PHYS 30672
 MATHS METHODS

1. If $G\left(x, x^{\prime}\right)$ is the Green's function for the linear operator L, what is the Green's function $\bar{G}\left(x, x^{\prime}\right)$ corresponding to the linear operator $\bar{L}=f(x) L$, where $f(x) \neq 0$.
2. Find the Green's function $G\left(x, x^{\prime}\right)$ for the operator $L y(x) \equiv y^{\prime \prime}(x)$ in the range $0 \leq x \leq a$, where $y(0)=y(a)=0$
(i) in the form of an eigenfunction expansion.
(ii) in the form of simple expressions for $x<x^{\prime}$ and $x>x^{\prime}$.
3. Find the Green's function $G\left(x, x^{\prime}\right)$ for the operator

$$
L y(x)=\frac{d}{d x}\left(x \frac{d y}{d x}\right)
$$

in the range $0<x<1$, where $y(0)$ is finite, and $y(1)=0$, in the form as in 2.ii above.
4. The equation of motion for a particle of unit mass moving in a viscous fluid and subject to a time-dependent force $f(t)$ is

$$
\frac{d v}{d t}+\beta v=f(t)
$$

Use the continuity method to find the Green's function for this problem. [The differential operator is non-Hermitian, so $G\left(t, t^{\prime}\right) \neq G\left(t^{\prime}, t\right)$. What is a suitable boundary condition for G ?]
Use your Green's function to find $v(t)$ in the case $f(t)=f_{0} e^{-\alpha t}$, given that $v=0$ at time $t=0$.
Also use your $G\left(t, t^{\prime}\right)$ to find the Green's function that relates the particle position $x(t)$ to the applied force. What second-order differential equation does this new Green's function satisfy?
5. The time dependent Schrödinger equation can be written in the form

$$
\begin{equation*}
i \hbar \frac{\partial \Psi(\boldsymbol{x}, t)}{\partial t}+\frac{\hbar^{2} \nabla^{2} \Psi(\boldsymbol{x}, t)}{2 m}=V(\boldsymbol{x}) \Psi(\boldsymbol{x}, t) \equiv \rho(\boldsymbol{x}, t) \tag{1}
\end{equation*}
$$

Note that apart from the i in the time-derivative term, this is very similar to the diffusion equation with a source term, discussed in lectures; it can be solved by the same methods. The Green's function for the Schrödinger "wave operator" is defined by

$$
\left[i \hbar \frac{\partial}{\partial t}+\frac{\hbar^{2} \nabla^{2}}{2 m}\right] G_{0}\left(\boldsymbol{x}, t ; \boldsymbol{x}^{\prime}, t^{\prime}\right)=\delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

Use the Fourier transform technique to show that the Green's function

$$
G(\boldsymbol{x}, t)=G_{0}(\boldsymbol{x}, t ; \mathbf{0}, 0)
$$

satisfying the causal boundary condition $G(\boldsymbol{x}, t<0)=0$ is given by

$$
G(\boldsymbol{x}, t)=-\frac{i}{\hbar} \int \mathrm{e}^{i\left(\boldsymbol{k} \cdot \boldsymbol{x}-\omega_{k} t\right)} \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}}
$$

for $t>0$, where $\omega_{k}=\frac{\hbar k^{2}}{2 m}$.
For incoming particles scattering from a short range potential, one would expect

$$
\begin{equation*}
\Psi(\boldsymbol{x}, t) \rightarrow \Phi(\boldsymbol{x}, t) \tag{2}
\end{equation*}
$$

for both $t \rightarrow-\infty$ and for $V(\boldsymbol{x}) \rightarrow 0$, where $\Phi(\boldsymbol{x}, t)$ is a known "incoming" wavefunction satisfying

$$
i \hbar \frac{\partial \Phi(\boldsymbol{x}, t)}{\partial t}+\frac{\hbar^{2} \nabla^{2} \Phi(\boldsymbol{x}, t)}{2 m}=0 .
$$

Write down the standard Green's function solution for (1) to obtain an equation for $\Psi(\boldsymbol{x}, t)$ in terms of $G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}, t-t^{\prime}\right)$ and $V(\boldsymbol{x})$ and show that it satisfies the boundary conditions $\Psi(\boldsymbol{x}, t) \rightarrow 0$ for both $t \rightarrow-\infty$ and $V(\boldsymbol{x}) \rightarrow 0$.
Modify this to obtain an expression for $\Psi(\boldsymbol{x}, t)$ in terms of $G\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}, t-t^{\prime}\right)$ and $\Phi(\boldsymbol{x}, t)$ which satisfies the boundary conditions (2) and is valid to first order in the potential.
6. As discussed in lectures, the Green's-function solution of

$$
\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}-\nabla^{2} \phi=f(\boldsymbol{r}, t)
$$

is

$$
\phi(\boldsymbol{r}, t)=\int d^{3} \boldsymbol{r}^{\prime} \int d t^{\prime} f\left(\boldsymbol{r}^{\prime}, t^{\prime}\right) \frac{\delta\left(t-t^{\prime}-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| / c\right)}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

For $f(\boldsymbol{r}, t)=\delta(\boldsymbol{r}-\boldsymbol{R}(t)) / \epsilon_{0}$, which represents a unit point charge moving along the path $\boldsymbol{R}(t)$, show that this leads to the Liénard-Wiechert potential

$$
\phi(\boldsymbol{r}, t)=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{\left|\boldsymbol{r}-\boldsymbol{R}\left(t^{\prime}\right)\right|-\left(\boldsymbol{r}-\boldsymbol{R}\left(t^{\prime}\right)\right) \cdot \dot{\boldsymbol{R}}\left(t^{\prime}\right) / c}
$$

where $t^{\prime}=t-\left|\boldsymbol{r}-\boldsymbol{R}\left(t^{\prime}\right)\right| / c$ is the so-called "retarded" time.
Hint: Integrate over \boldsymbol{r}^{\prime} first; then, for the t^{\prime} integration, use the identity

$$
\delta(g(t))=\sum_{i} \frac{\delta\left(t-t_{i}\right)}{|d g / d t|},
$$

where the sum runs over all solutions t_{i} of $g\left(t_{i}\right)=0$.

