Acquisition Lesson Planning Form Plan for the Concept, Topic, or Skill – Equations of Circles Key Standards addressed in this Lesson: MM3G1a,b Time allotted for this Lesson:

Standard: MM3G1a,b: Find the equations of circles. Graph a circle given an equation in general form.

Essential Question: How do I indentify the characteristics of circles from equations? What characteristics of circles are necessary to graph and write the equations of circles?

Activating Strategies:

Worksheet Prerequisite Skills for Unit 2

Use K - W - L to determine what the students already know about circles, their equations, and how to graph.

Acceleration/Previewing: (Key Vocabulary)

Circle, radius, center, general form, standard form

Teaching Strategies:

Use the graphic organizer to demonstrate how to graph and write the equation of circle. Circle Learning Task Part I

Task:

Circle Learning Task

Distributed Guided Practice:

Worksheet

Lesson 1: Equations of Circles

Extending/Refining Strategies:

Journal: Have students explain how to graph a circle given the center and the radius.

Summarizing Strategies:

Ticket Out the Door

PreRequisite Skills for Unit 2

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Distance Formula
$$d = \sqrt{x_2 - x_1)^2 + (y_2 - y_1)^2}$$

4. (2,0),(10,6) 5. (7,4),(9,-1) 6. (2,-3),(-4,-13)

Completing the square

$$ax^2 + bx + c = 0$$

$$ax^2 + bx + c = 0$$

$$x^2 + bx + (\frac{1}{2}b)^2 = -c + (\frac{1}{2}b)^2$$

5. rewrite as
$$(a \pm \frac{1}{2}b)^2 = add right side$$

$$(x + \frac{1}{2}b)^2 =$$

11
$$x^2 + 5x - 3 = 0$$

$$12.4x^2 + 24x - 19 = 1$$

Find the radius if the tangent of the circle is at (1, 3).

Graphic Organizer Writing equations and Graphing circles

To graph a circle from an equation:

- 1.) Write the equation in standard form $x^2 + y^2 = r^2$ or $(x h)^2 + (x k)^2 = r^2$ EXAMPLE: $(x 2)^2 + (x 1)^2 = 16$
- 2.) Determine the center (h,k), graph center (2,1)
- 3.) Determine the radius radius $\sqrt{16} = 4$
- 4.) Graph four points on the circle (2±4, 1) (2, 1±4) (6,1) (-2,1) (2,5) (2,-3)
- 5.) Connect coordinate points.

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

To write an equation for a circle from a graph:

- Determine the center of the circle (h,k)
- 2.) Determine the radius distance between (h,k) and a point on the circle (x,y) $d = \sqrt{(x-h)^2 + (x-k)^2}$
- 3.) Write in standard form of equation of a circle.

$$x^2 + y^2 = r^2$$
 or $(x - h)^2 + (x - k)^2 = r^2$

Name:	Block:	Date:
-------	--------	-------

Write the standard equation for each circle graphed below:

1.

2.

Write the standard equation of a circle with each given radius and center:

3.
$$r = 4$$
; $C(0,0)$

4.
$$r = 1$$
; $C(2,3)$

5.
$$r = 10$$
; $C(-2,-7)$

6.
$$r = 1/3$$
; $C(-2,-2)$

Graph each equation. Label the center and the radius.

7.
$$x^2 + y^2 = 9$$

8.
$$(x-2)^2 + y^2 = 4$$

9.
$$(x + 3)^2 + (y + 1)^2 = 4$$

10.
$$(x)^2 + (y+3)^2 = 25$$

Name:_____

Block:_____ Date:____

Write the standard equation for each circle graphed below:

1.

2.

Write the standard equation of a circle with each given radius and center:

3.
$$r = 4$$
; $C(0,0)$

4.
$$r = 1$$
; $C(2,3)$

$$x^2 + y^2 = 16$$

$$(x-2)^2 + (y-3)^2 = 121$$

5.
$$r = 10$$
; $C(-2,-7)$

6.
$$r = 1/3$$
; $C(-2,-2)$

$$(x + 2)^2 + (y + 7)^2 = 100$$

$$(x + 2)^2 + (y + 2)^2 = 1/9$$

Graph each equation. Label the center and the radius.

7. $x^2 + y^2 = 9$

8.
$$(x-2)^2 + y^2 = 4$$

9.
$$(x + 3)^2 + (y + 1)^2 = 4$$

Write the standard equation for the circle graphed below:

1.

Write the standard equation of a circle with each given radius and center:

2.
$$r = \frac{1}{4}$$
; $C(1,0)$

3.
$$r = 15$$
; $C(-6,9)$

Graph the following equation. Label the center and radius.

4.
$$(x + 2)^2 + (y - 4)^2 = 16$$

Write the standard equation for the circle graphed below:

1.

Write the standard equation of a circle with each given radius and center:

2.
$$r = \frac{1}{4}$$
; $C(1,0)$

3.
$$r = 15$$
; $C(-6,9)$

$$(x-1)^2 + (y)^2 = 1 / 16$$

$$(x+6)^2 + (y-9)^2 = 225$$

Graph the following equation. Label the center and radius.

4.
$$(x + 2)^2 + (y - 4)^2 = 16$$

