the process, that consists of one or more statement
groups separated by a STEP heading. As a process milestone, a step is recognized and
displayed at the Universal Station.

The STEP heading names a step.

4.1.5.1 STEP-Heading Syntax

STEP step_idstep_heading

4.1.5.2 STEP-Heading Description

The STEP heading is a preemption point.

4.1.5.3 STEP-Heading Examples

STEP s1

STEP fill_a

CL/APM Reference 4 - 7 7 / 9 3

4 .2

4.2 ABNORMAL CONDITION HANDLERS DEFINITION

When a sequence program is not handling an abnormal condition, it is said to be in its
normal sequence; otherwise, it is in an abnormal sequence. Refer to Section 3 for
complete information on any of the statements mentioned in this discussion (e.g., SEND).

The abnormal-condition identifiers are HOLD, SHUTDOWN, and EMERGENCY. These
are reserved words.

Abnormal Condition Handlers have priority over each other and over normal sequences.
These priorities are defined as follows:

EMERGENCY Highest
SHUTDOWN |
HOLD |
Normal sequence Lowest

If the operator, or any INITIATE statement in the same or another program, should attempt
to start an Abnormal Condition Handler that is not enabled, the Runtime Error E107
(KEYLEVEL ERROR) is generated.

4.2.1 HANDLER Heading

The HANDLER heading specifies the name of the handler, the abnormal condition it
handles, and its starting condition (if any).

4.2.1.1 HANDLER-Heading Syntax

abnormal_id HANDLER handler_id

(event)

WHEN condition

HOLD

SHUTDOWN

EMERGENCY

handler_heading

event

abnormal_id

CL/APM Reference 4 - 8 7 / 9 3

4.2.1

4.2.1.2 HANDLER-Heading Description

The handler_ID is the identifier by which the handler is to be known. The abnormal_ID
(HOLD, SHUTDOWN, or EMERGENCY) defines the condition to be handled.

An Abnormal Condition Handler must be enabled by a PHASE heading or the ENB
statement. The set of enabled handlers is re-evaluated at each PHASE statement; they can
be retained (if a KEEPENB clause is found in the PHASE heading), changed (a new set of
handlers is named in the PHASE heading), or disabled (no KEEPENB or set of handlers
are named in the PHASE heading). Handlers also are re-evaluated at the ENB statement.
A handler cannot start until it has been enabled.

Once enabled, a handler can be started in one of three ways:

• by operator action

• by execution of an INITIATE statement in any sequence program (including its own)

• by the occurrence of the event (if any) named in its heading.

The WHEN condition is tested at each preemption point. It also is tested continuously
when SEQEXEC is equal to PAUSE, FAIL, ERROR, or END. A PHASE header first
enables handlers and then checks for the condition in the WHEN clause; therefore, you
must have a preemption point between the condition that you are checking for in the
WHEN clause and the next PHASE header. Then, if it is true, the "WHEN" event is
deemed to have occurred and the handler begins execution. The following example shows
a preemption point "STEP S1", which is between the condition being set to true ("SET X =
On") and the next PHASE header ("PHASE P3").

SEQUENCE s (APM; POINT REACT101)

 LOCAL x: LOGICAL AT FL(1)

PHASE p1

 SET x = Off

PHASE p2 (HOLD h)

 STEP s0

 SET x = On

 STEP s1

 GOTO PHASE p3

PHASE p3

 SET x = Off

END s

HOLD HANDLER h (WHEN x = On)

 SEND: "begin hold handler"

RESTART

 RESUME PHASE p3

END h

A handler without a given event can be started by only operator or program action.

Once in an abnormal condition handler, the run time behaves as if that handler and all lower
priority handlers are disabled. This is because the condition that triggered the handler may
still be true, which if the current handler was still enabled, would re-trigger the handler,
causing a loop.

CL/APM Reference 4 - 9 7 / 9 3

4.2.1

Normally, the highest priority handler that is enabled is executed, and an attempt to
INITIATE a lower priority handler, while in a higher priority handler, generates a Failure
173—Store fail due to rights error.

However, situations can occur that transfer control from a higher priority handler to a
handler of lower priority. In the following example, control is transferred from the higher
priority EMERGENCY handler to the lower priority SHUTDOWN handler. Both handlers
are disabled when entering the EMERGENCY handler, but then an ENB statement enables
only the SHUTDOWN handler which takes control when its heading event becomes true.
Care must be taken to avoid this situation.

SEQUENCE example (APM; POINT REACT101)

LOCAL a AT NN(1)

PHASE one (SHUTDOWN shut1; EMERGENCY emer1)

SET a = 2 -- emergency handler event becomes true

WAIT 1 SECS -- sequence goes to emergency handler

SEND : "won't get here in normal sequence"

END example

SHUTDOWN HANDLER shut1 (WHEN a = 3)

SEND : "in shut1"

END shut1

EMERGENCY HANDLER emer1 (WHEN a = 2)

-- at this point, both shutdown and

-- emergency handlers are disabled

SEND : "in emer1"

ENB SHUTDOWN shut1 -- shutdown handler is enabled, but

-- the emergency handler is not enabled

SET a = 3 -- shutdown handler event becomes true

WAIT 1 SECS -- sequence goes to the shutdown handler

-- from the emergency handler

SEND : "won't get here in emer1"

END emer1

CL/APM Reference 4 - 1 0 7 / 9 3

4.2.1

When you exit an abnormal condition handler with a RESUME statement, the set of
handlers that will be enabled will depend on the PHASE header statement and whether or
not any handlers were enabled within the abnormal condition handler. The following is a
general set of rules to help determine which handlers will be in effect:

• If you resume to a phase that has a KEEPENB in its header, the set of handlers that
were enabled before the resume will remain in effect. This would include handlers
that were enabled prior to entering the abnormal handler and those abnormal handlers
that were enabled within the abnormal handler.

• If you resume to a phase with handlers in its header, then those handlers will be
enabled. Even if you enabled other handlers prior to the resume to the phase, those
handlers in the phase header will be enabled and all previously enabled handlers will
be disabled.

• If you resume to a phase that does not have any handlers in its header, then no
handlers will be enabled. Any previously enabled handlers will be disabled upon
resuming to the phase.

Example:

SEQUENCE seq1 (APM; POINT REACT101)

EXTERNAL !BOX

PHASE zero

SET NN(1) = 1 -- Initialize numeric to one so that the

-- first time we enter the shutdown

-- handler, the first resume condition

-- is executed

PHASE one (SHUTDOWN shut1 ; EMERGENCY emer1)

STEP sone

SET !BOX.FL(15) = OFF -- Set the condition that causes the

-- shut1 shutdown handler to be invoked

WAIT 2 SECS -- Cause a preemption point

PHASE two (KEEPENB) -- When entering this phase, all

-- previously enabled handlers will

-- remain in effect

PAUSE

GOTO PHASE one

....

PHASE three (HOLD hold1) -- When entering this phase, all

-- previously enabled handlers will be

-- disabled and the HOLD hold1 handler

-- will be the only handler enabled

PAUSE

GOTO PHASE one

PHASE four -- When entering this phase, all

-- previously enabled handlers will be

-- disabled and no handlers will be

-- enabled

PAUSE

GOTO PHASE one

CL/APM Reference 4 - 1 1 7 / 9 3

4.2.1

PHASE five (HOLD hold1) -- When entering this phase, all

-- previously enabled handlers will be

-- disabled and the HOLD hold1 handler

-- will be the only handler enabled

PAUSE

GOTO PHASE one

PHASE six (KEEPENB) -- When entering this phase, the

-- previously enabled handlers will

-- remain in effect

PAUSE

GOTO PHASE one

END seq1

HOLD HANDLER hold1

SEND:”In Hold Handler”

END hold1

EMERGENCY HANDLER emer1

SEND:”In Emergency Handler”

END emer1

SHUTDOWN HANDLER shut1 (WHEN !BOX.FL(15) = OFF)

SET !BOX.FL(15) = ON

SET NN(1) = NN(1) + 1

RESTART

IF NN(1) = 2 THEN RESUME PHASE two

IF NN(1) = 3 THEN RESUME PHASE three

IF NN(1) = 4 THEN RESUME PHASE four

IF NN(1) = 5 THEN (ENB EMERGENCY emer1; RESUME PHASE five)

IF NN(1) = 6 THEN (ENB HOLD hold1; RESUME PHASE six)

END shut1

In the above example, phase one enables the handlers shut1 and emer1. The shut1 handler
condition is set to OFF which causes the SHUTDOWN handler to be invoked. The first
time into the SHUTDOWN handler, the box numeric is incremented to 2 which causes a
resume to phase two. Phase two has a KEEPENB header which leaves the previously
enabled shut1 and emer1 handlers in effect. Phase two returns to phase one to go through
the scenario again.

This time when phase one causes the shut1 handler to be invoked, the box numeric is
incremented to 3. This causes a resume to phase three. Phase three has a HOLD hold1
header. This forces all previously enabled handlers to be disabled and the HOLD hold1
handler to be enabled. Phase three returns to phase one to go through the scenario again.

When phase one causes the shut1 handler to be invoked, the box numeric is incremented to
4. This causes a resume to phase four. Phase four does not have any handlers in its
header. This causes all previously enabled handlers to be disabled and no handlers will be
enabled. Phase four returns to phase one to go through the scenario again.

When phase one causes the shut1 handler to be invoked, the box numeric is incremented to
5. This causes the emer1 EMERGENCY handler to be enabled and then a resume to phase
five. Phase five has a HOLD hold1 header which causes the emer1 handler to be disabled
and the HOLD hold1 handler to be enabled. Phase five returns to phase one to go through
the scenario again.

CL/APM Reference 4 - 1 2 7 / 9 3

4.2.1

When phase one causes the shut1 handler to be invoked, the box numeric is incremented to
6. This causes the HOLD hold1 handler to be enabled and then a resume to phase six.
Phase six has a KEEPENB header which leaves the previously enabled HOLD hold1
handler enabled. Phase six returns back to phase one and the program runs to its end.

4.2.1.3 HANDLER-Heading Examples

HOLD HANDLER cooldown (WHEN Temp.PV > Temp.PVHITP)

SHUTDOWN HANDLER shut1 (WHEN (flow = OFF) or (pressure > 35.4))

EMERGENCY HANDLER emerg1

CL/APM Reference 4 - 1 3 7 / 9 3

4 .3

4.3 RESTART ROUTINES DEFINITION

HOLD and SHUTDOWN Condition Handlers can be terminated by a Restart routine,
separated by a RESTART heading. The Restart Routine is intended to contain statements
that prepare for re-entry into the normal sequence. The optional Resume statement
specifies the phase label where normal execution will begin. The EMERGENCY handler
cannot have a RESTART routine.

A Restart routine has the same priority as the Abnormal Condition Handler to which it is
attached. The Module Operating Status on the Process Module Detail Display DOES NOT
change as the Restart routine is entered. In addition, because the restart section is not
functionally separate from its parent handler, the detail display does not show that a restart
handler has been enabled when the sequence is executing the restart section; therefore, you
should inform the operator that the program is executing a restart, using either a descriptive
STEP label in the restart section, or SENDing a message.

The RESUME statement is optional and can appear anywhere inside a Restart routine. If
you do not include a RESUME statement, execution of the sequence terminates at the end
of the Restart routine.

No operator intervention is required to confirm execution of a RESTART routine or a
RESUME statement. Step labels cannot be duplicated between an Abnormal Condition
Handler and its Restart routine.

A GOTO that tries to branch across a restart keyword in either direction is a compile-time
error.

4.3.1 RESTART Heading

The crossing of a RESTART heading causes the handler to enter its Restart routine.

4.3.1.1 RESTART-Heading Syntax

RESTARTrestart_heading

4.3.1.2 RESTART-Heading Description

The Restart heading is a preemption point.

CL/APM Reference 4 - 1 4 7 / 9 3

4 .4

4.4 USER-WRITTEN SUBROUTINES

This section describes user-written CL subroutines. Subroutines can be called by sequence
programs, by abnormal condition handlers, or by other subroutines (limited to one level of
nesting).

Subroutines can be either user-written or system-supplied; user-written subroutines must
use the facility described here, but system-supplied (by Honeywell) subroutines need not
be written in CL. User-written subroutines must be compiled together with the sequence
program.

If the first step of the subroutine does not require prefetches, the subroutine call is NOT a
preemption point. If the step that called the subroutine did not require prefetches, the return
from the subroutine is NOT a preemption point.

Subroutine syntax is shown at Paragraph 4.1.1.

4.4.1 SUBROUTINE Heading

The SUBROUTINE heading identifies it and specifies its arguments, including their type
and access mode.

4.4.1.1 SUBROUTINE-Heading Syntax

()

SUBROUTINE subr_id

subr_arg

;

subr_heading

subr_arg

id

IN OUT type_def:,

type_def

NUMBER

LOGICAL

state_list

ARRAY index()

enum_id

STRING

TIME

CL/APM Reference 4 - 1 5 7 / 9 3

4.4.1

4.4.1.2 SUBROUTINE-Heading Description

Each argument has an access mode: IN, OUT, or IN OUT. An argument's mode
determines whether the subroutine can access that argument, set it, or both. IN arguments
can only be accessed. OUT arguments can only be set. IN OUT arguments can be both
accessed and set.

NOTE

At present, the compiler does not prevent the READ of OUT-only arguments.

If an argument's mode is omitted, the default is IN. The default data type for all arguments
is Number.

4.4.1.3 SUBROUTINE Example

SUBROUTINE test (x, y: NUMBER; b: OUT LOGICAL; c : IN OUT)

IF x>= y THEN SET b = on -- valid

IF c> 44.4 THEN SET c = 44.4 -- valid

SET x = y -- NOT VALID, x is IN by default

IF b THEN SET c = y -- NOT VALID , b is OUT

END test

4.4.1.4 Subroutine Arguments Definition

The following data types, single array elements of these types, and whole arrays of these
types can be used as arguments in a subroutine:

• Number
• Logical
• Time
• String
• Enumeration
• State name list

Data point identifiers are not permitted as subroutine arguments.

4.4.1.5 Subroutine Arguments Examples

SUBROUTINE test (x,y : NUMBER; b : OUT LOGICAL; c : IN OUT)

SUBROUTINE calc (a,b : OFF/ON; c : IN OUT NUMBER ARRAY (1..3))

SUBROUTINE calc1 (a,b : IN OUT state1/state2/state3;

& val1 : NUMBER ARRAY (2..4))

SUBROUTINE calc2 (setval : mode ; spval : IN OUT NUMBER)

SUBROUTINE calc3 (flags : IN OUT LOGICAL ARRAY (1..4))

CL/APM Reference 4 - 1 6 7 / 9 3

4 .5

The following subroutine header definitions match the calling sequences at heading
3.2.13.3, CALL Examples.

SUBROUTINE sub1 (x : LOGICAL; y : IN open/close)

SUBROUTINE sub2 (index; arr1 : IN OUT LOGICAL ARRAY (1..3))

SUBROUTINE sub3 (flag : IN LOGICAL; num1 : IN NUMBER;

& output : OUT NUMBER)

SUBROUTINE sub4 (a : IN NUMBER)

SUBROUTINE sub5 (a : IN OUT LOGICAL) -- sub5 will not be called

-- since the calling sequence

-- shown at heading 3.2.13.3

-- is ILLEGAL

SUBROUTINE sub6 (status : IN LOGICAL)

SUBROUTINE sub7 (state : IN open/close/bad/moving/inbtwn)

4.5 BUILT-IN FUNCTIONS AND SUBROUTINES

If an enumeration is called for by an External declaration and that enumeration has a state
name that is the same as a built-in subroutine or function, the compiler does not let the
enumeration be declared. A parameter of that enumeration type cannot be referenced in a
CL program.

See paragraph 2.7.4.5 for a discussion of the built-in predicates Badval and Finite which
are similar to logical functions but have more restricted uses.

4.5.1 Built-In Arithmetic Functions

All functions listed below accept arguments of type Number and return Number results; in
addition, the trigonometric functions listed below must be specified in radians, NOT
DEGREES.

Abs (x) -- absolute value
Atan (x) -- arc tangent
Avg (x, y, ...) -- average (maximum of 16 arguments)
Cos (x) -- cosine
Exp (x) -- exponential
Int (x) -- truncate to integer
Ln (x) -- natural logarithm
Log10 (x) -- common logarithm
Max (x, y, ...) -- maximum (maximum of 16 arguments)
Min (x, y, ...) -- minimum (maximum of 16 arguments)
Round (x) -- round to integer*
Sin (x) -- sine
Sqrt (x) -- square root
Sum (x, y, ...) -- sum (maximum of 16 arguments)
Tan (x) -- tangent

* If the value to be rounded is outside the range of -32767.4 to +32766.5, the function returns
the value NaN.

CL/APM Reference 4 - 1 7 7 / 9 3

4.5.2

4.5.2 Other Built-In Functions

Other CL/APM built-in functions—in alphabetical order—are:

Date_Time—4.5.2.1
Equal_String—4.5.2.2
Len—4.5.2.3
Now—4.5.2.4
Number—4.5.2.5

4.5.2.1 Date_Time Function

This function returns TDC 3000 absolute time (seconds since midnight of January 1,
1979).

Example: SET TIME(4) = Date_Time

4.5.2.2 Equal_String Function

This logical function is used to do a case insensitive string comparison ("fred" = "Fred" =
"FRED"). See subsection 2.3.5 for a discussion of string comparison rules. The calling
sequence for this function is

Equal_String (str1, str2)

where str1 and str2 are two strings to compare. They can be string literals, parameters,
local variables or constants. The return status is ON when the strings are equal.

Example:

EXTERNAL pm03

LOCAL string1 : STRING AT STR8(1)

LOCAL string2 : STRING AT APM01S03.STR8(2)

LOCAL string_const = "HI"

 . . .

IF Equal_String (string1, string2) THEN EXIT

IF Equal_String ("FRED", STR8(2)) THEN GOTO PHASE two

IF Equal_String (string_const, "George") THEN SEND : string_const

IF NOT (Equal_String (string2, pm03.STR8(3))) THEN FAIL

4.5.2.3 Len Function

This function accepts a string and returns the length as a Number value. The calculated
string length does not include any trailing blanks. For example, Len of "abcde " is
5, and Len of "" is 0.

Example: SET NN(1) = Len (STR8(1))

CL/APM Reference 4 - 1 8 7 / 9 3

4.5.2

4.5.2.4 Now Function

This function returns wall clock time (seconds since midnight of the current day).

Example: SET TIME(3) = Now

4.5.2.5 Number Function

This function takes a time expression as input and returns the resulting time duration as a
number. The returned value is the number of seconds represented by the time expression.
TIME has a greater precision than NUMBER, so the returned value may be less precise
than the time expression.

Example: SET NN(3) = Number (TIME(2) + TIME(3))

4.5.3 Built-In Subroutines

The CL/APM built-in subroutines—in alphabetical order—are:

Modify_String—4.5.3.1
Number_to_String—4.5.3.2
Set_Bad—4.5.3.3

4.5.3.1 Modify_String Subroutine

This subroutine changes the value of a substring in a target string to the value of a substring
copied from a source string. The calling sequence is

CALL Modify_String (s, ts, tp, n, ss, sp)

where "s" will contain the return status of the store request — 0 = success, 1= fail
"ts" is the target string to be modified
"tp" is the index to the first character in the target string that will be modified
"n" is the number of characters to move from the source string to the target string
"ss" is the string from which characters will be fetched
"sp" is the index to the first character to be fetched from the source string

If the number of characters (n) is greater than the total number of characters between the
source position index (sp) and the defined size of the string, only the number of characters
that exist in the source substring, starting at the position index, are moved to the target
substring. A status of success (0) is returned.

If the number of characters (n) is greater than the number of characters between the target
position index (tp) and the defined size of the target string, only the number of characters
that will fit in the target substring will be moved from the source substring. A status of
success (0) is returned.

If the target position (tp) is greater than the defined size of the target string or the source
position index (sp) is greater than the defined size of the source string, a status of fail (1) is
returned.

CL/APM Reference 4 - 1 9 7 / 9 3

4.5.3

If the target position (tp) is greater than the current length of the target string, blanks are
inserted between the current length position and the target position.

Example:

LOCAL target : STRING AT STR8(1)

LOCAL source : STRING AT STR8(2)

LOCAL tindex AT NN(1)

LOCAL sindex AT NN(2)

LOCAL chars AT NN(3)

LOCAL stat : NUMBER AT NN(09)

 . . .

SET target = "RECIPEAB"

SET tindex = 7.0

SET chars = 2.0

SET source = "XX"

SET sindex = 1.0

CALL Modify_String (stat, target, tindex, chars, source, sindex)

Results: stat = 0 (success)
target = "RECIPEXX"

4.5.3.2 Number_To_String Subroutine

This subroutine creates a human-readable characterization of a Real number. The calling
sequence is:

CALL Number_to_String (s, str, i, f)

where "s" will contain the return status of the store request — 0 = success, 1= fail (the
value cannot be converted to a string because of value size or other reason)

"str" will contain the character representation of the specified real value. A blank
string is returned when the status = 1 (fail).

"i" identifies the number to be converted
"f" is a format specification describing the desired character representation of the

converted number. Format specifications are described in Appendix A of
the Picture Editor Reference Manual. Number_to_String accepts only
format specifications "real," "integer," and "unknown." There is no default;
a value must be specified for this argument.

The "f" argument must be a string literal and should be in all upper case. A
string variable is not permitted. The CL compiler will generate a compile
time error if the format is not legal.

CL/APM Reference 4 - 2 0 7 / 9 3

4.5.3

Example:

LOCAL i AT NN(1)

LOCAL str : STRING AT STR8(1)

LOCAL stat : NUMBER AT NN(3)

 . . .

SET i = 23.44

CALL Number_To_String (stat, str, i, "G99999")

SEND : "The number is = ", str

The following message will appear in the operator message display:

The number is = 23.44

4.5.3.3 Set_Bad Subroutine

This subroutine attempts to store a bad value into its argument. Success or failure of the
bad value store depends on the specific parameter. If "bad" is not a legal value for the
parameter being written to, the sequence program fails with an "illegal value" run-time
error. The Advanced Process Manager Parameter Reference Dictionary describes which
parameters of type Real can accept a bad value.

Example: Call Set_Bad (!BOX NN(2))

CL/APM Reference A -1 7 / 9 3

A

CL/APM SYNTAX SUMMARY
Appendix A

This section provides a quick reference to CL/APM syntax. It is a summary of the rules of form for CL/APM.

A.1 SYNTAX (GRAMMAR) SUMMARY

This section is divided into two parts. The first part is a summary of CL/APM syntax in the
form of all syntax diagrams that were presented throughout the manual. Each syntax
diagram is labeled (in reverse-video), and they are arranged in alphabetical order.

The second part is a summary of CL/APM syntax production rules in BNF notation. The
order of the production rules is alphabetical.

To use either part of this section, decide what item you want to construct and go through
either summary (depending on what form you feel most comfortable with) looking for that
item on the left-most portion of each page. When you find the item, the way to build it is
contained in the diagram or production rule to the right of the item. Note that some simple
items that are listed individually in the BNF version (heading A.3) are included WITHIN
more complex diagrams.

A.2 SYNTAX DIAGRAM SUMMARY

SHUTDOWN

HOLD

EMERGENCY

ABORT

+

-

abnormal_id

abort_stmt

addop

addop factor

mulop
arith_expr

CL/APM Reference A -2 7 / 9 3

A.2

digital_input_id

local
variable

local
constant

declaration

external
declaration

non_if

non_if()

;

consequent

predicate

predicate

predicate

AND

OR

predicate

predicate

logical_
expr

condition

(WHEN

WHEN OTHERS

condition :

;

:)

expression

expression

expression

assignment

enb_statement

handler_idabnormal_id

,

ENB

,

()

CALL subr_idcall_stmt

variable or

constant

! DI Sdigit digit digit digit

CL/APM Reference A -3 7 / 9 3

A.2

END

seq_id

handler_id

subr_id

end_stmt

(WHEN ERROR non_if)error_clause

WHEN conditionevent

EXITexit_stmt

EXTERNAL id

digital_input_id

!BOX

,

external_decl

type_id

ARRAY (index)

ext_typ_def

operand

* * operand

factor

FAILfail_stmt

arith_expr

logical_expr

expression

time_expr

CL/APM Reference A -4 7 / 9 3

A.2

if_stm

GOTO

label_id

STEP

PHASE

step_id

phase_id

routine
handler_

heading
handler_

heading
handler_

heading
restart_

heading
routine

)(event

END handler_id

abnormal_id HANDLER handler_id

ALARM time_expr

;

;

abnormal_id handler_id

KEEPENB

letter

digit

digit

,

_

$

$

letter

digitid

IF condition THEN consequent

ELSE

consequent

integer . . integerindex

INITIATE module_id

abnormal_id

error_clause

:

abnormal_id

initiate_ stmt

if stmt

head clause

handle

handler headin

goto stm

CL/APM Reference A -5 7 / 9 3

A.2

digitinteger

LOCAL constant_id =
const_

expression

LOCAL id : local_type

AT

local_var

!BOX

()integer.

id NN

FL

logical_term AND logical_term

logical_term OR logical_term

logical_term XOR logical_term
logical_exp

local_const

logical_operan

variable

funct_id

logical_expr

expression

()

()

,
OFF

ON

NOT logical_operandlogical_term

)(indexARRAY

state_list

local_type

LOGICAL

NUMBER

TIME

STRn

CL/APM Reference A -6 7 / 9 3

A.2

*

/

MOD

id

array_id (arith_expr)

non_if abort_stmt

call_stmt

enb_stmt

exit_stmt

fail_stmt

goto_stmt

initiate_stmt

pause_stmt

read_stmt

repeat_stmt

resume_stmt

send_stmt

set_stmt

state_
change_stmt

wait_stmt

write_stmt

mulop

name

variable

funct_id expression()

,

arith_expr()

unsigned
number

constant_id

operand

LOOP

FOR counter_id

expression. .expressionIN

loop_stmt

sequence

heading
declaration phase END

sequence

_id

main sequence

CL/APM Reference A -7 7 / 9 3

A.2

PHASE phase_id

(head_clause)

;

APM

phase_heading

; POINT module_id

point_descriptio

()

<

predicat

relop

expression

NOTpredicate

condition

range

BAD_VAL arith_expr

relop expression

IN

NOT

FINITE

NOT ()

=

>

<=

<>

>=

READ variable FROM variable

,

(

,

WHEN ERROR non_if)

read_stmt

PAUSE

phase_
heading routine

pause_stmt

phase

CL/APM Reference A -8 7 / 9 3

A.2

step

statement

SEQUENCE sequence_id ()
point_

description

sequence_heading

main_
sequence handler subroutine

sequence_program

SET variable = assignment

,

set_stmt

state_id variable ()WHEN ERROR non_if

,

state_change_stm

state_id / state_idstate_list

REPEAT label_id

RESTART

RESUME PHASE phase_id

repeat_stmt

restart_heading

resume_stmt

routine

Log_Only

SEND (WAIT)

expression:

,

CRT_Only

ACPsend_stmt

CL/APM Reference A -9 7 / 9 3

A.2

STEP step_id

Any ASCII Character

Except Quote

"

" "

"

step_headin

string

()

SUBROUTINE subr_id

subr_arg

;

subr_heading

subr_arg

id

IN OUT type_def:,

subr_

heading routine END subr_idsubroutine

:statement label_id

end_stmt

loop_

statement

:label_id if_stmt

non_if_

stmt

step_
heading statement

-

time_expr

time_

literal

time_operand

time_operator

step

-

+

*

time_operato

CL/APM Reference A -1 0 7 / 9 3

A.2

WAIT

time_expr

condition

WHEN time_expr : non_if

wait_stmt

WRITE variable FROM variable

(WHEN ERROR non_if)

, ,

write_stmt

()

NUMBER

LOGICAL

state_list

ARRAY index()

enum_id

integer . integer E

unsigned

numbers

+

-

integer

name

. name

variable

type_de

CL/APM Reference A -1 1 7 / 9 3

A.3

A.3 NOTATION USED FOR SYNTAX PRODUCTION RULES

This presentation of CL/APM syntax production rules follows BNF notation conventions
as follows:

• Sequences of lower-case characters and embedded underscores mean things are to be
combined according to the exact form expressed under this Syntax heading.

• Upper-case characters and special characters appear as written, except for the symbols
::=, {, }, [,], and |, which are explained as follows:

– An item enclosed in braces ({, }) stands for the occurrence of that item zero or more
times.

– An item enclosed in square brackets ([,]) stands for the occurrence of that item zero
or one times; i.e., the item is optional.

– The symbols ::= and | stand for production (how to build, or put together) and
alternation, respectively. For example, x ::= y | z can be read x produces y or
z. Another way to explain the ::= symbol is that in order to form x, y or z must be
present in the form listed. Many times, a form on the right of the ::= symbol is itself
given a syntactic form, using the same example, x ::= y | z. A further rule that
governs the form of z is specified, indented and just below the form that specifies
how to form x. For example,

x ::= y | z
y ::= point param sp
z ::= point param pv

This means that to produce x you need to specify y or z; y is produced by specifying
a point's setpoint, and z is produced by specifying a point's process variable
parameter PV.

• Unless otherwise noted, all symbols ending in id are ordinary identifiers (i.e.,
anything id ::= id).

A.4 CL/APM SYNTAX PRODUCTION RULES

abnormal_id ::= HOLD | SHUTDOWN | EMERGENCY

abort_stmt ::= ABORT

addop ::= + | -

arith_expr ::= [addop] term {addop term}

array_def ::= ARRAY (index)

CL/APM Reference A -1 2 7 / 9 3

A.4

assignment ::= expression
| (WHEN condition : expression
{; WHEN condition : expression}
[; WHEN OTHERS : expression])

call_stmt ::= CALL subr_id [(variable | constant {, variable | constant})]

condition ::= predicate {AND predicate}
| predicate {OR predicate}
| logical_expr

consequent ::= non_if
| (non_if {; non_if})

declaration ::= local_var
| local_const
| external_decl

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

digital_input_id ::= !DI digit digit S digit

else_if_stmt ::= ELSE IF condition THEN consequent

else_stmt ::= ELSE consequent

enb_statement ::= ENB [abnormal_id handler_id {, abnormal_id handler_id}]

end_statement ::= END seq_id | END handler_id | END subr_id

error_clause ::= (WHEN ERROR non_if)

event ::= WHEN condition

exit_stmt ::= EXIT

expression ::= arith_expr | time_expr | logical_expr

expressions ::= expression {, expression}

external_decl ::= EXTERNAL ident {, ident}

factor ::= operand [** operand]

fail_stmt ::= FAIL

first_char ::= $ | letter

goto_stmt ::= GOTO lablel_id
| STEP step_id
| PHASE phase_id

CL/APM Reference A -1 3 7 / 9 3

A.4

handler ::= handler_heading
routine
[restart_heading
routine]
END handler_id

handler_heading ::= abnormal_id HANDLER handler_id [(event)]

head_clause ::= [ALARM time_expr]
| [ALARM time_expr ;] KEEPENB
| [ALARM time_expr ;] abnormal_id handler_id

{; abnormal_id handler_id}

ident ::= id | digital_input_id | !BOX

id ::= first_char { [_] letter_or_digit }
| digit [_] letter_or_digit { [_] letter_or_digit }
| ' letter_or_digit { [_] letter_or_digit }

ids ::= id {, id}

if_stmt ::= IF condition THEN consequent
{ else_if_stmt }
[else_stmt]

index ::= integer .. integer

initiate_stmt ::= INITIATE module_id [: abnormal_id] [error_clause]
| INITIATE abnormal_id

integer ::= digit {digit}

letter ::= upper_case_alphabetic
| lower_case_alphabetic

letter_or_digit ::= letter | digit | $

local_const ::= LOCAL constant_id = const_expression

local_type :: = NUMBER [array_def]
| LOGICAL [array_def]
| TIME [array_def]
| STRING [array_def]
| state_list [array_def]
| array_def

local_var ::= LOCAL typed_id AT [slot_box_id .] param_id (integer)

logical_expr ::= logical_term {AND logical_term}
| logical_term {OR logical_term}
| logical_term {XOR logical_term}

CL/APM Reference A -1 4 7 / 9 3

A.4

logical_operand ::= variable
| function_id (expressions)
| OFF
| ON
| (logical_expr)

logical_term ::= [NOT] logical_operand

loop_stmt ::= LOOP [FOR counter_id IN range]

main_sequence ::= sequence_heading
{ declaration }
phase
{ phase }
END sequence_id

mulop ::= * | / | MOD

name ::= id
| array_id (arith_expr)

non_if ::= set_stmt | read_stmt | write_stmt
| state_change_stmt | goto_stmt | repeat_stmt
| pause_stmt | wait_stmt | call_stmt
| send_stmt | initiate_stmt | fail_stmt
| resume_stmt | exit_stmt | abort_stmt
| enb_stmt

one_d_array ::= (const_expression {, const_expression})

operand ::= variable
| function_id (expressions)
| (arith_expr)
| unsigned_number
| String
| constant_id

own_box_id ::= !BOX

param_id ::= NN | FL | TIME | STR8 | STR16 | STR32 | STR64

pause_stmt ::= PAUSE

phase ::= phase_heading
routine

phase_heading ::= PHASE phase_id [(head_clause {; head_clause})]

point_description ::= APM ; POINT point_id

CL/APM Reference A -1 5 7 / 9 3

A.4

predicate ::= expression relop expression
| arith_expr [NOT] IN range
| [NOT] BAD_VAL (arith_expr)
| [NOT] FINITE (arith_expr)
| [NOT] (condition)

range ::= expression .. expression

read_stmt ::= READ variables FROM variables [error_clause]

relop ::= < | = | > | <= | <> | >=

repeat_stmt ::= REPEAT label_id

restart_heading ::= RESTART

resume_stmt ::= RESUME PHASE phase_id

routine ::= step {step}
| statements

send_stmt ::= SEND [(WAIT)] [variable] : expressions

sequence_heading ::= SEQUENCE sequence_id (point_description)

sequence_program::= main_sequence
{ handler }
{ subroutine }

set_stmt ::= SET variables = assignment

sign ::= + | -

slot_box_id ::= id | !BOX

state_change_stmt ::= state_id [variables] [error_clause]

state_list ::= state_id / state_id {/ state_id}

statement ::= label_id : loop_stmt
| [label_id :] unlabeled_stmt
| end_stmt

statements ::= statement {statement}

step ::= step_heading
statements

step_heading ::= STEP step_id

String ::= " {String_chr} "

CL/APM Reference A -1 6 7 / 9 3

A.4

String_chr ::= any ASCII character_except_quote
| ""

subr_arg ::= ids
| ids : IN [type_def]
| ids : OUT [type_def]
| ids : IN OUT [type_def]
| ids : type_def

subr_args ::= (subr_arg {; subr_arg})

subr_heading ::= SUBROUTINE subr_id [subr_args]

subroutine ::= subr_heading
routine
END subr_id

term ::= factor {mulop factor}

time_expr ::= [-] time_term {time_operator time_term}

time_literal :: = operand DAYS [operand HOURS] [operand MINS] [operand SECS]
| operand HOURS [operand MINS] [operand SECS]
| operand MINS [operand SECS]
| operand SECS

time_operand ::= variable | parameter | constant | array_element | literal | function_result

time_operator ::= + | - | *

time_term ::= time_literal | time_operand

type_def ::= local_type
| enum_id [array_def]

typed_id ::= id [: type_def]

unlabeled_stmt ::= if_stmt
| non_if

unsigned_number ::= integer [. integer [E [sign] integer]]

variable ::= name [. name]

variables ::= variable {, variable}

wait_stmt ::= WAIT time expr
| WAIT condition [(WHEN time_expr : non_if)]

write_stmt ::= WRITE variables FROM variables [error_clause]

CL/APM Reference B - 1 7 / 9 3

B

CL SOFTWARE ENVIRONMENT
Appendix B

This appendix refers you to the various control functions reference manuals for information on
how TDC 3000 control functions support CL (in other words, the CL Run Time Environment). This
appendix also details some of the limitations the TDC 3000 CL Run Time Environment places on
various aspects of building CL structures, such as memory usage.

B.1 REFERENCES TO CONTROL FUNCTIONS PUBLICATIONS

The relationships between the TDC 3000 Software environment and CL/APM is found in
the System Control Functions, and the Advanced Process Manager Control Functions
publications.

Although you should read all of those publications to understand TDC 3000 Data
Acquisition & Control, the following subsections contain information specific to CL; they
should be read to gain an understanding of the data point types that you will be using, as
well as any particular constraints and nuances of CL as it relates to the standard TDC 3000
Control Software.

HEADING TOPIC

SYSTEM CONTROL FUNCTIONS

3.3.1.1.2 CL Access (to parameters — general)

3.3.7 Advanced Functions

4.7.4 & 4.7.5 Value Stores (CL corrective action on errors)

APM CONTROL FUNCTIONS & ALGORITHMS

6.1 Process Module Data Point (CL/APM)

B.2 CL/APM CAPACITIES

NOTE

Under some conditions, memory limits in the Engineering personality may be reached before
reaching the following absolute limits.

Max. number of statements per step 255
Max. object size for each sequence 12544
 (392 blocks of 32 words each)

CL/APM Reference B - 2 7 / 9 3

B.2

Max. blocks of code for all sequence slots in APM. 12400 (minus blocks used for
(Note that in the APM node configuration the value pids, logic blocks, etc.)
"Number of Process Module Slots" must be nonzero
to be able to build Process Module points.)

Max. phases and steps in a sequence is only limited by the number of slots available for
phases and step identifiers in the NIM Library.

Max. size for expression (or condition). See Table B-1 100 items
for guidelines to calculating the size of an expression.

Max. declarations in a sequence (includes locals, approx. 270 items
externals, and constants). All declarations count
as 1 item each.

Max. number of constant declarations in a sequence; Numbers—256
only constants that are referenced in the body of the Time—255
sequence are counted. Declarations for duplicate Strings—see section B.4.1
values are not counted.

Table B-1 — Calculating Expression Size
Item Number of words

• Operators (e.g., +, -, *, etc.)
• All constants except string constants
• LOCAL flag and numeric variables with a constant index mapped to

the Bound Data Point
• Bound Data Point flag and numeric parameter references with a

constant index
• Subroutine arguments
• The built-in functions Now, Date_Time, Number, Equal_String, Len
• IOL prefetch reference

One word

• String constants
• All other operands, including operands with computed indices. This

includes LOCALs on the Bound Data Point or other Process Module
data points, regulatory control references, references to off-node
parameters, etc.

Two words

EXAMPLES (expression sizes reflect number of words generated on the right-hand side of the
equal (=) sign):

LOCAL a : TIME AT TIME(01)

LOCAL x AT NN(01)

LOCAL y AT NN(02)

LOCAL z AT !BOX.NN(17)

 . . .

SET x = (y + NN(03)) -- expression size is 3 words

SET x = (z + NN(03)) -- expression size is 4 words

SET a = TIME(01) + !BOX.TIME(01) + now -- expression size is 7 words

SET a = 15 SECS + a -- expression size is 4 words

(Continued)

CL/APM Reference B - 3 7 / 9 3

B.2

Table B-1 — Calculating Expression Size (continued)
RULES: • When a computed index is used on a parameter reference, one word must be

added for each computed index.
• When a computed index is used on a local variable or subroutine argument, four

words must be added for each computed index.
• When an array subroutine argument is referenced with a constant subscript, three

words are generated for the constant index.

EXAMPLES (expression sizes reflect number of words generated on the right-hand side of the
equal (=) for SET statements, or the expression following the IF statement and prior to the
THEN)

LOCAL a : TIME AT TIME(01)

LOCAL b : TIME ARRAY(1..3) AT APM01S01.TIME(1)

LOCAL i AT NN(8)

LOCAL x AT NN(01)

LOCAL y AT NN(02)

LOCAL z AT !BOX.NN(17)

 . . .

SET x = (y + NN(i)) -- expression size is 6 words

SET x = (z + NN(i + NN(i + 1))) -- expression size is 14 words

SET a = b(i) + !BOX.TIME(i) + Now -- expression size is 14 words

CALL sub1 (b)

CALL sub2 (a)

 . . .

SUBROUTINE sub1 (arg1 : TIME ARRAY (1..3))

IF arg1 (i) = 1 SECS THEN EXIT -- expression size is 8 words

IF arg1 (1) = 1 SECS THEN EXIT -- expression size is 6 words

END sub1

 . . .

SUBROUTINE sub2 (arg1 : TIME)

IF arg1 = 1 SECS THEN EXIT -- expression size is 3 words

END sub2

(Continued)

CL/APM Reference B - 4 7 / 9 3

B.2

Table B-1 — Calculating Expression Size (continued)
RULE: • If a time expression is composed of a computed time (vs a time constant), add a one-

word overhead to the expression for each unused time suffix (i.e., DAYS, HOURS,
MINS, SECS) in the expression, plus a one-word overhead for a time expression.

EXAMPLES (expression sizes reflect number of words generated on the right-hand side of the
equal (=) for each set statement)

LOCAL a : TIME AT TIME(01)

LOCAL i AT NN(8)

LOCAL x AT NN(01)

LOCAL z AT !BOX.NN(17)

 . . .

SET i = Number (10 SECS) -- expression size is 2 words

SET a = x SECS -- expression size is 5 words

-- (1 word for "x", 3 words

-- overhead for DAYS, HOURS,

-- MINS not used plus 1 word

-- overhead for a time expr.)

SET i = Number (x SECS) -- expression size is 6 words

SET a = 1 DAYS 1 HOURS x SECS -- expression size is 5 words

SET a = 1 MINS NN(1) SECS -- expression size is 5 words

SET a = 1 HOURS z SECS -- expression size is 6 words

-- (1 word for the constant 1,

-- 2 words overhead for DAYS,

-- MINS not used, 2 words

-- for"z",plus 1 word overhead

-- for a time expression)

SET a = z DAYS x SECS -- expression size is 6 words

-- 2 words for "z",

-- 2 words for HOURS, MINS,

-- not used, 1 word for "x",

-- and 1 word overhead for a

-- time expression)

CL/APM Reference B - 5 7 / 9 3

B.3

B.3 CL/APM DIFFERENCES FROM CL/PM

A program that compiles correctly for R300 CL/PM can be compiled successfully for R400
CL/APM (however, you must change the sequence heading point description from PM to
APM before compiling). The program object size compiled for the APM will be larger than
if compiled for the PM. The change in object size has two components.

• String constants—except for the sequence name—for the APM are located in the object
program instead of being added to the NIM libraries.

• Some CL/APM statements generate an additional word of code (see Table B-1 for
guidelines on calculating expression sizes).

WARNING: There is a difference between CL/PM and CL/APM when a Digital
Composite PV or OP is passed to a subroutine. The state list in this situation must include
the state NONE. For example, suppose that you have a PM Digital Composite with the OP
defined with state0=off and state1=on, and you pass this parameter to a subroutine using
the following PM/CL code:

CALL SUB1 (DIGCOMP.OP)

...

...

SUBROUTINE SUB1 (A: IN OFF/ON)

...

If you attempt to compile this in the APM, you will get a Data Type Mismatch error under
the call statement. In the APM, you must add NONE in the state list as shown below:

SUBROUTINE SUB1 (A: IN OFF/ON/NONE)

The PM to APM translator will not make this change—it is up to the programmer to modify
the state list.

The following list highlights other significant differences between CL/APM and CL/PM
and gives references to the subsections in this manual where the CL/APM capabilities are
discussed.

• Time data type—Support for the data type Time (2.3.2) has been expanded and the time
functions Date_Time, Now, and Number have been added (4.5.2). Time expressions
and time literals are supported (2.7.3).

• Arrays data type—Elements of array parameters can be accessed with variable or
calculated subscripts in any CL/APM statement except CALLs to user-written
subroutines. Whole-array parameters are valid arguments in calls to user-written
subroutines (2.3.4)

• String data type—The maximum string length has been extended to 64 characters and
support for the data type has been expanded (2.3.5).

• Local variables—The data types Time and String are mapped against the Process
Module, Box and Array data point parameters TIME and STR8, STR16, STR32, and
STR64 (2.6.2).

CL/APM Reference B - 6 7 / 9 3

B.4

• Local constants—Time constants can be used in any CL/APM statement where time
variables can appear (2.6.3).

• Wait statement—More complex time expressions are permitted in Wait statements
(3.2.12).

• Send statement—String and Time variables, constants, literals, and parameters can be
included in these messages (3.2.14).

• Sequence heading—The sequence program point description begins with APM;POINT
(4.1.3).

• Phase heading—More complex time expressions are permitted in the Alarm clause of
Phase headings (4.1.4).

• Object file suffix—The CL compiler identifies CL/APM object files with a .NO suffix.

• Additional built-in functions and subroutines (4.5.2 and 4.5.3).

CL/APM Reference B - 7 7 / 9 3

B.4

B.4 ITEMS AFFECTING OBJECT CODE SIZE

B.4.1 String Literals in Object Code

All string literals are generated into the object code. This includes the phase names, step
names, subroutine names, handler names (all of which are in upper case in the object), and
SEND statement strings. When used in a SEND statement, state names for parameters of
the type self-defining enumeration and state names for locally defined enumerations also are
generated into the object. The NIM library is updated only with the APM sequence name.

String constants defined at the beginning of the code are not added into the code unless they
are used in the program body. If a string constant is used more than once in a program, it
is generated in the object only once.

A string literal for an 8-character blank string is automatically added to every object code to
handle the case of a PHASE statement without a STEP statement.

The only limitation on string constants is object program size.

B.4.2 Time Constants in Object Code

All time constants are generated into the object code. This includes time literals defined in
the code, such as

SET x = 15 SECS

and time constants defined at the beginning of the program, such as

LOCAL time_const = 15 MINS 10 SECS

Time constants defined at the beginning of the code are not added into the object code
unless they are used in the program body. If a time constant is used more than once in a
program, it is generated in the object only once.

A time constant for zero seconds is automatically added to every object code to handle the
case of a PHASE statement without an ALARM heading clause.

Up to 255 user-defined time constants can be defined in a CL/APM sequence program.

B.4.3 Number Constants in Object Code

All number constants are generated into the object code. This includes number literals
defined in the code, such as

SET y = 40.4

and number constants defined at the beginning of the program, such as

LOCAL num_const = 16.8

CL/APM Reference B - 8 7 / 9 3

B.4

and number literals used in time expressions, such as the "5" in the following

SET time(1) = 5 MINS nn(1) SECS

Number constants defined at the beginning of the code are not added into the object code
unless they are used in the program body. If a number constant is used more than once in a
program, it is generated in the object only once.

Up to 256 user-defined number constants can be defined in a CL/APM sequence program.

Index

Topic Section Heading

CL/APM Reference Index-1 7 / 9 3

Abnormal Condition Handlers
Conflicts With Identifiers 2.2.7.7
Definition 4.2
With INITIATE 3.2.15
in Restart Routine 4.2.1.2
Execution of RESUME 3.2.17
With SEND Statement 3.2.14.4
Use of EXIT in 3.2.18

Abnormal Condition Handler-Heading 4.2.1
ABORT (Statement) 3.2

Defined 3.2.19
in Subroutines 3.2.19

ABS Function 2.6.3.2, 4.5.1
ADD (Operator) 2.7.2.4, Table 2-5
AND (Logical Operator) 2.7.2.4

Used to Connect Conditions 2.7.4.6
Arguments 2.2.7.7
Arithmetic and Logical Expressions

Defined 2.7.2
see also Arrays, Assignment, Equality, Expressions,

Local Variables, Logical, Number, Operators,
Subroutines

Arithmetic Functions, built-in 4.5.1
Arithmetic Operators

Listed 2.2.9
Priorities 2.7.2.4, Table 2-5
Syntax 2.7.2.4

Array Data Type 2.3.4
Array Points 2.6.2.2
Arrays

Defined 2.3.4
Index 2.6.2.2

ASCII 2.2.1
Assignment Operator 2.2.9, Table 2-3
Assignment Syntax 3.2.3.1
ATAN Function 4.5.1
AT Clause 2.6.2.2
AVG Function 4.5.1
Badval (Built-in Predicate) 2.7.4.5
Bad Values Definition 2.3.1.1
Boolean

Pascal Boolean Type Comparison With CL Logical 2.3.3.3, Figure 2-1
Bound Data Point

Defined 2.4.1
Parameter Access 2.5.2

!BOX 2.4.2.3, 2.4.2.4
Box Data Point 2.4.2
Branch (GOTO) 3.2.7, 3.2.7.1, 3.2.7.2
Built-In Functions and Subroutines 4.5
CALL (a Subroutine) 3.2.13

Index

Topic Section Heading

CL/APM Reference Index-2 7 / 9 3

Character
ASCII 2.2.1

 Defined 2.2.1
 ISO 646 Compatibility 2.2.5.2, Table 2-1

Set 2.2.5.2
Comments

Definition 2.2.6
 Examples of (Correct) 2.2.6.1

Examples of (Incorrect) 2.2.6.2
Separator 2.2.9

Communications Error Handling 2.7.4.5
Compiler Directives

Use in Compiling Source Programs 1.
Defined 3.3
Debug Switch 3.3.3, 3.3.3.1
Page Break 3.3.2
see also %DEBUG, Embedded Compiler Directives,

%PAGE, %INCLUDE_EQUIPMENT_LIST,
%INCLUDE-SOURCE

Compiler Restrictions 2.6.4.2
Compile-Time Error 2.2.7.7, 2.3.5, 2.5

2.6.2.2, 3.2.7.2
3.2.15.4, 4.3

Composite Data Types Definition 2.3
Conditional SET Statement 3.2.3.2
Conditions

Definition 2.7.4
Conflicts Between Identifiers 2.2.7.7
Connecting Conditions with AND and OR 2.7.4.6
Consequent (of THEN, ELSE)

Definition 3.2.8.2
Constant Expressions 2.6.3.2
Continuation of Line 2.2.3
COS Function 4.5.1
CRT_Only Special Destination 3.2.14.2
Data Points 2.4

Data Type 2.3.6
Definition 2.4.1
Example 2.3.4.1
Accessing as EXTERNAL Declaration 2.5.2, 2.5.4
MAILBOX 3.2.14.2
see also Bound Data Point, Box Data Point Identifiers,

Process Module Data Point
Data Types 2.3
Data Types (Conflicts between Identifiers) 2.2.7.7
Date_Time built-in function 4.5.2.1
Debug Switch

Defined 3.3.3
%DEBUG

Definition 3.3.3
Declarations 2.6

Index

Topic Section Heading

CL/APM Reference Index-3 7 / 9 3

Digital Input Addressing 2.5.3
Discrete Types Definition 2.3.3

see also Continuous Values, Analog, Number,
Logical, Enumeration, States

Divisor (Operator) 2.7.2.4
Embedded Compiler Directives

Definition 3.3
see also Compiler, %DEBUG, %PAGE,

%INCLUDE_EQUIPMENT_LIST,
%INCLUDE_SOURCE

ENB 3.2.6
END 3.2.20
Enumeration-Type

Variables 2.6.2.2
Enumeration Types 2.3.3.2, 2.6.2.2

see also Discrete Types, Logical Types
Equality Assignment Operator 2.2.9, Table 2-3
Equal_String built-in function 4.5.2.2
Event Initiated Reports From CL 3.2.14.5
Exclusive OR 2.7.2.4, Tables 2-5, 2-6
EXIT (Statement) 3.2.18
EXP Function 4.5.1
Exponentiation (Operator) 2.7.2.4
Expressions and Conditions 2.7

Arithmetic 2.7.2, 2.7.2.4
Logical 2.7.2, 2.7.2.4,
Time Expressions 2.7.3
see also Arithmetic Expressions, Logical Expressions,

Time Expressions
External Box Data Point Parameters 2.5.4
External Data Points 2.6.4
EXTERNAL Declaration 2.6.4
External Variables 2.6
FAIL (Statement) 3.2.16
Finite (Built-in Predicate) 2.7.4.5
Flag (FL) Variables 2.6.2.2
FOR Clause (in LOOP) 3.2.9.2
Functions

Built-In 4.5.1
Conflicts Between Identifiers 2.2.7.9

General CL Information 1.2.1
GOTO (Statement)

Definition 3.2.7
as Preemption Point 3.2.7.2

HANDLER-Heading
Definition 4.2.1
see also Abnormal Condition Handler

Index

Topic Section Heading

CL/APM Reference Index-4 7 / 9 3

Identifiers
Block 2.2.5.1
Box Data Point 2.2.7.4, 2.2.7.5
Conflicts Between 2.2.7.7
Data Point 2.2.5.1
Defined 2.2.7
Enumeration-state 2.2.5.1
Length of 2.2.5.1
Predefined 2.2.7.6
Parameter 2.2.5.1
Special Identifiers 2.2.7.5, 2.2.7.6

IF,THEN,ELSE (Statement)
Definition 3.2.8
Flow Charted Figure 3-1
see also Conditions

%INCLUDE_EQUIPMENT_LIST directive 3.3.4
%INCLUDE_SOURCE 3.3.5
Incorrect Examples of Comments 2.2.6.2
Index (Array) 2.6.2.2
Infinite Values Definition 2.3.1.2

see also Bad Values
INT Function 4.5.1
INITIATE (Statement)

Abnormal Condition Handlers 3.2.15.3
Process Module Data Points and Programs 3.2.15.2
Definition 3.2.15
WHEN ERROR Clause 3.2.15.4

Integer 2.2.8.1
see also Number

Introduction (to CL Statements) 3.1
Introduction to CL Rules and Elements 2.1
ISO 646 Compatibility 2.2.5.2
Labels

Conflict Between Identifiers 2.2.7.9
Defined 3.2.2
in LOOP Statement 3.2.9.2
in REPEAT 3.2.10, 3.2.10.1
see also Statements

Len built-in function 4.5.2.3
Length of Identifiers 2.2.5.1
Lines

Continuation of 2.2.3
Defined 2.2.3

Literals
Numeric 2.6.3.2

LN Function 4.5.1
Local Constants

Defined 2.6.3
as Objects 2.2.7.9

LOCAL Declaration 2.6.2, 2.6.3

Index

Topic Section Heading

CL/APM Reference Index-5 7 / 9 3

Local Variables 2.6.2, Table 2-4
as Objects (Conflict With Other Identifiers) 2.2.7.7
Restrictions in Arrays 2.3.4

LOG10 Function 4.5.1
Log_Only Special Destination 3.2.14.2
Logical AND (Operator) 2.7.2.4, Tables 2-5, 2-6

as Connective 2.7.4.6
Logical Expressions

Defined 2.7.2
Logical Operand 2.7.2.3
Logical Operators Truth Table 2.7.2.4, Table 2-6
Logical NOT 2.7.2.4, Tables 2-5, 2-6
Logical OR, Exclusive OR (XOR) Operator 2.7.2.4, Tables 2-5, 2-6

as Connective 2.7.4.6
Logical Types

Arrays of 2.3.4
Defined 2.3.3.3
Compared to Pascal Boolean Figure 2-1

LOOP
Defined 3.2.9
see also REPEAT

MAILBOX Parameter 3.2.14.2
MAX Function 4.5.1
MIN Function 4.5.1
Modify_String built-in subroutine 4.5.3.1
Modulus Operator (MOD) 2.3.1, 2.7.2.4, Table 2-5
Multiplication Operator (mulop) 2.7.2.4, Table 2-5
NOT, Negation (Operators) 2.7.2.4, Tables 2-5, 2-6
Now built-in function 4.5.2.4
Number built-in function 4.5.2.5
Number Data Type 2.3.1
Number_to_String built-in subroutine 4.5.3.2
Numbers

Definition 2.2.8, 2.3.1
as Local Constant 2.6.3
Use of as Index 2.6.2.2
Unsigned 2.2.8.1
see also Arrays, Bad Value, Discrete Types,

Infinite Values, Integer, Time, Uncertain Value
Numeric Literals 2.6.3.2
Numeric Variables (NN) 2.6.2.2
Objects 2.2.7.7
Operand

Definition 2.7.2.2
Syntax 2.7.2.3

Index

Topic Section Heading

CL/APM Reference Index-6 7 / 9 3

Operators 2.7.2.4, Tables 2-5, 2-6
Arithmetic 2.2.9
Assignment 2.2.9
as Connectives 2.7.4.6
Equality 2.2.9, Table 2-3
Defined 2.7.2.4
Relational 2.2.9, 2.7.4.1,

2.7.4.3, Table 2-9
see also Special Symbols

OR (logical Operator) 2.7.2.4, Tables 2-5, 2-6
as Connective 2.7.4.6

PAGE Definition 3.3.2
Page Break Directive 3.3.2
Parameters, Access of 2.5
Parentheses (as Special Symbol) 2.2.9
PAUSE (Statement) 3.2.11
PHASE-Heading

Definition 4.1.4
as Preemption Point 4.1, 4.1.4.2

Phase (as Program Unit) 2.2.7.7
Phase (in RESUME) Statement 3.2.17.1
PList - see Parameter List
Poststore 2.5.6
Predicates

Badval and Finite 2.7.4.5
Defined 2.7.4
in Conditions (Syntax) 2.7.4.1

Preemption Point 3.2.8.2, 3.2.11, 3.2.12,
3.2.14.2, 3.2.16

Defined 4.1
Preemption (of) SEND Statement 3.2.14.4
Prefetch 2.5.5
Process Module Data Point 2.4.1
Production Rules Appendix A.3
Program Statements Section 3

Definition 3.2
Labels 3.2.2, 3.2.2.1
Syntax 3.2.1

Publications With CL-Specific Information 1.2.2
Punctuation (as Special Symbol) 2.2.9
Purpose/Background 1.1
Range Separator 2.2.9, Table 2-3
Range Tests Definition 2.7.4.4
READ and WRITE (Statements)

as Assignment Statement 3.2
Communication Error Handling 3.2.4.4
Definition 3.2.4

Real 2.3.1
References

to Control Functions Publications Appendix B.1
General CL Information 1.2
to Other Honeywell Publications 1.2.1, 1.2.2, 1.3

Index

Topic Section Heading

CL/APM Reference Index-7 7 / 9 3

Relational Operator (relop) 2.2.9, 2.7.4.3,
Table 2-9

Relations 2.7.4.3
REPEAT (Statement)

Definition 3.2.10
Preemption of Sequence Program With 4.1

Reports, Event Initiated, From CL 3.2.14.5
RESTART-Heading 4.3.1
Restart Routines 4.3
RESUME (Statement)

Definition 3.2.17
Used With RESTART 4.3

Reserved Words
Definition 2.2.7.6, Table 2-2

ROUND Function 4.5.1
Rules and Elements of CL 2
Runtime Errors

Conditional SET without "WHEN OTHERS" 3.2.3.2
FAILstatement (E112) 3.2.16
Illegal Value error 2.3.1, 4.5.3.3
INITIATE request errors 3.2.15.4
Initiation of not-enabled handler 3.2.15.3
I/O module Poststore error 2.5.6
Key Level error (E107) 4.2
Prefetch limit exceeded (E109) 2.5.5
Subroutine nesting limit exceeded 3.2.12

Runtime Failures
READ/WRITE communication (F170) 3.2.4
Store rights failure (F173) 4.2.1

Scalar Data Type Definition 2.3
Scope 2.2.7.7
SEND (Statement)

Definition 3.2.14
Event-Initiated Reports 3.2.14.5
Preemption of 3.2.14.4
Use of Strings in 2.3.5, 3.2.14.2
Use of Tag Names in 3.2.14.2
Use of Variable in 2.6.2.2
With WAIT Option 3.2.14.1-3.2.14.4

SEQUENCE-Heading
Definition 4.1.3

Sequence Programs 4.1
Definition 4.1

SET (Statement)
Definition 3.2.3

Set_Bad built-in subroutine 4.5.2
Shared State Names Definition 2.3.3.1
SIN Function 4.5.1
Spacing

in Elements 2.2.2
Requirements 2.2.2

Index

Topic Section Heading

CL/APM Reference Index-8 7 / 9 3

Special Identifiers
Definition 2.2.7.7
Examples 2.2.7.8

Special Symbols Definition 2.2.9
SQRT Function 4.5.1
STATE CHANGE

Definition 3.2.5
STATE CHANGE With Feedback 3.2.5.3
Statement Labels

Definition 3.2.2
Examples 3.2.2.1

Statements Section 3, 3.2
see also Program Statements, ABORT, CALL, ELSE, END

EXIT, FAIL, GOTO, IF, INITIATE, LOOP, PAUSE,
READ, REPEAT, RESUME, SEND, SET,

 STATE CHANGE, WAIT, WRITE
STEP-Heading

Definition 4.1.5
Used to Preempt Sequence Program 4.1

Steps (as Program Units) 2.2.7.7
String

Definition 2.2.9
Examples 2.2.9.3
In SEND Statement 3.2.14
Variables (STRn) 2.6.2

String Data Type 2.3.5
String Literal 2.2.9
Strings, comparison of 2.3.5
Structures Section 4
SUBROUTINE Heading 4.4.1
Subroutine

Built-In 4.5.2
CALL Statement 3.2.13,
Conflicts Between Identifiers 2.2.7.7
User-Written 4.4

Subroutine CALL Statement
Defined 3.2.13

SUM
Function 4.5.1
Operator 2.7.2.4, Table 2-5

Syntax
Diagram Definition 2.2.4
Diagram Summary Appendix A.2
Method of Presentation 2.1, 2.2.4
Summary for All CL Forms Appendix A
see also Production Rules

TAN Function 4.5.1
Termination

Abnormal 3.2.19, 3.2.19.1
Statements 3.2
see also ABORT, END, RESUME

Index

Topic Section Heading

CL/APM Reference Index-9 7 / 9 3

Time
data type 2.3.2
Expressions 2.7.3
Literals 2.7.3.5
in SEND statements 3.2.14
Operators 2.7.3.2, Table 2-7
Variables (TIME) 2.6.2

Types, Data 2.3
Uncertain Values Definition 2.3.1.3
Unconditional Branch (GOTO) 3.2.7, 3.2.7.1, 3.2.7.2
Unsigned Number 2.2.8, 2.2.8.2
User-Written Subroutines 4.4
Variables and Declarations

General Discussion of Use 2.6
see also External Variables, Function Definitions,

Local Variables, Operands, Parameters
WAIT (Statement) 3.2.12
WHEN ERROR Clause of INITIATE Statement 3.2.15.4
WRITE (Statement)

as Assignment Statement 3.2
Communication Error Handling 3.2.4.4
Definition 3.2.4

XOR (Logical Operator) 2.7.2.4

CL/APM Reference Index-10 7 / 9 3

READER COMMENTS

Honeywell IAC Automation College welcomes your comments and suggestions to improve future
editions of this and other publications.

You can communicate your thoughts to us by fax, mail, or toll-free telephone call. We would like to
acknowledge your comments; please include your complet name and address

BY FAX: Use this form; and fax to us at (602) 313-4108

BY TELEPHONE: In the U.S.A. use our toll-free number 1*800-822-7673 (available in the 48
contiguous states except Arizona; in Arizona dial 1-602-313-5558).

BY MAIL: Use this form; detach, fold, tape closed, and mail to us.

Title of Publication: Control Language/Advanced Process Manager Issue Date: 7/93

Reference Manual

Publication Number: AP27-410

Writer: J. Kennedy

COMMENTS: ___

RECOMMENDATIONS:___

NAME _______________________________________ DATE ____________________

TITLE ___

COMPANY ___

ADDRESS __

CITY ________________________ STATE ___________ ZIP ____________________

TELEPHONE _____________________ FAX _________________________________

(If returning by mail, please tape closed; Postal regulations prohibit use of staples.)

Automation College
Industrial Automation and Control
Honeywell Inc.
2820 West Kelton Lane
Phoenix, Arizona 85023-3028

Communications concerning technical publications should be directed to:

FOLD FOLD

From: NO POSTAGE

NECESSARY

IF MAILED

IN THE USA

 BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY

Industrial Automation and Control
2820 West Kelton Lane
Phoenix, Arizona 85023-3028

Attention: Manager, Quality

Additional Comments:

C
u
t
A

lo
n
g
 L

in
e

FOLD FOLD

FIRST CLASS PERMIT NO. 4332 PHOENIX, ARIZONA

Honeywell

L

Industrial Automation and Control Helping You Control Your World
Honeywell Inc.

16404 North Black Canyon Highway

Phoenix, Arizona 85023-3099

