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ABSTRACT 

Development of miscellaneous statistical methods for monitoring rare health events shows significance of the matter 

in health engineering domain. Rare health events, as attribute quality characteristics can not be monitored by 

traditional Shewhart based np charts since overdispersion occurs.   

One relatively new approach to the problem is the use of control charts based on zero inflation in a binomial (ZIB) 

distribution. In this distribution it is assumed that random shocks occur with some probability, and upon the 

occurrence of such random shocks, health event failures can be found, such that the number of failures in each 

sampling subgroup follows a binomial distribution. 

This paper develops a truncated ZIB control chart (TZIB) applying probability limits in lieu of Shewhart based 

control limits for monitoring ZIB distributed observations. As the most prevalent criteria, average run length 

approach is used to evaluate the performance of the proposed chart. The applicability of TZIB control chart in phase 

I and phase II control charting is also investigated by a real case study, using the number of patients who go under 

surgery in a hospital and contract a wound infection. Results are compared with np chart as an inefficient control 

chart for our case study. 

 

Key words: Health Quality Engineering; Overdispersion; Rare Health Events; Truncated Distribution; Zero 

Inflated Binomial (ZIB) Distribution 

 

1. INTRODUCTION 

Conventional control charts are often used in health engineering for evaluating hospitals performances and 

improvements. In addition, a number of special statistical methods have been developed for health surveillance (or 

monitoring) exclusively, as reviewed by Sonesson and Bock (2003) and Woodal (2006). 

Some quality characteristics, which the researchers are recently interested in to monitor, are for example, infection 

rates, rates of patient falls, number of congenital malformations in a society, various sorts of waiting times and so 

forth (Benneyan 1998.a,b, Benneyan 2003, Lee & McGreevey 2002). Most of the statistical methods are developed 

based on the type of interested quality characteristic observations; whether they are attribute or variable. For 

example, in order to monitor the incidence rate of a rare health event, like congenital malformation, different 

methods have been proposed. Among these are the g-type control chart (Benneyan 2001), g-type CUSUM control 

chart, sets method (Chen 1978), two modifications of the sets method as CUSCORE (Wolter 1987 , Munford 1980) 

and SHDA (Sitter et al. 1990), and the Bernoulli CUSUM (Sego et al. 2008). However, Sego believes that the 

performance of Bernoulli CUSUM and g-type CUSUM are better than sets method and its two modifications. The 

approach used for such methods assumes that all data are gathered and investigated one after another separately 

(Sego et al. 2008), but if you have to gather a grouped sample as aggregated data, these methods would fail to be 

implemented and some other methods should be substituted. 

Applying traditional np-chart for aggregated data, the number of failures in each subgroup, based on a binomial 

distribution would be monitored. A situation that is becoming more and more common in the field of high quality 

industries and also health engineering is the occurrence of a large number of zero failures. In industrial terminology, 

this condition is named "high yields processes" (Noorossana et al. 2007), while in health engineering it is called 

"rare health events" (Woodal 2006, Sego et al. 2008). It can be observed that when there are large numbers of zero 

data for an attribute quality characteristic, overdispersion (Woodal 2006) occurs and the related distribution does not 

fit a binomial distribution any more. So, some alternative models should be developed. 

Such situation can occur for Poisson distribution, which for the first time the suitable related model was developed 

by Lambert (1997), named "Zero Inflated Poisson" (ZIP) model. However that model was used as a response 

regression model. 

In fact, np-chart often underestimates the observed dispersion, resulting in calculation of improper narrow (tighter) 

control limits; subsequently leading to a higher false alarm rate in detecting out-of-control signals. Hence, modifying 



IJRRAS 4 (4) ● September 2010 Fatahi & al. ● Truncated Zero Inflated Binomial Control Chart 

  

381 

 

the basic binomial distribution to one, which could be used to model larger dispersion, can be developed. This model 

can be based on zero Inflation in binomial (ZIB) distribution.  

In this paper, first a new type of health-related attribute characteristic, named ZIB, is taken into account. Then, a 

proper control chart is developed for monitoring such distributed observations values. Performance evaluation of the 

proposed control chart, based on average run length (ARL) is computed and illustrated in the next section. In the 

subsequent section, a motivating real health engineering case study, related to a hospital infection counts is 

presented to show the applicability of the new method. Finally, our conclusion about the matter is presented.  

 

 

2.  ZERO INFLATED BINOMIAL DISTRIBUTION 

Binomial distribution as an attribute data generating distribution is widely used in monitoring quality characteristics, 

both in industry and healthcare. When there are large number of zero data for an attribute quality characteristic (like 

the number of infected patients of a sampling subgroup in a hospital), the distribution does not fit any binomial 

distribution and a combination of zero-inflation and binomial distribution should be developed. The suited 

probability distribution function for such situation is as Equation 1. In this equation, it is assumed that random 

shocks (like beginning of a special season, incidence of an epidemic disease, Changing surgery procedures and …) 
occur with probability  , and upon the occurrence of such random shocks, failures can be found and X number of 

failures (like the number of infected patients of a n  member sampling subgroup in a hospital) in each subgroup 

follows a binomial distribution with parameter p . 
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Since for all X values, 0),;( pxf iX   and 1),;( 
X

iX pxf  , this function is exactly a probability 

distribution function.  

For the above distribution, mean and variance of the number of  failures ( X ) can be calculated by Equations 2 and 

3. 
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The parameters p and   moment method estimates (MME) for the distribution can be obtained as Equation 4. 
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Equation 5 shows the covariance between p̂  and ̂ . 
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Generating lm  simulated ZIB data ( :m number of subgroups and :l number of simulation runs) we can obtain l  

estimate values for ip̂  and î  ( li ,,2,1  ). Applying estimated ip̂  and î  in Equation 5, l  estimates are 

obtained for )ˆ,ˆ( pCov . Using an statistical test with a suitable significance level for the null hypothesis 

0: ˆ,ˆ0 



p

H  against 0: ˆ,ˆ0 



p

H  can not be rejected. So, we can have sensitivity analysis by shifting p and 

  separately or simultaneously to calculate ARLs and evaluate the performance of  the proposed control chart. 

  

3.    ZERO INFLATED BINOMIAL CONTROL CHARTS 

3.1. Shewhart based ZIB control chart 

Based on general Shewhart statistical control chart principles, if w  is a statistic that measures a quality 

characteristic, and if mean and variance of w  are equal to w  and 
2

w  respectively, then the general model for the 

Shewhart control chart is as (Montgomery 2005): 
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where L  is the distance of the control limits from the center line, in multiples of the standard deviation of w .  

Considering w  as the number of failures distributed as Equation 1, we obtain trial control limits as Equation 7. 
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For different p  and   values, ZIBLCL  would never get any positive values. In addition, even increasing sample 

size n  not only does not shift ZIBLCL  to positive values, but also shifts it to smaller negative ones. 

Applying probability limits instead of control limits neither would be helpful, since equation 

 

2
)(

0








ZIBLPL

x

X xf  

would not be satisfied for any rational   values; where    is the integer round up function. To overcome this 

problem, we can calculate probability limit only for the first part of ZIB probability distribution function 
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)1( ) as a truncated distribution, Named truncated ZIB (TZIB) control chart. 

In order to calculate TZIB probability limit ( ZIBTUPL ), it is needed to solve Equation 8. 
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In a high quality process, especially rare health events, where there are large numbers of zero data as failures, we 

can consider that random shocks occur with probability  , and upon the occurrence of such shocks, failures can be 

found, and X number of failures in each sampled subgroup follows a binomial distribution with parameter p . In 

order to monitor and control such a process, for phase I, we can take m  subsequent subgroups including n  samples 

in each, computing p̂ and ̂  from Equation 4, as the estimates of parameters p and  , and finally substituting 

them in Equation 8. In phase II, applying phase I upper probability limit, sampling n  units at definite intervals and 

showing the number of failures, we can figure out whether the process is in control or out-of-control. 

As a strategy to define sample size n , in real health engineering cases, in order not to lose any data, usually all 

events in a predefined time interval is considered as a subgroup sample, so sample size is defined inherently, not 

selecting only some observations from the process. 

 

3.2. Control chart performance 

ARL is the average number of points that must be plotted until a point indicates an out-of-control condition. If the 

process observations are uncorrelated, then for any Shewhart control chart, the ARL can be calculated easily from  

robabilityP
ARL

1
                                                                      (9) 

If the observations plotted on the control chart are independent, then the number of points that must be plotted until 

the first point exceeds a control limit is a geometric random variable with parameter p . The mean of this geometric 

distribution is simply 
p

1
, named the average run length (ARL).  

Since zero values for X (as the number of failures) are excessive and also desirable and the positive values for X  

are undesirable, to calculate ARL we can concentrate only on X positive values (not zero ones) as a truncated 

distribution shown in Equation 10. 

  
ARL                        (10) 

Applying different values for n  in Equations 4 and 7, we can have a set of ARL curves. Also, using different values 

for type I error ( ) leads to a set of ARL curves. Greater values for   leads to more false out-of-control points 

(false alarms) and decreases false in-control points. But since in health engineering applications, related costs of 

false alarms (costs of more inspections) is much less than the costs of  false in-control points (costs of  ignoring 

(One point plots out of control) 

Number of X positive 

values 

Number of X positive values, equal to or greater than ZIBTUCL  
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mortality or acceleration of epidemic diseases), usually it's more rational to choose greater values for   than in 

industrial applications.  

Applying typical values 05.0p , 1.0  (for such situation, binomial failure rate is equal to 0.005, which the 

related events are considered as rare ones), 50n  and 005.0  for TZIB chart, ZIBTUCL  is equal to 7. While 

applying the same parameters values for np-chart results in 0npLCL , 93.0npUCL  and in-control 

1
ARL  which could not be useful at all.  The 


ARL  curves for the proposed TZIB chart are computed by 

simulation, base on Equation 10, and illustrated in Figure 1. Since 


ARL  curves are computed by simulation, they 

are not smooth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. TZIB average run length with in-control parameters  0.1, p 0.05 

 

4.    MOTIVATING CASE STUDY 

Infection rates of patients in hospitals have always been one of the most important quality attribute characteristics. 

(Martone et al. 1991, Benneyan 1998.b) This nosocomial characteristic can be defined and measured in different 

parts of a hospital by epidemiologists. As a motivating case, in a hospital, we have concentrated on every day 

number of patients who go under a surgery and contract wound infection during four consecutive days. So, for 

X and the two parameters n , m  we have 

n : Number of every day sampling patients who go under surgery (sample size) 

m : Number of consecutive sampling days to run phase I and estimating ZIB parameters p  and  . 

tX : Every day ( mt ,,2,1  ) number of patients who go under surgery and contract wound infection during 

next four consecutive days. 

Data gathering for 100 consecutive days is presented in Table 1. Number of patients whom are scheduled to go 

under surgery on each day are different from 45 to 53. Based on Montgomery (2005), since the samples have small 
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variation in size, we can use average numbers of sample sizes for our case calculations. So, the sample size n  is 

considered equal to 49 in the above case study. 

Table 1. Every day number of patients who have gone under surgery and have 

contracted wound infection along 100 consecutive days 

:t  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

:tX  0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 

:t  16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

:tX  1 0 0 0 0 1 0 0 0 0 0 0 2 1 0 

:t  31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

:tX  1 0 0 0 0 0 0 0 0 0 0 1 0 0 2 

:t  46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

:tX  0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

:t  61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 

:tX  0 0 1 0 0 0 0 0 1 1 0 2 0 1 0 

:t  76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 

:tX  0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

:t  91 92 93 94 95 96 97 98 99 100      

:tX  0 0 0 0 0 2 0 0 0 0      

 

 

Based on Equation 4 and the data lain in Table 1, we can obtain p̂ and ̂  values equal to 0.0114 and 0.4375 

respectively. Applying Chi-square goodness of fit test for tX  ( 100,,3,2,1 t ) to test if it is distributed as a ZIB 

variable with parameters 0114.0ˆ p  and 4375.0ˆ  , results in a large enough P-value to assume it as a ZIB 

variable.  

As it was mentioned before, since in health engineering applications, related costs of false alarms are much less than 

the costs of false in-control points, usually it's more rational to choose greater values for   than in industrial 

applications. So, in our case we have considered 005.0 , which is more than the value usually used in 

industrial applications ( 0027.0 ). According to Equation 8, ZIBTUCL  is obtained equal to 3. Phase I of the 

proposed TZIB is illustrated in Figure 2. Since none of tX s, presented in Table 1, are equal to or more than 

ZIBTUCL , we can assume that the process is statistically in control. So this proposed control chart can be 

considered for use in phase II. 

As we can see in Figure 2, in comparison with TZIB, np-chart is just inefficient, showing many of  the observations 

above npUCL  leading to exceeding false alarms. 

From subgroup 101 to subgroup 250 (for 150 consecutive days), patients going under surgery on each day are 

evaluated for wound infections. These observations are presented in Figure 3 as phase II of TZIB control chart. As it 

can be seen, the values associated with days 145 and 236 are plotted out-of-control indicating more attention. 

Complementary investigations show an unexpected change in recovery procedure of patients after surgery for day 

236, but for day 145 no especial cause could be found. Therefore, it was considered as a false alarm. 
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Figure 2. Phase I of TZIB control chart and the plotted tX s ( 100,,3,2,1 t ) in 

comparison with np-chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Phase II of TZIB control chart and the plotted tX s ( 250,,102,101 t ) in comparison with np-chart 
 

The 


ARL  curve related to the aforementioned case study is computed by simulation and depicted in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The ARL curve for TZIB chart with in-control parameters 0114.0p  and 4375.0 , and average 

sample size 49 
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5.    CONCLUSION 

Recently, miscellaneous statistical methods have been proposed in the literature to monitor rare health events. One 

relatively new approach to the problem is the use of control charts based on zero inflation in a binomial distribution. 

This paper develops a truncated ZIB control chart, applying probability limit in lieu of Shewhart based control limits 

for ZIB distributed observations. As the most prevalent criteria, average run length approach is used to evaluate the 

performance of the proposed chart. But since zero values for X (as the number of failures) are desirable and the 

positive values for X  are undesirable, to calculate the ARL we concentrate only on X  positive values (not zero 

ones) leading to calculation of 


ARL . The applicability of the TZIB control chart in phase I and phase II is also 

investigated using the number of patients who go under surgery and contract a wound infection in a high technology 

hospital in Tehran. Results are compared with np-chart as an inefficient control chart for our case study.  
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