LP in Standard and Slack Forms

s.1. ijlay ;= b, for i=1,2,...m
x, =2 0 for j=1,2,..,n

z = O+ijlcjxj

X = bl—zn_ a.x, for i=1,2,...,m



Auxiliary Linear Program

e |:LP in standard form:

n
max ijlcjxj
n

s.t. ijl a;x, < b, for i=1,2,...m
x, =2 0 for j=1,2,...,n
o L :Auxiliary LP:
max —X,
s.t ijl a,x;—x, =< b, for i=1,2,...,m

x, =2 0 for j=0,1,2,...,n

o L__Iis bounded and feasible.
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Upper Bounds on Maximization LP

max 4x, + x, + 5x; + 3x,

st x;, - x, - x3 + 3x, = 1
5x, + x, + 3x; + 8, =< 55
-x + 2x, + 3x; - 5x, < 3
Xy, X5, X5, x, = 0
* Multiply second constraint by 5/3:
23—5)61 + %xz + 5x; + 43—0x4 < 232

4x, + x, + 5x;, + 3X4S23—5x1 + %xz + 5x, + ‘;_Ox4 < 275



Upper Bounds on Maximization LP

max 4x, + x, + 5x; + 3x,

st.  x; - x, - x3 + 3x, = 1
5x, + x, + 3x; + 8, =< 55
-x, + 2x, + 3x; - 5x, =< 3
X, Xy, X5, x, = 0

e Add the second constraint to the third constraint:

4x, + 3x, + 6x; + 3x, =< 358

4x, + x, + 5x; + 3x,<4x, + 3x, + 6x;, + 3x, =< 58



Upper Bounds on Maximization LP

max 4x, + x, + 5x; + 3x,

st.  x;, - x, - x3 + 3x, = 1
5x, + x, + 3x; + 8, = 55
-x, + 2x, + 3x; - 5x, =< 3
Xy, Xy, X5, x, = 0

Construct a linear combination of the constraints using nonnegative
multipliers y., y,, and y,:

(J/1 +53’2_y3)x1+(_J71+y2+23’3)x2+(_y1 +3Y2+3Y3)x3+(33’1+83’2_53’3)x43y1+553’2+33’3

Left-hand side will be an upper bound for the LP if the coefficients at
each x; are at least as big as the corresponding coefficients in the

objective function
Y, +5y,—y;=4 =y, +y,+2y;=1 3y, +8y,—5y;=3 —y,+3y,+3y;=5

Any set of nonnegative multipliers y, satisfying these inequalities
also satisfies 4%, x, 5%+ 3%, <y, +55y, 3y,

Good upper bound: minimize right-hand side s.t. constraints.



Good Upper Bound

min Y,
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Duality

* The identification of a dual problem is almost always coupled
with the discovery of a polynomial-time algorithm.

* Duality provides a proof that a solution is optimal.



LP in Standard Form and Its Dual

max 3Xx, + x, + 2X,
st. x, + x, + 3x;, =< 30
2x, + 2x, + 5x;, =< 24
4x, + x, + 2%, =< 36
X, o, X, , x3 = 0
min 30y, + 24y, + 30y,
st y, + 2y, + 4y, = 3
yio ot 2y, oy 2 1
3yp, + Sy, + 2y; = 2
Yoo oy o, yso =2 0



LP in Standard Form and Its Dual

n
max ijlcjxj
n .
s.1. ijlal.jxjsbi for i=1,2,....m

x ;=0 for j=1,2,...,n

m
min Zi=1 by,
m

s.t. Zizlaijincj for j=1,2,...,n
y,=0 for i=1,2,...,m



Weak Duality

x*. feasible solution to the primal LP.

y*. feasible solution to the dual LP.

Claim Z] c, ]_Zl lbyz

Proof:

n % n m * %
X < Z Z L V. . from the dual
2% = y X,
> (X ax)

from the primal
Zizl biyi P

IA



Importance of Weak Duality

* x* feasible solution to the primal LP.

* y* feasible solution to the dual LP.

o If
Z] 1C]x]_zl 1by1

then x* and y* are optimal solutions to the primal and to the
dual LPs, respectively.



Final Feasible Basic Solution and
Corresponding Dual Solution

max z = 28 - x;/6 - xJ6 - 2x//3
st. x, = 18 - x;/2 + xJ/2 + 0x
x, = 4 - 8x,/3 - 2x/3 + x//3
x, = 8 + x/6 + xJ6 - x/J/3
Basic variables: x,=8, x,=4, x,=18 Objective value z = 28
yi=1 =G 1 +l.)€N min 30y, + 24y, + 36y,
0  otherwise sty o+ 2y, 4 4y, = 3
y, = 0 (since x, is basic), y, = 1/6, y, =2/3 v, + 2y, + > 1
3yp Sy, * o 2y; =z 2
Yo o Y2 .o ys =2 0



Feasible Solution to the Dual

min 30y, + 24y, + 306y,

st y, + 2y, + 4y, = 3
»wo ot 2y, + oy = 1
3y, + Sy, + 2y; = 2
Vv o Y2 o, yy =2 0

y, = 0 (since x, is basic)
y,=1/6
y, =2/3

Objective value: 30 x 0 + 24 x 1/6 + 36 x 2/3 = 28

1x0+2x16+4x2/3=3
1x0+2x1/6+1x2/3=1
3x0+5x1/6+2x2/3=13/6



Duality Theorem

Suppose that SIMPLEX terminates with a feasible basic
solution x* = (x, % x,%,..., x *) with:

- N and B denoting the nonbasic and basic variables for the
final slack form

- ' denoting the coefficients of the objective function in the
final slack form.

Let y* =(y,", vy,", ..., ¥.*) be defined by
*:{—c’nﬂ. if (n+i)eN
Vi 0 otherwise

Then x*is an optimal solution to the primal LP, y*is an optimal
solution to the dual LP and

Zj 1ijj_zl 1b yz



Proof of Duality Theorem

* We have to show that
- y™is feasible solution for the dual, and

Z] 1ijj_zl lb yl



Proof of Duality Theorem

* QObjective function of the final slack form of the primal is:
v*—l—z. c*-xj=v*+z. c*-xj—l—z. Ox,=v +Zni’f j X;

e Optimal value of the primal objective function: v—zjzlc]xj
n n+m
Z] 1 CijX;=V +Z] 1 ij+zj n+1 JXJ—V"'Z, 1 ij_zl 1yl b Z] 1 d; J
= (v*—zizlbiyj)+zj= c +Z ayyl

« This must hold for every choice of x,, x,, ..., x . Hence

V*=Zi=1biy:< and C]':Cj'_'_zi:l ay’yj,VJ=1,2,...,n

e Since cjsO,Vk=1,2,...,n+m , we get

m

Zizlaijy;kzcj’vjzlaz’”"n and y;.kZO,Vi=1,2,...,m



Primal Dual Combinations

Dual
Optimal Infeasible Unbounded
Optimal Possible  Impossible  Impossible
Primal Infeasible [Impossible  Possible Possible
Unbounded Impossible  Possible  Impossible



Both Primal and Dual Infeasible

max 2X, - X,
st. x;, - x, =< 1
-x, *+ x, = =2
X x, = 0
min y, - 2y,
st. y, - Yy, = 2
-» oy, = -l
Vi y, = 0



Practical Implications

If m >> n then the number of constraint in the dual will
be much smaller than in the primal.

Number of pivots in SIMPLEX is usually less than
1.5m and only rarely is higher than 3m.

Number of pivots increases very slowly with n.
Solving dual will in such cases be more efficient.



Certificate of Optimality
max ijl C;X;

s.1. Zjl a;,x;<b, for i=1,2,....m
x ;=0 for j=1,2,...,n

min Z
11’

s.t. lelaljincj for j=1,2,...,n
y,=0 for i=1,2,...,m



Maximum Flow

* Given: A directed graph G = (V,E) where each edge (u,v) LIE
has a real-valued, nonnegative capacity c(u,v), a source vertex
S and a destination vertex t.

* Find: Amaximum flowf: VxV - Rfromstot




Flow

* Given: A directed graph G = (V,E) where each edge (u,v) LIE
has a real-valued, nonnegative capacity c(u,v), a source
vertex s and a destination vertex (.

* Aflowfromstotin Gis areal-valued functionf: VxV - R
satisfying:

- Capacity constraints: f(u,v) < c(u,v), Uu, v 1 V.
- Skew symmetry: f(u,v) = - f(v,u), Uu, v 1 V.
- Flow conservation:

* Flow value | f| is defined as

ZveV f<S ’ V)



Maximum Flow as LP Problem

* maximize ZvEVf(S,V)

subject to

fu,v) <c(u,v) forallu, vV
fluv)=-~fvu)forallu, vV
>, fu,v)=0  foralluDV-{s,t}



Maximum Flow as LP Problem

* maximize ZVEVXSV

subject to
X <C, forallu, vV
X, =-X, forallu, vV
ZVeV x,=0 forallulO V\{s,t}



